Skip to main content

Emerging Land-Use Cross-Scale Patterns and the Pirsig’s Monkey Trap

  • Chapter
Law and Agroecology

Abstract

We want to draw the attention to some emerging land-use cross-scale patterns resulting from social-economic factors and associated with an historical characteristic sequence of different land-use regimes that could indicate overregulation in social-ecological landscapes (SELs). We postulate that these emerging patterns with clearly defined spatial areas with fixed rules and increasing merging and enlargements of specific functions in some SEL locations are early warning signal of regime shifts and can be typical in many different human-dominated parts of the world. This current overall tendency could make in fact land administration inflexible, and planning may reinforce rigidity, erode resilience, and promote regime shifts and collapse in SELs instead of the adaptability required to counter surprises due, for instance, to climate change. The problem we presently face is how a “static” and “ordered” landscape condition in SELs, provided by the cross-scale intersections of land use, plans, and norms can be made sustainable in face of unpredictable disturbance and change. If we don’t have proper mechanisms to monitor and predict changes and if we are not able to adapt through feedback mechanisms to changes in the environment, we might get stuck in a rigidity trap like the Pirsig’s monkey and we are at high risk for failing. We show that a potential way to address such issues is to look at recent trends of different land-use regimes, along with a simple framework to interpret resulting spatial patterns across scales. We provide examples of this approach and discuss what a cross-scale land-use pattern could mean, what it tells about the condition of SELs, and what the effects could be of changing observed conditions in SELs because of, for instance, climate change. We exercise the approach for the Apulia region in southern Italy taking advantage of recent historical trends observed in main drivers and of the rich information provided by cross-scale pattern analysis in the pattern transition space provided by classic neutral landscape models. We suggest that the degree to which the observed pattern departs from a particular neutral model can indicate whether major constraints or organizing structure has been placed on the landscape and how those landscapes might evolve/react to additional variation due to land use and climate change. The degree of overregulation provided by cross-scale patterns of land use is a warning to planners and managers that the problem is becoming widespread and can no longer be addressed simply with short-term and local-scale solutions. To manage a transition toward more environmentally efficient and, therefore, more sustainable land use, we should design and manage landscape elements and structure to create less contagious and more heterogeneous landscapes. Nevertheless, we have to change societal values at the root of overregulation and rigidity. We have to be aware that we might get stuck in a rigidity trap to appreciate the similarity of our common condition and to start real cooperation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Marsh (2005).

  2. 2.

    Nassauer and Corry (2004), pp. 343–356.

  3. 3.

    Kato and Ahern (2008), pp. 543–559.

  4. 4.

    Owens and Cowell (2011).

  5. 5.

    Levin (1999) and Gunderson and Holling (2002).

  6. 6.

    Kato and Ahern (2008).

  7. 7.

    Berkes and Folke (1998); Zaccarelli et al. (2008), p. 26.

  8. 8.

    Dijst and Schenkel (2002), pp. 1–18.

  9. 9.

    Gunderson and Holling (2002); Zaccarelli et al. (2008); Petrosillo et al. (2010), pp. 359–367.

  10. 10.

    Slezak (1999), pp. 3–22.

  11. 11.

    Zurlini et al. (2013), pp. 1161–1173.

  12. 12.

    Booth (2003).

  13. 13.

    Black et al. (2003), pp. 51–67; Millennium Ecosystem Assessment (MEA) (2005).

  14. 14.

    Foley et al. (2005), pp. 570–574.

  15. 15.

    Lambin et al. (2001), pp. 261–269; MEA (2005).

  16. 16.

    Foley et al. (2005).

  17. 17.

    Holling and Meffe (1996), pp. 328–337; Allison and Hobbs (2004), p. 3; Anderies et al. (2006), pp. 865–878.

  18. 18.

    Diamond (1995), pp. 131–138.

  19. 19.

    Ahern (1999), pp. 175–201.

  20. 20.

    Turner et al. (2007), pp. 20666–20671; MEA (2005).

  21. 21.

    Lambin and Meyfroidt (2011), pp. 3465–3472.

  22. 22.

    Zurlini et al. (2013).

  23. 23.

    Scheffer and Westley (2007), p. 36.

  24. 24.

    Carpenter and Brock (2008), p. 40.

  25. 25.

    Dakos et al. (2010), pp. 163–174.

  26. 26.

    Scheffer et al. (2009), pp. 53–59.

  27. 27.

    Zurlini et al. (2006), pp. 119–128; Zurlini et al. (2007), pp. 705–721; Zaccarelli et al. (2008); Petrosillo et al. (2010).

  28. 28.

    Gardner et al. (1987), pp. 19–28; Gardner and Urban (2007), pp. 15–29.

  29. 29.

    Zaccarelli et al. (2008).

  30. 30.

    Zaccarelli et al. (2008).

  31. 31.

    Zaccarelli et al. (2008) and Petrosillo et al. (2010).

  32. 32.

    Istituto Nazionale di Statistica (ISTAT) (2012).

  33. 33.

    Puglia, Regional Law 14/2007; Regione Puglia (2012).

  34. 34.

    Tilman (1999), pp. 5995–6000.

  35. 35.

    Kapur et al. (2010), pp. 1470–1478.

  36. 36.

    Gualdi et al. (2011); Salvati et al. (2011), pp. 1216–1227.

  37. 37.

    Regione Puglia (2012).

  38. 38.

    See, e.g., Li and Reynolds (1994), pp. 2446–2455; Riitters et al. (2000), pp. 27–56; Neel et al. (2004), pp. 435–455; Zurlini et al. (2006, 2007); Proulx and Fahrig (2010), pp. 1479–1487.

  39. 39.

    Gardner et al. (1987).

  40. 40.

    Neel et al. (2004).

  41. 41.

    See, e.g., Jones et al. (2013), pp. 1175–1192.

  42. 42.

    Neel et al. (2004); Li et al. (2004), pp. 137–148.

  43. 43.

    Riitters et al. (1995), pp. 23–39.

  44. 44.

    Riitters et al. (1995).

  45. 45.

    Riitters et al. (2000), Zurlini et al. (2006), Zaccarelli et al. (2008), and Petrosillo et al. (2010).

  46. 46.

    Gardner (1999), pp. 43–62.

  47. 47.

    Zurlini et al. (2006, 2007).

  48. 48.

    Zurlini et al. (2007).

  49. 49.

    Zurlini et al. (2006).

  50. 50.

    Zaccarelli et al. (2008).

  51. 51.

    See, e.g., Milne (1991), pp. 199–235; Li (2000), pp. 33–50; Halley et al. (2004), pp. 254–271; Zurlini et al. (2007).

  52. 52.

    Zurlini et al. (2007).

  53. 53.

    Metzger et al. (2006), pp. 69–85.

  54. 54.

    Foley et al. (2005).

  55. 55.

    Metzger et al. (2006).

  56. 56.

    Briassoulis (2003).

  57. 57.

    Briassoulis (2003).

  58. 58.

    Petrosillo et al. (2013), pp. 609–620.

  59. 59.

    Perini et al. (2009), pp. 45–55.

  60. 60.

    Parise and Pascali (2003), pp. 247–256; Briassoulis (2003).

  61. 61.

    Gualdi et al. (2011).

  62. 62.

    Gualdi et al. (2011).

  63. 63.

    Kapur et al. (2010).

  64. 64.

    Acosta-Michlik et al. (2008), pp. 151–160.

  65. 65.

    Adger (2006), pp. 268–281.

  66. 66.

    Pielke (2005), pp. 1625–1626.

  67. 67.

    Tilman et al. (2002), pp. 671–677.

  68. 68.

    Holling (2001), pp. 390–405; Carpenter and Brock (2008).

  69. 69.

    Lambin and Meyfroidt (2011).

  70. 70.

    Scheffer and Westley (2007).

  71. 71.

    Armson (2011).

  72. 72.

    Schusler et al. (2003), pp. 309–326.

  73. 73.

    Repetto and Allen (2006), pp. 110–136.

  74. 74.

    Walters (1986); Vernier et al. (2009), pp. 3–14; Cushman and McKelvey (2010), pp. 111–130.

  75. 75.

    Scheffer et al. (2001), pp. 591–596.

  76. 76.

    See, e.g., Olsson et al. (2004), pp. 75–90; Folke et al. (2005), pp. 441–473; Musacchio (2009), pp. 993–1013; Opdam et al. (2009), pp. 715–721; Ostrom (2009), pp. 419–422; Benayas and Bullock (2012), pp. 883–889; Zurlini et al. (2013); Jones et al. (2013).

  77. 77.

    Lambin and Meyfroidt (2011).

  78. 78.

    FAO (2009).

  79. 79.

    Kiers et al. (2008), pp. 320–321.

  80. 80.

    Jones et al. (2013).

  81. 81.

    Benayas and Bullock (2012).

  82. 82.

    Benayas and Bullock (2012).

  83. 83.

    Jones et al. (2010), pp. 1261–1275.

  84. 84.

    Kiers et al. (2008).

  85. 85.

    Lindenmayer and Likens (2009), pp. 482–486.

  86. 86.

    Ahern (1999) and Jones et al. (2013).

  87. 87.

    Wu and Hobbs (2002), pp. 355–365; Naidoo et al. (2008), pp. 9495–9500.

  88. 88.

    Walker et al. (2002), p. 14; Olsson et al. (2004).

  89. 89.

    Butler and Goldstein (2010), p. 21.

  90. 90.

    Fischer et al. (2013), pp. 10229–10233.

References

  • Acosta-Michlik L, Kavi Kumar KS, Klein RJT, Campe S (2008) Application of fuzzy models to assess susceptibility to droughts from a socio-economic perspective. Reg Environ Chang 8:151–160

    Article  Google Scholar 

  • Adger WN (2006) Vulnerability. Glob Environ Chang 16(3):268–281

    Article  Google Scholar 

  • Ahern J (1999) Spatial concepts, planning strategies, and future scenarios: a framework method for integrating landscape ecology and landscape planning. In: Klopatek JM, Gardner RH (eds) Landscape ecological analysis: issues and applications. Springer, New York, pp 175–201

    Chapter  Google Scholar 

  • Allison HE, Hobbs RJ (2004) Resilience, adaptive capacity, and the “lock-in trap” of the Western Australian agricultural region. Ecol Soc 9(1):3. http://www.ecologyandsociety.org/vol9/iss1/art3/

  • Anderies JM, Ryan P, Walker BH (2006) Loss of resilience, crisis, and institutional change: lessons from an intensive agricultural system in southeastern Australia. Ecosystems 9:865–878

    Article  Google Scholar 

  • Armson R (2011) Growing wings on the way: systems thinking for messy situations. Triarchy Press Station Offices, Axminster Devon

    Google Scholar 

  • Benayas JMR, Bullock JM (2012) Restoration of biodiversity and ecosystem services on agricultural land. Ecosystems 15:883–889

    Article  Google Scholar 

  • Berkes F, Folke C (eds) (1998) Linking social and ecological systems: management practices and social mechanisms for building resilience. Cambridge University Press, Cambridge

    Google Scholar 

  • Black AE, Morgan P, Hessburg PF (2003) Social and biophysical correlates of change in forest landscapes of the interior Columbia Basin, USA. Ecol Appl 13:51–67

    Article  Google Scholar 

  • Booth P (2003) Planning by consent. The origins and nature of British development control. Routledge, London

    Book  Google Scholar 

  • Briassoulis H (2003) Mediterranean desertification. Framing the policy context. European Commission. DG for research, sustainable development, global change and ecosystem. EUR 20731, Brussels

    Google Scholar 

  • Butler WH, Goldstein BE (2010) The US fire learning network: springing a rigidity trap through multiscalar collaborative networks. Ecol Soc 15(3):21. http://www.ecologyandsociety.org/vol15/iss3/art21/

  • Carpenter SR, Brock WA (2008) Adaptive capacity and traps. Ecol Soc 13(2):40. http://www.ecologyandsociety.org/vol13/iss2/art40/

  • Cushman SA, McKelvey KS (2010) Data on distribution and abundance: monitoring for research and management. In: Cushman SA, Huettman F (eds) Spatial complexity, informatics and wildlife conservation. Springer, Tokyo, pp 111–130

    Chapter  Google Scholar 

  • Dakos V, van Nes EH, Donagelo R, Fort H, Scheffer M (2010) Spatial correlation as leading indicator of catastrophic shifts. Theor Ecol 3:163–174

    Article  Google Scholar 

  • Diamond DR (1995) Geography and planning in the information age. Trans Inst Br Geogr 20:131–138

    Article  Google Scholar 

  • Dijst M, Schenkel W (2002) Urban performance in perspective. In: Dijst M, Schenkel W, Thomas I (eds) Governing cities on the move: functional and management perspectives on transformations of European infrastructures. Ashgate, Aldershot, pp 1–18

    Google Scholar 

  • FAO (2009) The state of food and agriculture. http://www.fao.org/docrep/012/i0680e/i0680e.pdf

  • Fischer I, Frid A, Goerg SJ, Levin SA, Rubenstein DI, Selten R (2013) Fusing enacted and expected mimicry generates a winning strategy that promotes the evolution of cooperation. Proc Natl Acad Sci U S A 110(25):10229–10233

    Article  Google Scholar 

  • Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda C, Patz JA, Prentice JC, Ramankutty N, Snyder PK (2005) Global consequences of land use. Science 309:570–574

    Article  Google Scholar 

  • Folke C, Hahn T, Olsson P, Norberg J (2005) Adaptive governance of social–ecological systems. Annu Rev Environ Resour 30:441–473

    Article  Google Scholar 

  • Gardner RH (1999) RULE: map generation and a spatial analysis program. In: Klopatek JM, Gardner RH (eds) Landscape ecological analysis: issues and applications. Springer, New York, pp 43–62

    Google Scholar 

  • Gardner RH, Urban DL (2007) Neutral models for testing landscape hypotheses. Landsc Ecol 22:15–29

    Article  Google Scholar 

  • Gardner RH, Milne BT, Turner MG, O’Neill RV (1987) Neutral models for the analysis of broad-scale landscape pattern. Landsc Ecol 1:19–28

    Article  Google Scholar 

  • Gualdi S, Somot S, May W, Castellari S, Déqué M, Adani M, Artale V, Bellucci A, Breitgand JS, Carillo A, Cornes R, Dell’Aquilla A, Dubois C, Efthymiadis D, Elizalde A, Gimeno L, Goodess CM, Harzallah A, Krichak SO, Kuglitsch FG, Leckebusch GC, L’Heveder BP, Li L, Lionello P, Luterbacher J, Mariotti A, Nieto R, Nissen KM, Oddo P, Ruti P, Sanna A, Sannino G, Scoccimarro E, Struglia MV, Toreti A, Ulbrich U, Xoplaki E (2011) Future climate projections. In: Navarra A, Tubiana L (eds) Regional assessment of climate change in the Mediterranean. Springer, Dordrecht

    Google Scholar 

  • Gunderson LH, Holling CS (eds) (2002) Panarchy: understanding transformations in human and natural systems. Island Press, Washington

    Google Scholar 

  • Halley JM, Hartley S, Kallimanis AS, Kunin WE, Lennon JJ, Sgardelis SP (2004) Uses and abuses of fractal methodology in ecology. Ecol Lett 7:254–271

    Article  Google Scholar 

  • Holling CS (2001) Understanding the complexity of economic, ecological, and social systems. Ecosystems 4:390–405

    Article  Google Scholar 

  • Holling CS, Meffe GK (1996) Command and control and the pathology of natural resource management. Conserv Biol 10(2):328–337

    Article  Google Scholar 

  • Istituto Nazionale di Statistica (ISTAT) (2011) Banche dati. http://www.istat.it/it/prodotti/banche-dati

  • Istituto Nazionale di Statistica (ISTAT) (2012) Banche dati. http://www.istat.it/it/prodotti/banche-dati

  • Jones KB, Slonecker ET, Nash MS, Neale AC, Wade TG, Hamann S (2010) Riparian habitat changes across the continental United States (1972–2003) and potential implications for sustaining ecosystem services. Landsc Ecol 25:1261–1275

    Article  Google Scholar 

  • Jones KB, Zurlini G, Kienast F, Petrosillo I, Edwards T, Wade TG, Li B-L, Zaccarelli N (2013) Informing landscape planning and design for sustaining ecosystem services from existing spatial patterns and knowledge. Landsc Ecol 28(6):1175–1192

    Article  Google Scholar 

  • Kapur B, Pasquale S, Tekin S, Todorovic M, Sezen SM, Özfidaner M, Gümü Z (2010) Prediction of climatic change for the next 100 years in southern Italy. Sci Res Essays 5(12):1470–1478

    Google Scholar 

  • Kato S, Ahern J (2008) ‘Learning by Doing’: adaptive planning as a strategy to address uncertainty in planning. J Environ Plan Manag 51(4):543–559

    Article  Google Scholar 

  • Kiers ET, Leakey RRB, Izac A, Heinemann JA, Rosenthal E, Nathan D, Jiggins J (2008) Agriculture at a crossroads. Science 320(5874):320–321

    Article  Google Scholar 

  • Lambin EF, Meyfroidt P (2011) Global land use change, economic globalization, and the looming land scarcity. Proc Natl Acad Sci U S A 108:3465–3472

    Article  Google Scholar 

  • Lambin EF, Turner BL, Geist HJ, Agbola S, Angelsen A, Bruce JW, Coomes O, Dirzo R, Fischer G, Folke C, George PS, Homewood K, Imbernon J, Leemans R, Li X, Moran EF, Mortimore M, Ramakrishnan PS, Richards JF, Skånes H, Steffen W, Stone GD, Svedin U, Veldkamp T, Vogel C, Xu J (2001) The causes of land-use and land-cover change: moving beyond the myths. Glob Environ Chang 11:261–269

    Article  Google Scholar 

  • Levin SA (1999) Fragile dominion: complexity and the commons. Perseus Books, Reading

    Google Scholar 

  • Li B-L (2000) Fractal geometry applications in description and analysis of patch patterns and patch dynamics. Ecol Model 132:33–50

    Article  Google Scholar 

  • Li H, Reynolds JF (1994) A simulation experiment to quantify spatial heterogeneity in categorical maps. Ecology 75(8):2446–2455

    Article  Google Scholar 

  • Li X, He HS, Wang X, Bu R, Hu Y, Chang Y (2004) Evaluating the effectiveness of neutral landscape models to represent a real landscape. Landsc Urban Plan 69:137–148

    Article  Google Scholar 

  • Lindenmayer DB, Likens G (2009) Adaptive monitoring – a new paradigm for long-term studies and monitoring. Trends Ecol Evol 24:482–486

    Article  Google Scholar 

  • Marsh WM (ed) (2005) Landscape planning: environmental applications, 4th edn. Wiley, New York

    Google Scholar 

  • Metzger MJ, Rounsevell MDA, Acosta-Michlik L, Leemans R, Schröter D (2006) The vulnerability of ecosystem services to land use change. Agric Ecosyst Environ 114:69–85

    Article  Google Scholar 

  • Millennium Ecosystem Assessment (MEA) (2005) Ecosystems and human well-being. Island Press, Washington

    Google Scholar 

  • Milne BT (1991) Lessons from applying fractal models to landscape patterns. In: Turner MG, Gardner RH (eds) Quantitative methods in landscape ecology. Springer, New York, pp 199–235

    Chapter  Google Scholar 

  • Musacchio LR (2009) The scientific basis for the design of landscape sustainability: a conceptual framework for translational landscape research and practice of designed landscapes and the six Es of landscape sustainability. Landsc Ecol 24:993–1013

    Article  Google Scholar 

  • Naidoo R, Balmford A, Costanza R, Fisher B, Green RE, Lehner B, Malcolm TR, Ricketts TH (2008) Global mapping of ecosystem services and conservation priorities. Proc Natl Acad Sci U S A 105(28):9495–9500

    Article  Google Scholar 

  • Nassauer JI, Corry RC (2004) Using normative scenarios in landscape ecology. Landsc Ecol 19:343–356

    Article  Google Scholar 

  • Neel MC, McGarigal K, Cushman SA (2004) Behavior of class-level landscape metrics across gradients of class aggregation and area. Landsc Ecol 19:435–455

    Article  Google Scholar 

  • Olsson P, Folke C, Berkes F (2004) Adaptive comanagement for building resilience in social–ecological systems. Environ Manage 34:75–90

    Article  Google Scholar 

  • Opdam P, Luque S, Jones KB (2009) Changing landscapes to accommodate for climate change impacts: a call for landscape ecology. Landsc Ecol 24:715–721

    Article  Google Scholar 

  • Ostrom E (2009) A general framework for analyzing sustainability of social–ecological systems. Science 325:419–422

    Article  Google Scholar 

  • Owens S, Cowell R (2011) Land and limits: interpreting sustainability in the planning process, 2nd edn. Routledge, New York

    Google Scholar 

  • Parise M, Pascali V (2003) Surface and subsurface environmental degradation in the karst of Apulia (southern Italy). Environ Geol 44(3):247–256

    Article  Google Scholar 

  • Perini L, Ceccarelli T, Zitti M, Salvati L (2009) Insight desertification process: bio-physical and socio-economic drivers in Italy. Ital J Agrometeorol 3:45–55

    Google Scholar 

  • Petrosillo I, Zaccarelli N, Zurlini G (2010) Multi-scale vulnerability of natural capital in a panarchy of social–ecological landscapes. Ecol Complex 7:359–367

    Article  Google Scholar 

  • Petrosillo I, Costanza R, Aretano R, Zaccarelli N, Zurlini G (2013) The use of subjective indicators to assess how natural and social capital support residents’ quality of life in a small volcanic island. Ecol Indicat 24:609–620

    Article  Google Scholar 

  • Pielke RA (2005) Land use and climate change. Science 310(5754):1625–1626

    Article  Google Scholar 

  • Pirsig RM (1974) Zen and the art of motorcycle maintenance. An inquiry into values. William Morrow and Co., Inc., New York

    Google Scholar 

  • Proulx R, Fahrig L (2010) Detecting human-driven deviations from trajectories in landscape composition and configuration. Landsc Ecol 25:1479–1487

    Article  Google Scholar 

  • Regione Puglia (2012) Piani di sviluppo socioeconomico e di assetto del territorio. http://www.regione.puglia.it/index.php?page=documenti. Accessed 12 Oct 2012

  • Repetto R, Allen RB (2006) On social traps and lobster traps: choppy waters on the voyage toward fisheries’ harvesting rights. In: Repetto R (ed) Punctuated equilibrium and the dynamics of US environmental policy. Yale University Press, New Haven, pp 110–136

    Google Scholar 

  • Riitters KH, O’Neill RV, Hunsaker CT, Wickham JD, Yankee DH, Timmins SP, Jones KB, Jackson BL (1995) A factor analysis of landscape pattern and structure metrics. Landsc Ecol 10(1):23–39

    Article  Google Scholar 

  • Riitters KH, Wickham J, O’Neill RV, Jones KB, Smith E (2000) Global-scale patterns of forest fragmentation. Conserv Ecol 4:27–56

    Google Scholar 

  • Salvati L, Bajocco S, Ceccarelli T, Zitti M, Perini L (2011) Towards a process-based evaluation of land vulnerability to soil degradation in Italy. Ecol Indicat 11:1216–1227

    Article  Google Scholar 

  • Scheffer M, Westley FR (2007) The evolutionary basis of rigidity: locks in cells, minds, and society. Ecol Soc 12(2):36. http://www.ecologyandsociety.org/vol12/iss2/art36/

  • Scheffer M, Carpenter S, Foley JA, Folke C, Walker B (2001) Catastrophic shifts in ecosystems. Nature 413:591–596

    Article  Google Scholar 

  • Scheffer M, Bascompte J, Brock WA, Brovkin V, Carpenter SR, Dakos V, Held H, van Nes EH, Rietkerk M, Sugihara G (2009) Early-warning signals for critical transitions. Nature 461:53–59

    Article  Google Scholar 

  • Schusler TM, Decker DJ, Pfeffer MJ (2003) Social learning for collaborative natural resource management. Soc Nat Resour 15:309–326

    Article  Google Scholar 

  • Slezak P (1999) A critique of radical social constructivism. In: Stillwell J, Geertman S, Openshaw S (eds) Developments in geographical information and planning. Springer, Berlin, pp 3–22

    Google Scholar 

  • Tilman D (1999) Global environmental impacts of agricultural expansion: the need for sustainable and efficient practices. Proc Natl Acad Sci U S A 96:5995–6000

    Article  Google Scholar 

  • Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418:671–677

    Article  Google Scholar 

  • Turner BL II, Lambin EF, Reenberg A (2007) The emergence of land change science for global environmental change and sustainability. Proc Natl Acad Sci U S A 104(52):20666–20671

    Article  Google Scholar 

  • Vernier PR, Preston MI, Bunnell FL, Tyrrel A (2009) Adaptive monitoring framework for warblers at risk in northeastern British Columbia: using models and expert opinion to refine monitoring. Wildlife Afield 6:3–14

    Google Scholar 

  • Walker B, Carpenter S, Anderies J, Abel N, Cumming G, Janssen M, Lebel L, Norberg J, Peterson GD, Pritchard R (2002) Resilience management in social–ecological systems: a working hypothesis for a participatory approach. Conserv Ecol 6(1):14. http://www.consecol.org/vol6/iss1/art14

  • Walters CJ (1986) Adaptive management of renewable resources. Macmillan, New York

    Google Scholar 

  • Wu J, Hobbs R (2002) Key issues and research priorities in landscape ecology: an idiosyncratic synthesis. Landsc Ecol 17:355–365

    Article  Google Scholar 

  • Zaccarelli N et al (2008) Source/sink patterns of disturbance and cross-scale effects in a panarchy of social–ecological landscapes. Ecol Soc 13(1):26. http://www.ecologyandsociety.org/vol13/iss1/art26/

  • Zurlini G, Riitters KH, Zaccarelli N, Petrosillo I, Jones KB, Rossi L (2006) Disturbance patterns in a social–ecological system at multiple scales. Ecol Complex 3(2):119–128

    Article  Google Scholar 

  • Zurlini G, Riitters KH, Zaccarelli N, Petrosillo I (2007) Patterns of disturbance at multiple scales in real and simulated landscapes. Landsc Ecol 22:705–721

    Article  Google Scholar 

  • Zurlini G et al (2013) Highlighting order and disorder in social–ecological landscapes to foster adaptive capacity and sustainability. Landsc Ecol 28(6):1161–1173

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Zurlini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zurlini, G. et al. (2015). Emerging Land-Use Cross-Scale Patterns and the Pirsig’s Monkey Trap. In: Monteduro, M., Buongiorno, P., Di Benedetto, S., Isoni, A. (eds) Law and Agroecology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46617-9_17

Download citation

Publish with us

Policies and ethics