Skip to main content

Recovery of Hip Muscle Strength After ACL Injury and Reconstruction: Implications for Reducing the Risk of Reinjury

  • Chapter
  • First Online:
ACL Injuries in the Female Athlete

Abstract

Recovery of lower extremity muscular strength and neuromuscular control are two of the most vital aspects of anterior cruciate ligament (ACL) rehabilitation, as well as efforts to prevent noncontact ACL injury. There is strong evidence regarding the association between decreased hip range of motion, particularly internal and external rotation, and noncontact ACL injury. Given that females are at greater risk for ACL injury compared with males, increased emphasis has been placed on identifying risk factors in the hip as well as throughout the kinetic chain for this injury. In this chapter, we discuss the relationship between hip and knee injury patterns and its implications for ACL reconstruction and rehabilitation and noncontact ACL injury prevention efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Petersen W, Taheri P, Forkel P, Zantop T (2014) Return to play following ACL reconstruction: a systematic review about strength deficits. Arch Orthop Trauma Surg 134(10):1417–1428. https://doi.org/10.1007/s00402-014-1992-x

    Article  PubMed  Google Scholar 

  2. Prodromos CC, Han Y, Rogowski J, Joyce B, Shi K (2007) A meta-analysis of the incidence of anterior cruciate ligament tears as a function of gender, sport, and a knee injury-reduction regimen. Arthroscopy 23(12):1320–1325. e1326

    Article  PubMed  Google Scholar 

  3. Alentorn-Geli E, Myer GD, Silvers HJ, Samitier G, Romero D, Lazaro-Haro C, Cugat R (2009) Prevention of non-contact anterior cruciate ligament injuries in soccer players. Part 2: a review of prevention programs aimed to modify risk factors and to reduce injury rates. Knee Surg Sports Traumatol Arthrosc 17(8):859–879. https://doi.org/10.1007/s00167-009-0823-z

    Article  PubMed  Google Scholar 

  4. Noyes FR, Barber-Westin SD (2014) Neuromuscular retraining intervention programs: do they reduce noncontact anterior cruciate ligament injury rates in adolescent female athletes? Arthroscopy 30(2):245–255. https://doi.org/10.1016/j.arthro.2013.10.009

    Article  PubMed  Google Scholar 

  5. Myklebust G, Engebretsen L, Braekken IH, Skjolberg A, Olsen OE, Bahr R (2003) Prevention of anterior cruciate ligament injuries in female team handball players: a prospective intervention study over three seasons. Clin J Sport Med 13(2):71–78

    Article  PubMed  Google Scholar 

  6. Khayambashi K, Ghoddosi N, Straub RK, Powers CM (2016) Hip muscle strength predicts noncontact anterior cruciate ligament injury in male and female athletes: a prospective study. Am J Sports Med 44(2):355–361. https://doi.org/10.1177/0363546515616237

    Article  PubMed  Google Scholar 

  7. Dunn WR, Lyman S, Lincoln AE, Amoroso PJ, Wickiewicz T, Marx RG (2004) The effect of anterior cruciate ligament reconstruction on the risk of knee reinjury. Am J Sports Med 32(8):1906–1914

    Article  PubMed  Google Scholar 

  8. Lohmander LS, Englund PM, Dahl LL, Roos EM (2007) The long-term consequence of anterior cruciate ligament and meniscus injuries: osteoarthritis. Am J Sports Med 35(10):1756–1769

    Article  PubMed  Google Scholar 

  9. Louboutin H, Debarge R, Richou J, Selmi TA, Donell ST, Neyret P, Dubrana F (2009) Osteoarthritis in patients with anterior cruciate ligament rupture: a review of risk factors. Knee 16(4):239–244. https://doi.org/10.1016/j.knee.2008.11.004

    Article  PubMed  Google Scholar 

  10. Uhorchak JM, Scoville CR, Williams GN, Arciero RA, St Pierre P, Taylor DC (2003) Risk factors associated with noncontact injury of the anterior cruciate ligament: a prospective four-year evaluation of 859 West Point cadets. Am J Sports Med 31(6):831–842

    Article  PubMed  Google Scholar 

  11. Boden BP, Dean GS, Feagin JA Jr, Garrett WE Jr (2000) Mechanisms of anterior cruciate ligament injury. Orthopedics 23(6):573–578

    PubMed  CAS  Google Scholar 

  12. Chappell JD, Creighton RA, Giuliani C, Yu B, Garrett WE (2007) Kinematics and electromyography of landing preparation in vertical stop-jump: risks for noncontact anterior cruciate ligament injury. Am J Sports Med 35(2):235–241

    Article  PubMed  Google Scholar 

  13. Khowailed IA, Petrofsky J, Lohman E, Daher N, Mohamed O (2015) 17beta-Estradiol induced effects on anterior cruciate ligament laxness and neuromuscular activation patterns in female runners. J Womens Health (Larchmt) 24(8):670–680. https://doi.org/10.1089/jwh.2014.5184

    Article  Google Scholar 

  14. Chahla J, Arroquy D, Herrera GP, Orlowski B, Guinazu J, Carboni M, Vilaseca T (2014) Lesion del Ligamento Cruzado Anterior: Es la disminucion en la movilidad de la cadera un factor predisponente? Arthroscopia 21:4

    Google Scholar 

  15. Philippon M, Dewing C, Briggs K, Steadman JR (2012) Decreased femoral head-neck offset: a possible risk factor for ACL injury. Knee Surg Sports Traumatol Arthrosc 20(12):2585–2589. https://doi.org/10.1007/s00167-012-1881-1

    Article  PubMed  PubMed Central  Google Scholar 

  16. Gomes JL, de Castro JV, Becker R (2008) Decreased hip range of motion and noncontact injuries of the anterior cruciate ligament. Arthroscopy 24 (9):1034–1037. doi:https://doi.org/10.1016/j.arthro.2008.05.012

  17. Lopes OV Jr, Gomes JL, de Freitas Spinelli L (2016) Range of motion and radiographic analysis of the hip in patients with contact and non-contact anterior cruciate ligament injury. Knee Surg Sports Traumatol Arthrosc 24(9):2868–2873. https://doi.org/10.1007/s00167-015-3532-9

    Article  PubMed  Google Scholar 

  18. Tainaka K, Takizawa T, Kobayashi H, Umimura M (2014) Limited hip rotation and non-contact anterior cruciate ligament injury: a case-control study. Knee 21(1):86–90. https://doi.org/10.1016/j.knee.2013.07.006

    Article  PubMed  Google Scholar 

  19. Ellera Gomes JL, Palma HM, Becker R (2010) Radiographic findings in restrained hip joints associated with ACL rupture. Knee Surg Sports Traumatol Arthrosc 18(11):1562–1567. https://doi.org/10.1007/s00167-010-1175-4

    Article  PubMed  Google Scholar 

  20. Gomez E, DeLee JC, Farney WC (1996) Incidence of injury in Texas girls’ high school basketball. Am J Sports Med 24(5):684–687

    Article  CAS  PubMed  Google Scholar 

  21. Ellera Gomes JL, Palma HM, Ruthner R (2014) Influence of hip restriction on noncontact ACL rerupture. Knee Surg Sports Traumatol Arthrosc 22(1):188–191. https://doi.org/10.1007/s00167-012-2348-0

    Article  PubMed  Google Scholar 

  22. Bedi A, Warren RF, Wojtys EM, Oh YK, Ashton-Miller JA, Oltean H, Kelly BT (2016) Restriction in hip internal rotation is associated with an increased risk of ACL injury. Knee Surg Sports Traumatol Arthrosc 24(6):2024–2031. https://doi.org/10.1007/s00167-014-3299-4

    Article  PubMed  Google Scholar 

  23. Yamazaki J, Muneta T, Ju YJ, Morito T, Okuwaki T, Sekiya I (2011) Hip acetabular dysplasia and joint laxity of female anterior cruciate ligament-injured patients. Am J Sports Med 39(2):410–414. https://doi.org/10.1177/0363546510381588

    Article  PubMed  Google Scholar 

  24. Beaulieu ML, Oh YK, Bedi A, Ashton-Miller JA, Wojtys EM (2014) Does limited internal femoral rotation increase peak anterior cruciate ligament strain during a simulated pivot landing? Am J Sports Med 42(12):2955–2963. https://doi.org/10.1177/0363546514549446

    Article  PubMed  Google Scholar 

  25. Girard J, Krantz N, Bocquet D, Wavreille G, Migaud H (2012) Femoral head to neck offset after hip resurfacing is critical for range of motion. Clin Biomech (Bristol, Avon) 27(2):165–169. https://doi.org/10.1016/j.clinbiomech.2011.08.013

    Article  CAS  Google Scholar 

  26. Imwalle LE, Myer GD, Ford KR, Hewett TE (2009) Relationship between hip and knee kinematics in athletic women during cutting maneuvers: a possible link to noncontact anterior cruciate ligament injury and prevention. J Strength Cond Res 23(8):2223–2230. https://doi.org/10.1519/JSC.0b013e3181bc1a02

    Article  PubMed  PubMed Central  Google Scholar 

  27. Leetun DT, Ireland ML, Willson JD, Ballantyne BT, Davis IM (2004) Core stability measures as risk factors for lower extremity injury in athletes. Med Sci Sports Exerc 36(6):926–934

    Article  PubMed  Google Scholar 

  28. Brent JL, Myer GD, Ford KR, Paterno MV, Hewett TE (2013) The effect of sex and age on isokinetic hip-abduction torques. J Sport Rehabil 22(1):41–46

    Article  PubMed  Google Scholar 

  29. Ganz R, Parvizi J, Beck M, Leunig M, Notzli H, Siebenrock KA (2003) Femoroacetabular impingement: a cause for osteoarthritis of the hip. Clin Orthop Relat Res 417:112–120. https://doi.org/10.1097/01.blo.0000096804.78689.c2

    Article  Google Scholar 

  30. Siebenrock KA, Wahab KH, Werlen S, Kalhor M, Leunig M, Ganz R (2004) Abnormal extension of the femoral head epiphysis as a cause of cam impingement. Clin Orthop Relat Res 418:54–60

    Article  Google Scholar 

  31. Beck M, Kalhor M, Leunig M, Ganz R (2005) Hip morphology influences the pattern of damage to the acetabular cartilage: femoroacetabular impingement as a cause of early osteoarthritis of the hip. J Bone Joint Surg Br 87(7):1012–1018. https://doi.org/10.1302/0301-620X.87B7.15203

    Article  PubMed  CAS  Google Scholar 

  32. Johnston TL, Schenker ML, Briggs KK, Philippon MJ (2008) Relationship between offset angle alpha and hip chondral injury in femoroacetabular impingement. Arthroscopy 24(6):669–675. https://doi.org/10.1016/j.arthro.2008.01.010

    Article  PubMed  Google Scholar 

  33. Bhatia S, Nowak DD, Briggs KK, Patterson DC, Philippon MJ (2016) Outerbridge grade IV cartilage lesions in the hip identified at arthroscopy. Arthroscopy 32(5):814–819. https://doi.org/10.1016/j.arthro.2015.11.053

    Article  PubMed  Google Scholar 

  34. Ho CP, Ommen ND, Bhatia S, Saroki AJ, Goljan P, Briggs KK, Philippon MJ (2016) Predictive value of 3-T magnetic resonance imaging in diagnosing grade 3 and 4 Chondral lesions in the hip. Arthroscopy 32(9):1808–1813. https://doi.org/10.1016/j.arthro.2016.03.014

    Article  PubMed  Google Scholar 

  35. Frank JM, Harris JD, Erickson BJ, Slikker W 3rd, Bush-Joseph CA, Salata MJ, Nho SJ (2015) Prevalence of femoroacetabular impingement imaging findings in asymptomatic volunteers: a systematic review. Arthroscopy 31(6):1199–1204. https://doi.org/10.1016/j.arthro.2014.11.042

    Article  PubMed  Google Scholar 

  36. Register B, Pennock AT, Ho CP, Strickland CD, Lawand A, Philippon MJ (2012) Prevalence of abnormal hip findings in asymptomatic participants: a prospective, blinded study. Am J Sports Med 40(12):2720–2724. https://doi.org/10.1177/0363546512462124

    Article  PubMed  Google Scholar 

  37. Nepple JJ, Clohisy JC, Members ASG (2017) Evolution of femoroacetabular impingement treatment: the ANCHOR experience. Am J Orthop (Belle Mead NJ) 46(1):28–34

    Google Scholar 

  38. Siebenrock KA, Ferner F, Noble PC, Santore RF, Werlen S, Mamisch TC (2011) The cam-type deformity of the proximal femur arises in childhood in response to vigorous sporting activity. Clin Orthop Relat Res 469(11):3229–3240. https://doi.org/10.1007/s11999-011-1945-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Thomas GE, Palmer AJ, Batra RN, Kiran A, Hart D, Spector T, Javaid MK, Judge A, Murray DW, Carr AJ, Arden NK, Glyn-Jones S (2014) Subclinical deformities of the hip are significant predictors of radiographic osteoarthritis and joint replacement in women. A 20 year longitudinal cohort study. Osteoarthr Cartil 22(10):1504–1510. https://doi.org/10.1016/j.joca.2014.06.038

    Article  PubMed  CAS  Google Scholar 

  40. Nepple JJ, Vigdorchik JM, Clohisy JC (2015) What is the association between sports participation and the development of proximal femoral cam deformity? A systematic review and meta-analysis. Am J Sports Med 43(11):2833–2840. https://doi.org/10.1177/0363546514563909

    Article  PubMed  Google Scholar 

  41. Agricola R, Waarsing JH, Arden NK, Carr AJ, Bierma-Zeinstra SM, Thomas GE, Weinans H, Glyn-Jones S (2013) Cam impingement of the hip: a risk factor for hip osteoarthritis. Nat Rev Rheumatol 9(10):630–634. https://doi.org/10.1038/nrrheum.2013.114

    Article  PubMed  Google Scholar 

  42. Anderson LA, Kapron AL, Aoki SK, Peters CL (2012) Coxa profunda: is the deep acetabulum overcovered? Clin Orthop Relat Res 470(12):3375–3382. https://doi.org/10.1007/s11999-012-2509-y

    Article  PubMed  PubMed Central  Google Scholar 

  43. Siebenrock KA, Kalbermatten DF, Ganz R (2003) Effect of pelvic tilt on acetabular retroversion: a study of pelves from cadavers. Clin Orthop Relat Res 407:241–248

    Article  Google Scholar 

  44. Ross JR, Nepple JJ, Philippon MJ, Kelly BT, Larson CM, Bedi A (2014) Effect of changes in pelvic tilt on range of motion to impingement and radiographic parameters of acetabular morphologic characteristics. Am J Sports Med 42(10):2402–2409. https://doi.org/10.1177/0363546514541229

    Article  PubMed  Google Scholar 

  45. Zaltz I, Kelly BT, Hetsroni I, Bedi A (2013) The crossover sign overestimates acetabular retroversion. Clin Orthop Relat Res 471(8):2463–2470. https://doi.org/10.1007/s11999-012-2689-5

    Article  PubMed  Google Scholar 

  46. Nepple JJ, Prather H, Trousdale RT, Clohisy JC, Beaule PE, Glyn-Jones S, Rakhra K, Kim YJ (2013) Diagnostic imaging of femoroacetabular impingement. J Am Acad Orthop Surg 21(Suppl 1):S20–S26. https://doi.org/10.5435/JAAOS-21-07-S20

    Article  PubMed  Google Scholar 

  47. Philippon MJ, Schenker ML (2006) Arthroscopy for the treatment of femoroacetabular impingement in the athlete. Clin Sports Med 25(2):299–308., ix. https://doi.org/10.1016/j.csm.2005.12.006

    Article  PubMed  Google Scholar 

  48. DiStefano LJ, Marshall SW, Padua DA, Peck KY, Beutler AI, de la Motte SJ, Frank BS, Martinez JC, Cameron KL (2016) The effects of an injury prevention program on landing biomechanics over time. Am J Sports Med 44(3):767–776. https://doi.org/10.1177/0363546515621270

    Article  PubMed  Google Scholar 

  49. Chen JL, Allen CR, Stephens TE, Haas AK, Huston LJ, Wright RW, Feeley BT (2013) Differences in mechanisms of failure, intraoperative findings, and surgical characteristics between single- and multiple-revision ACL reconstructions: a MARS cohort study. Am J Sports Med 41(7):1571–1578. https://doi.org/10.1177/0363546513487980

    Article  PubMed  Google Scholar 

  50. Hiemstra LA, Gofton WT, Kriellaars DJ (2005) Hip strength following hamstring tendon anterior cruciate ligament reconstruction. Clin J Sport Med 15(3):180–182

    Article  PubMed  Google Scholar 

  51. Bryant AL, Clark RA, Pua YH (2011) Morphology of hamstring torque-time curves following ACL injury and reconstruction: mechanisms and implications. J Orthop Res 29(6):907–914. https://doi.org/10.1002/jor.21306

    Article  PubMed  Google Scholar 

  52. Keays SL, Bullock-Saxton JE, Newcombe P, Keays AC (2003) The relationship between knee strength and functional stability before and after anterior cruciate ligament reconstruction. J Orthop Res 21(2):231–237. https://doi.org/10.1016/S0736-0266(02)00160-2

    Article  PubMed  CAS  Google Scholar 

  53. Myer GD, Ford KR, Barber Foss KD, Liu C, Nick TG, Hewett TE (2009) The relationship of hamstrings and quadriceps strength to anterior cruciate ligament injury in female athletes. Clin J Sport Med 19(1):3–8. https://doi.org/10.1097/JSM.0b013e318190bddb

    Article  PubMed  Google Scholar 

  54. Myer GD, Ford KR, Khoury J, Succop P, Hewett TE (2011) Biomechanics laboratory-based prediction algorithm to identify female athletes with high knee loads that increase risk of ACL injury. Br J Sports Med 45(4):245–252. https://doi.org/10.1136/bjsm.2009.069351

    Article  PubMed  Google Scholar 

  55. Gornitzky AL, Lott A, Yellin JL, Fabricant PD, Lawrence JT, Ganley TJ (2016) Sport-specific yearly risk and incidence of anterior cruciate ligament tears in high school athletes: a systematic review and meta-analysis. Am J Sports Med 44(10):2716–2723. https://doi.org/10.1177/0363546515617742

    Article  PubMed  Google Scholar 

  56. Paterno MV, Schmitt LC, Ford KR, Rauh MJ, Myer GD, Huang B, Hewett TE (2010) Biomechanical measures during landing and postural stability predict second anterior cruciate ligament injury after anterior cruciate ligament reconstruction and return to sport. Am J Sports Med 38(10):1968–1978. https://doi.org/10.1177/0363546510376053

    Article  PubMed  PubMed Central  Google Scholar 

  57. Adams D, Logerstedt DS, Hunter-Giordano A, Axe MJ, Snyder-Mackler L (2012) Current concepts for anterior cruciate ligament reconstruction: a criterion-based rehabilitation progression. J Orthop Sports Phys Ther 42(7):601–614. https://doi.org/10.2519/jospt.2012.3871

    Article  PubMed  PubMed Central  Google Scholar 

  58. Zazulak BT, Hewett TE, Reeves NP, Goldberg B, Cholewicki J (2007) Deficits in neuromuscular control of the trunk predict knee injury risk: a prospective biomechanical-epidemiologic study. Am J Sports Med 35(7):1123–1130

    Article  PubMed  Google Scholar 

  59. Zazulak BT, Hewett TE, Reeves NP, Goldberg B, Cholewicki J (2007) The effects of core proprioception on knee injury: a prospective biomechanical-epidemiological study. Am J Sports Med 35(3):368–373

    Article  PubMed  Google Scholar 

  60. Stearns KM, Powers CM (2014) Improvements in hip muscle performance result in increased use of the hip extensors and abductors during a landing task. Am J Sports Med 42(3):602–609. https://doi.org/10.1177/0363546513518410

    Article  PubMed  Google Scholar 

  61. Grindem H, Logerstedt D, Eitzen I, Moksnes H, Axe MJ, Snyder-Mackler L, Engebretsen L, Risberg MA (2011) Single-legged hop tests as predictors of self-reported knee function in nonoperatively treated individuals with anterior cruciate ligament injury. Am J Sports Med 39(11):2347–2354. https://doi.org/10.1177/0363546511417085

    Article  PubMed  PubMed Central  Google Scholar 

  62. Arden N, Richette P, Cooper C, Bruyere O, Abadie E, Branco J, Brandi ML, Berenbaum F, Clerc C, Dennison E, Devogelaer JP, Hochberg M, D’Hooghe P, Herrero-Beaumont G, Kanis JA, Laslop A, Leblanc V, Maggi S, Mautone G, Pelletier JP, Petit-Dop F, Reiter-Niesert S, Rizzoli R, Rovati L, Tajana Messi E, Tsouderos Y, Martel-Pelletier J, Reginster JY (2015) Can we identify patients with high risk of osteoarthritis progression who will respond to treatment? A focus on biomarkers and frailty. Drugs Aging 32(7):525–535. https://doi.org/10.1007/s40266-015-0276-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Dempsey AR, Elliott BC, Munro BJ, Steele JR, Lloyd DG (2012) Whole body kinematics and knee moments that occur during an overhead catch and landing task in sport. Clin Biomech (Bristol, Avon) 27(5):466–474. https://doi.org/10.1016/j.clinbiomech.2011.12.001

    Article  Google Scholar 

  64. Ferguson SJ, Bryant JT, Ganz R, Ito K (2003) An in vitro investigation of the acetabular labral seal in hip joint mechanics. J Biomech 36(2):171–178

    Article  CAS  PubMed  Google Scholar 

  65. Nepple JJ, Philippon MJ, Campbell KJ, Dornan GJ, Jansson KS, LaPrade RF, Wijdicks CA (2014) The hip fluid seal—Part II: the effect of an acetabular labral tear, repair, resection, and reconstruction on hip stability to distraction. Knee Surg Sports Traumatol Arthrosc 22(4):730–736. https://doi.org/10.1007/s00167-014-2875-y

    Article  PubMed  Google Scholar 

  66. Philippon MJ, Nepple JJ, Campbell KJ, Dornan GJ, Jansson KS, LaPrade RF, Wijdicks CA (2014) The hip fluid seal—Part I: the effect of an acetabular labral tear, repair, resection, and reconstruction on hip fluid pressurization. Knee Surg Sports Traumatol Arthrosc 22(4):722–729. https://doi.org/10.1007/s00167-014-2874-z

    Article  PubMed  Google Scholar 

  67. Espinosa N, Rothenfluh DA, Beck M, Ganz R, Leunig M (2006) Treatment of femoro-acetabular impingement: preliminary results of labral refixation. J Bone Joint Surg Am 88(5):925–935. https://doi.org/10.2106/JBJS.E.00290

    Article  PubMed  Google Scholar 

  68. Krych AJ, Thompson M, Knutson Z, Scoon J, Coleman SH (2013) Arthroscopic labral repair versus selective labral debridement in female patients with femoroacetabular impingement: a prospective randomized study. Arthroscopy 29(1):46–53. https://doi.org/10.1016/j.arthro.2012.07.011

    Article  PubMed  Google Scholar 

  69. Bedi A, Zaltz I, De La Torre K, Kelly BT (2011) Radiographic comparison of surgical hip dislocation and hip arthroscopy for treatment of cam deformity in femoroacetabular impingement. Am J Sports Med 39(Suppl):20S–28S. https://doi.org/10.1177/0363546511412734

    Article  PubMed  Google Scholar 

  70. Bogunovic L, Gottlieb M, Pashos G, Baca G, Clohisy JC (2013) Why do hip arthroscopy procedures fail? Clin Orthop Relat Res 471(8):2523–2529. https://doi.org/10.1007/s11999-013-3015-6

    Article  PubMed  PubMed Central  Google Scholar 

  71. Hewett TE, Stroupe AL, Nance TA, Noyes FR (1996) Plyometric training in female athletes. Decreased impact forces and increased hamstring torques. Am J Sports Med 24(6):765–773

    Article  CAS  PubMed  Google Scholar 

  72. Vincent KR, Herman DC (2017) AAOS appropriate use criteria: anterior cruciate ligament injury prevention programs. J Am Acad Orthop Surg 25(4):e83–e86. https://doi.org/10.5435/JAAOS-D-16-00755

    Article  PubMed  Google Scholar 

  73. Noyes FR, Barber-Westin SD, Smith ST, Campbell T (2011) A training program to improve neuromuscular indices in female high school volleyball players. J Strength Cond Res 25(8):2151–2160. https://doi.org/10.1519/JSC.0b013e3181f906ef

    Article  PubMed  Google Scholar 

  74. Noyes FR, Barber-Westin SD, Tutalo Smith ST, Campbell T (2013) A training program to improve neuromuscular and performance indices in female high school soccer players. J Strength Cond Res 27(2):340–351. https://doi.org/10.1519/JSC.0b013e31825423d9

    Article  PubMed  Google Scholar 

  75. Noyes FR, Barber-Westin SD, Smith ST, Campbell T, Garrison TT (2012) A training program to improve neuromuscular and performance indices in female high school basketball players. J Strength Cond Res 26(3):709–719. https://doi.org/10.1519/JSC.0b013e318228194c

    Article  PubMed  Google Scholar 

  76. Barber-Westin SD, Hermeto A, Noyes FR (2015) A six-week neuromuscular and performance training program improves speed, agility, dynamic balance, and core endurance in junior tennis players. J Athl Enhanc 4:1. https://doi.org/10.4172/2324-9080.1000185

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhatia, S., Chahla, J., Cinque, M.E., Ellman, M.B. (2018). Recovery of Hip Muscle Strength After ACL Injury and Reconstruction: Implications for Reducing the Risk of Reinjury. In: Noyes, F., Barber-Westin, S. (eds) ACL Injuries in the Female Athlete. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-56558-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-56558-2_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-56557-5

  • Online ISBN: 978-3-662-56558-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics