Skip to main content

Advertisement

Log in

Dopamine Signaling Architecture in Caenorhabditis elegans

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

1. Aims: In this review, we highlight the identification and analysis of molecules orchestrating dopamine (DA) signaling in the nematode Caenorhabditis elegans, focusing on recent characterizations of DA transporters and receptors.

2. Methods: We illustrate the isolation and characterization of molecules important for C. elegans DA synthesis, packaging, reuptake and signaling and examine how mutations in these proteins are being exploited through in vitro and in vivo paradigms to yield novel insights of protein structure, DA signaling pathways and DA-supported behaviors.

3. Results: DA signaling in the worm, as in man, arises by synaptic and nonsynaptic release from a small number of cells that exert modulatory control over a larger network underlying C. elegans behavior.

4. Conclusions: The C. elegans model system offers unique opportunities to elucidate ill-defined pathways that support DA release, inactivation, and signaling in addition to clarifying mechanisms of DA-mediated behavioral plasticity. Further use of the model offers prospects for the identification of novel genes and proteins whose study may yield benefits for DA-supported neural disorders in man.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  • Axelrod, J. (1971). Noradrenaline: Fate and control of its biosynthesis. Science 173:598–606.

    Article  PubMed  CAS  Google Scholar 

  • Beaulieu, J. M., Sotnikova, T. D., Marion, S., Lefkowitz, R. J., Gainetdinov, R. R., and Caron, M. G. (2005). An Akt/beta-arrestin 2/PP2A signaling complex mediates dopaminergic neurotransmission and behavior. Cell 122:261–273.

    Article  PubMed  CAS  Google Scholar 

  • Bell, W. J. (1991). Searching Behavior : The Behavioral Ecology of Finding Resources, 1st edn. Chapman and Hall, London, New York.

    Google Scholar 

  • Brenner, S. (1974). The genetics of Caenorhabditis elegans. Genetics 77:71–94.

    PubMed  CAS  Google Scholar 

  • Cao, S., Gelwix, C. C., Caldwell, K. A., and Caldwell, G. A. (2005). Torsin-mediated protection from cellular stress in the dopaminergic neurons of Caenorhabditis elegans. J. Neurosci. 25:3801–3812.

    Article  PubMed  CAS  Google Scholar 

  • Carvelli, L., McDonald, P. W., Blakely, R. D., and Defelice, L. J. (2004). Dopamine transporters depolarize neurons by a channel mechanism. Proc. Natl. Acad. Sci. USA 101:16046–16051.

    Article  PubMed  CAS  Google Scholar 

  • Chalfie, M., Sulston, J. E., White, J. G., Southgate, E., Thomson, J. N., and Brenner, S. (1985). The neural circuit for touch sensitivity in Caenorhabditis elegans. J. Neurosci. 5:956–964.

    PubMed  CAS  Google Scholar 

  • Chase, D. L., Pepper, J. S., and Koelle, M. R. (2004). Mechanism of extrasynaptic dopamine signaling in Caenorhabditis elegans. Nat. Neurosci. 7:1096–1103.

    Article  PubMed  CAS  Google Scholar 

  • Christensen, M., Estevez, A., Yin, X., Fox, R., Morrison, R., McDonnell, M., Gleason, C., Miller, D. M., IIIrd, and Strange, K. (2002). A primary culture system for functional analysis of C. elegans neurons and muscle cells. Neuron. 33:503–514.

  • Consortium Ces (1998). Genome sequence of the nematode C. elegans: A platform for investigating biology. Science 282:2012–2018.

    Article  Google Scholar 

  • Dal Toso, R., Sommer, B., Ewert, M., Herb, A., Pritchett, D. B., Bach, A., Shivers, B. D., and Seeburg, P. H. (1989). The dopamine D2 receptor: two molecular forms generated by alternative splicing. Embo. J. 8:4025–4034.

    PubMed  CAS  Google Scholar 

  • Desai, C., and Horvitz, H. R. (1989). Caenorhabditis elegans mutants defective in the functioning of the motor neurons responsible for egg laying. Genetics 121:703–721.

    PubMed  CAS  Google Scholar 

  • Desai, C., Garriga, G., McIntire, S. L., and Horvitz, H. R. (1988). A genetic pathway for the development of the Caenorhabditis elegans HSN motor neurons. Nature 336:638–646.

    Article  PubMed  CAS  Google Scholar 

  • Dong, Y., Nasif, F. J., Tsui, J. J., Ju, W. Y., Cooper, D. C., Hu, X. T., Malenka, R. C., and White, F. J. (2005). Cocaine-induced plasticity of intrinsic membrane properties in prefrontal cortex pyramidal neurons: adaptations in potassium currents. J. Neurosci. 25:936–940.

    Article  PubMed  CAS  Google Scholar 

  • Duerr, J. S., Frisby, D. L., Gaskin, J., Duke, A., Asermely, K., Huddleston, D., Eiden, L. E., and Rand, J. B. (1999). The cat-1 gene of Caenorhabditis elegans encodes a vesicular monoamine transporter required for specific monoamine-dependent behaviors. J. Neurosci. 19:72–84.

    PubMed  CAS  Google Scholar 

  • Estevez, M., Estevez, A. O., Cowie, R. H., and Gardner, K. L. (2004). The voltage-gated calcium channel UNC-2 is involved in stress-mediated regulation of tryptophan hydroxylase. J. Neurochem. 88:102–113.

    Article  PubMed  CAS  Google Scholar 

  • Gainetdinov, R. R., Sotnikova, T. D., and Caron, M. G. (2002). Monoamine transporter pharmacology and mutant mice. Trends Pharmacol. Sci. 23:367–373.

    Article  PubMed  CAS  Google Scholar 

  • Gerdeman, G. L., Partridge, J. G., Lupica, C. R., and Lovinger, D. M. (2003). It could be habit forming: drugs of abuse and striatal synaptic plasticity. Trends Neurosci. 26:184–192.

    Article  PubMed  CAS  Google Scholar 

  • Giros, B., Jaber, M., Jones, S. R., Wightman, R. M., and Caron, M. G. (1996). Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter. Nature 379:606–612.

    Article  PubMed  CAS  Google Scholar 

  • Giros, B., Sokoloff, P., Martres, M. P., Riou, J. F., Emorine, L. J., and Schwartz, J. C. (1989). Alternative splicing directs the expression of two D2 dopamine receptor isoforms. Nature 342:923–926.

    Article  PubMed  CAS  Google Scholar 

  • Gray, J. M., Hill, J. J., and Bargmann, C. I. (2005). A circuit for navigation in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 102:3184–3191.

    Article  PubMed  CAS  Google Scholar 

  • Hajdu-Cronin, Y.M., Chen, W. J., Patikoglou, G., Koelle, M. R., and Sternberg, P. W. (1999). Antagonism between G(o)alpha and G(q)alpha in Caenorhabditis elegans: the RGS protein EAT-16 is necessary for G(o)alpha signaling and regulates G(q)alpha activity. Genes. Dev. 13:1780–1793.

    PubMed  CAS  Google Scholar 

  • Hall, D. H., and Hedgecock, E. M. (1991). Kinesin-related gene unc-104 is required for axonal transport of synaptic vesicles in C. elegans. Cell 65:837–847.

    Article  PubMed  CAS  Google Scholar 

  • Hall, D. H., and Russell, R. L. (1991). The posterior nervous system of the nematode Caenorhabditis elegans: serial reconstruction of identified neurons and complete pattern of synaptic interactions. J Neurosci. 11:1–22.

    PubMed  CAS  Google Scholar 

  • Hare, E. E., and Loer, C. M. (2004). Function and evolution of the serotonin-synthetic bas-1 gene and other aromatic amino acid decarboxylase genes in Caenorhabditis. BMC Evol. Biol. 4:24.

    Article  PubMed  CAS  Google Scholar 

  • Hills, T., Brockie, P. J., and Maricq, A. V. (2004). Dopamine and glutamate control area-restricted search behavior in Caenorhabditis elegans. J. Neurosci. 24:1217–1225.

    Article  PubMed  CAS  Google Scholar 

  • Hodgkin, J. (1995). Genetic nomenclature guide. Caenorhabditis elegans. Trends Genet.: 24–25.

  • Hodgkin, J. (2001). What does a worm want with 20,000 genes?. Genome. Biol. 2:COMMENT2008.

  • Horvitz, H. R., Brenner, S., Hodgkin, J., and Herman, R. K. (1979). A uniform genetic nomenclature for the nematode Caenorhabditis elegans. Mol. Gen. Genet. 175:129–133.

    Article  PubMed  CAS  Google Scholar 

  • Horvitz, H. R., Chalfie, M., Trent, C., Sulston, J. E., and Evans, P. D. (1982). Serotonin and octopamine in the nematode Caenorhabditis elegans. Science 216:1012–1014.

    Article  PubMed  CAS  Google Scholar 

  • Ingram, S. L., Prasad, B. M., and Amara, S. G. (2002). Dopamine transporter-mediated conductances increase excitability of midbrain dopamine neurons. Nat. Neurosci. 5:971–978.

    Article  PubMed  CAS  Google Scholar 

  • Jayanthi, L. D., Apparsundaram, S., Malone, M. D., Ward, E., Miller, D. M., Eppler, M., and Blakely, R. D. (1998). The Caenorhabditis elegans gene T23G5.5 encodes an antidepressant- and cocaine-sensitive dopamine transporter. Mol. Pharmacol. 54:601–609.

    PubMed  CAS  Google Scholar 

  • Jorgensen, E. M. (2004). Dopamine: should I stay or should I go now? Nat. Neurosci. 7:1019–1021.

    Article  PubMed  CAS  Google Scholar 

  • Kandel, E. R., and Schwartz, J. H. (1982). Molecular biology of learning: modulation of transmitter release. Science 218:433–443.

    Article  PubMed  CAS  Google Scholar 

  • Kapatos, G., Hirayama, K., Shimoji, M., and Milstien, S. (1999). GTP cyclohydrolase I feedback regulatory protein is expressed in serotonin neurons and regulates tetrahydrobiopterin biosynthesis. J. Neurochem. 72:669–675.

    Article  PubMed  CAS  Google Scholar 

  • Kilty, J. E., Lorang, D., and Amara, S. G. (1991). Cloning and expression of a cocaine-sensitive rat dopamine transporter. Science 254:578–579.

    Article  PubMed  CAS  Google Scholar 

  • Koushika, S. P., and Nonet, M. L. (2000). Sorting and transport in C. elegans: aA model system with a sequenced genome. Curr. Opin. Cell Biol. 12:517–523.

    Article  PubMed  CAS  Google Scholar 

  • Lakso, M., Vartiainen, S., Moilanen, A. M., Sirvio, J., Thomas, J. H., Nass, R., Blakely, R. D., and Wong, G. (2003). Dopaminergic neuronal loss and motor deficits in Caenorhabditis elegans overexpressing human alpha-synuclein. J. Neurochem. 86:165–172.

    Article  PubMed  CAS  Google Scholar 

  • Lints, R., and Emmons, S. W. (1999). Patterning of dopaminergic neurotransmitter identity among Caenorhabditis elegans ray sensory neurons by a TGFbeta family signaling pathway and a Hox gene. Development 126:5819–5831.

    PubMed  CAS  Google Scholar 

  • Liu, K. S., and Sternberg, P. W. (1995). Sensory regulation of male mating behavior in Caenorhabditis elegans. Neuron. 14:79–89.

    Article  PubMed  CAS  Google Scholar 

  • Loer, C. M., and Kenyon, C. J. (1993). Serotonin-deficient mutants and male mating behavior in the nematode Caenorhabditis elegans. J. Neurosci. 13:5407–5417.

    PubMed  CAS  Google Scholar 

  • Luttrell, L. M., Ostrowski, J., Cotecchia, S., Kendall, H., and Lefkowitz, R. J. (1993). Antagonism of catecholamine receptor signaling by expression of cytoplasmic domains of the receptors. Science 259:1453–1457.

    Article  PubMed  CAS  Google Scholar 

  • Mathews, E. A., Garcia, E., Santi, C. M., Mullen, G. P., Thacker, C., Moerman, D. G., and Snutch, T. P. (2003). Critical residues of the Caenorhabditis elegans unc-2 voltage-gated calcium channel that affect behavioral and physiological properties. J. Neurosci. 23:6537–6545.

    PubMed  CAS  Google Scholar 

  • McIntire, S. L., Jorgensen, E., Kaplan, J., and Horvitz, H. R. (1993). The GABAergic nervous system of Caenorhabditis elegans. Nature 364:337–341.

    Article  PubMed  CAS  Google Scholar 

  • Miller, K. G., Emerson, M. D., and Rand, J. B. (1999). Goalpha and diacylglycerol kinase negatively regulate the Gqalpha pathway in C. elegans. Neuron. 24:323–333.

    Article  PubMed  CAS  Google Scholar 

  • Missale, C., Nash, S. R., Robinson, S. W., Jaber, M., and Caron, M. G. (1998). Dopamine receptors: from structure to function. Physiol. Rev. 78:189–225.

    PubMed  CAS  Google Scholar 

  • Monsma, F. J. Jr., McVittie, L. D., Gerfen, C. R., Mahan, L. C., and Sibley, D. R. (1989). Multiple D2 dopamine receptors produced by alternative RNA splicing. Nature 342:926–929.

    Article  PubMed  CAS  Google Scholar 

  • Mortensen, O. V., and Amara, S. G. (2003). Dynamic regulation of the dopamine transporter. Eur. J. Pharmacol. 479:159–170.

    Article  PubMed  CAS  Google Scholar 

  • Nass, R., and Blakely, R. D. (2003). The Caenorhabditis elegans dopaminergic system: opportunities for insights into dopamine transport and neurodegeneration. Annu. Rev. Pharmacol. Toxicol. 43:521–544.

    Article  PubMed  CAS  Google Scholar 

  • Nass, R., Hall, D. H., Miller, D. M., IIIrd, and Blakely, R. D. (2002). Neurotoxin-induced degeneration of dopamine neurons in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 99:3264–3269.

  • Nass, R., Hahn, M. K., Jessen, T., McDonald, P. W., Carvelli, L., and Blakely, R. D. (2005). A genetic screen in Caenorhabditis elegans for dopamine neuron insensitivity to 6-hydroxydopamine identifies dopamine transporter mutants impacting transporter biosynthesis and trafficking. J. Neurochem. 94:774–785.

    Article  PubMed  CAS  Google Scholar 

  • Neve, K. A., Seamans, J. K., and Trantham-Davidson, H. (2004). Dopamine receptor signaling. J. Recept. Signal Transduct. Res. 24:165–205.

    Article  PubMed  CAS  Google Scholar 

  • Olson, P. A., Tkatch, T., Hernandez-Lopez, S., Ulrich, S., Ilijic, E., Mugnaini, E., Zhang, H., Bezprozvanny, I., and Surmeier, D. J. (2005). G-protein-coupled receptor modulation of striatal CaV1.3 L-type Ca2+ channels is dependent on a Shank-binding domain. J. Neurosci. 25:1050–1062.

    Article  PubMed  CAS  Google Scholar 

  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., and Ferrin, T. E. (2004). UCSF Chimera–a visualization system for exploratory research and analysis. J. Comput. Chem. 25:1605–1612.

    Article  PubMed  CAS  Google Scholar 

  • Rand, J. B., Duerr, J. S., and Frisby, D. L. (1998). Using Caenorhabditis elegans to study vesicular transport. Methods Enzymol. 296:529–547.

    Article  PubMed  CAS  Google Scholar 

  • Rankin, C. H. (1991). Interactions between two antagonistic reflexes in the nematode Caenorhabditis elegans. J. Comp. Physiol. [A] 169:59–67.

    CAS  Google Scholar 

  • Rankin, C. H., and Broster, B. S. (1992). Factors affecting habituation and recovery from habituation in the nematode Caenorhabditis elegans. Behav. Neurosci. 106:239–249.

    Article  PubMed  CAS  Google Scholar 

  • Rice, M. E. (2000). Distinct regional differences in dopamine-mediated volume transmission. Prog. Brain Res. 125:277–290.

    Article  PubMed  CAS  Google Scholar 

  • Riddle, D. L. (1997). C. elegans II. Plainview, Cold Spring Harbor Laboratory Press, NY.

    Google Scholar 

  • Rose, J. K., and Rankin, C. H. (2001). Analyses of habituation in Caenorhabditis elegans. Learn. Mem. 8:63–69.

    Article  PubMed  CAS  Google Scholar 

  • Sanyal, S., Wintle, R. F., Kindt, K. S., Nuttley, W. M., Arvan, R., Fitzmaurice, P., Bigras, E., Merz, D. C., Hebert, T. E., van der Kooy, D., Schafer, W. R., Culotti, J. G., and Van Tol, H. H. (2004). Dopamine modulates the plasticity of mechanosensory responses in Caenorhabditis elegans. Embo. J. 23:473–482.

    Article  PubMed  CAS  Google Scholar 

  • Sawin, E. R., Ranganathan, R., and Horvitz, H. R. (2000). C. elegans locomotory rate is modulated by the environment through a dopaminergic pathway and by experience through a serotonergic pathway. Neuron. 26:619–631.

    Article  PubMed  CAS  Google Scholar 

  • Schafer, W. R., and Kenyon, C. J. (1995). A calcium-channel homologue required for adaptation to dopamine and serotonin in Caenorhabditis elegans. Nature 375:73–78.

    Article  PubMed  CAS  Google Scholar 

  • Spano, P. F., Govoni, S., and Trabucchi, M. (1978). Studies on the pharmacological properties of dopamine receptors in various areas of the central nervous system. Adv. Biochem. Psychopharmacol. 19:155–165.

    PubMed  CAS  Google Scholar 

  • Sugiura, M., Fuke, S., Suo, S., Sasagawa, N., Van Tol, H. H., and Ishiura, S. (2005). Characterization of a novel D2-like dopamine receptor with a truncated splice variant and a D1-like dopamine receptor unique to invertebrates from Caenorhabditis elegans. J. Neurochem. 94:1146–1157.

    Article  PubMed  CAS  Google Scholar 

  • Sulston, J., Dew, M., and Brenner, S. (1975). Dopaminergic neurons in the nematode Caenorhabditis elegans. J. Comp. Neurol. 163:215–226.

    Article  PubMed  CAS  Google Scholar 

  • Suo, S., Sasagawa, N., and Ishiura, S. (2002). Identification of a dopamine receptor from Caenorhabditis elegans. Neurosci. Lett. 319:13–16.

    Article  PubMed  CAS  Google Scholar 

  • Suo, S., Sasagawa, N., and Ishiura, S. (2003). Cloning and characterization of a Caenorhabditis elegans D2-like dopamine receptor. J. Neurochem. 86:869–878.

    Article  PubMed  CAS  Google Scholar 

  • Suo, S., Ishiura, S., and Van Tol, H. H. (2004). Dopamine receptors in C. elegans. Eur. J. Pharmacol. 500:159–166.

    Article  PubMed  CAS  Google Scholar 

  • Trent, C., Tsuing, N., and Horvitz, H. R. (1983). Egg-laying defective mutants of the nematode Caenorhabditis elegans. Genetics 104:619–647.

    PubMed  CAS  Google Scholar 

  • Ward, S., Thomson, N., White, J. G., and Brenner, S. (1975). Electron microscopical reconstruction of the anterior sensory anatomy of the nematode Caenorhabditis elegans. J. Comp. Neurol. 160:313–337.

    Article  PubMed  CAS  Google Scholar 

  • Wei, A. D., Butler, A., and Salkoff, L. (2005). KCNQ-like potassium channels in Caenorhabditis elegans. Conserved properties and modulation. J. Biol. Chem. 280:21337–21345.

    Article  PubMed  CAS  Google Scholar 

  • Weinshenker, D., Garriga, G., and Thomas, J. H. (1995). Genetic and pharmacological analysis of neurotransmitters controlling egg laying in C. elegans. J. Neurosci. 15:6975–6985.

    PubMed  CAS  Google Scholar 

  • Weinshenker, D., Wei, A., Salkoff, L., and Thomas, J. H. (1999). Block of an ether-a-go-go-like K(+) channel by imipramine rescues egl-2 excitation defects in Caenorhabditis elegans. J. Neurosci. 19:9831–9840.

    PubMed  CAS  Google Scholar 

  • White, J. G., Southgate, E., Thompson, J. N., and Brenner, S. (1986). The structure of the nervous system of the nematode Caenorhabditis elegans. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 314:1–340.

    Google Scholar 

  • Wicks, S. R., and Rankin, C. H. (1995). Integration of mechanosensory stimuli in Caenorhabditis elegans. J. Neurosci. 15:2434–2444.

    PubMed  CAS  Google Scholar 

  • Wintle, R. F., and Van Tol, H. H. (2001). Dopamine signaling in Caenorhabditis elegans-potential for parkinsonism research. Parkinsonism Relat. Disord. 7:177–183.

    Article  PubMed  Google Scholar 

  • Yamashita, A., Singh, S. K., Kawate, T., Jin, Y., and Gouaux, E. (2005). Crystal structure of a bacterial homologue of Na+/Cl–dependent neurotransmitter transporters. Nature 437:215–223.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randy D. Blakely.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McDonald, P.W., Jessen, T., Field, J.R. et al. Dopamine Signaling Architecture in Caenorhabditis elegans . Cell Mol Neurobiol 26, 591–616 (2006). https://doi.org/10.1007/s10571-006-9003-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-006-9003-6

Key Words:

Navigation