Skip to main content

Partial Least Squares Modeling of Lunar Surface FeO Content with Clementine Ultraviolet-Visible Images

  • Chapter
  • First Online:
Planetary Exploration and Science: Recent Results and Advances

Part of the book series: Springer Geophysics ((SPRINGERGEOPHYS))

  • 1274 Accesses

Abstract

To accurately predict the iron abundance of the Moon has long been the goal for lunar remote sensing studies. In this paper, we present a new iron model based on partial least squares regression (PLS) method and apply this model to map the global lunar iron distribution using Clementine ultraviolet-visible (UVVIS) dataset. Our iron model has taken into account of more calibration sites other than Apollo and Luna sample-return sites and stations (i.e., the six additional highland or immature sites) in combination with more spectral bands (5 bands and 2 band ratios), in order to derive reliable FeO content and improve the robustness of the PLS model. By comparing the PLS-derived iron map with Lucey’s band-ratio FeO map and Lawrence’s Lunar Prospector (LP) FeO map, the differences are mostly within 1 wt% in FeO content. Moreover, PLS-derived FeO is more consistent with LP’s result which was derived by direct measurement of Fe gamma-ray line (7.6 MeV) rather than the Lucey’s experiential algorithm applying only two bands (750, 950 nm) of Clementine UVVIS dataset. With a global mode of 5.1 wt%, PLS-derived iron map is also validated by FeO abundances of lunar feldspathic meteorites and in support of the lunar magma ocean hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Blewett DT, Lucey PG, Hawke BR (1997) Clementine images of the lunar sample-return stations: refinement of FeO and TiO2 mapping techniques. J Geophys Res 102(E7):16319–16325

    Article  Google Scholar 

  • Eliason E, Isbell C, Lee E et al (1999) The Clementine UVVIS global lunar mosaic. Cited 20 May 2013. http://www.lpi.usra.edu/lunar/tools/clementine/instructions/UVVIS_DIM_Info.html

  • Fischer EM, Pieters CM (1994) Remote determination of exposure degree and iron concentration of lunar soils using VIS-NIR spectroscopic methods. Icarus 111(2):475–488

    Article  Google Scholar 

  • Fischer EM, Pieters CM (1996) Composition and exposure age of the Apollo 16 Cayley and Descartes regions from Clementine data: normalizing the optical effects of space weathering. J Geophys Res 101(E1):2225–2234

    Article  Google Scholar 

  • Gillis JJ, Jolliff BL, Korotev RL (2004) Lunar surface geochemistry: global concentrations of Th, K, and FeO as derived from lunar prospector and Clementine data. Geochim Cosmochim Acta 68(18):3791–3805

    Article  Google Scholar 

  • Jin SG, Arivazhagan S, Araki H (2013) New results and questions of lunar exploration from SELENE, Chang’E-1, Chandrayaan-1 and LRO/LCROSS. Adv Space Res 52(2):285–305

    Article  Google Scholar 

  • Korotev RL (2005) Lunar geochemistry as told by lunar meteorites. Chemie der Erde 65:297–346

    Article  Google Scholar 

  • Korotev RL, Jolliff BL, Rockow KM (1996) Lunar meteorite Queen Alexandra Rang 93069 and the iron concentration of the lunar highlands surface. Meteorit Planet Sci 31:909–924

    Article  Google Scholar 

  • Korotev RL, Jolliff BL, Jolliff RA (2003) Feldspathic lunar meteorites and their implications for compositional remote sensing of the lunar surface and the composition of the lunar crust. Geochim Cosmochim Acta 67(24):4895–4923

    Article  Google Scholar 

  • Lawrence DJ, Feldman WC, Elphic RC (2002) Iron abundances on the lunar surface as measured by the Lunar Prospector gamma-ray and neutron spectrometers. J Geophys Res 107(E12):5130

    Article  Google Scholar 

  • Le Mouelic S, Lucey PG, Langevin Y (2002) Calculating iron contents of lunar highland materials surrounding Tycho crater from integrated Clementine UV-visible and near-infrared data. J Geophys Res 107:E10,5074

    Google Scholar 

  • Li L (2006) Partial least squares modeling to quantify lunar soil composition with hyperspectral reflectance measurements. J Geophys Res 111:E04102

    Google Scholar 

  • Li L (2008) Quantifying lunar soil composition with partial least squares modeling of reflectance. Adv Space Res 42:267–274

    Article  Google Scholar 

  • Li L (2011) Quantifying TiO2 abundance of lunar soils: partial least squares and stepwise multiple regression analysis for determining causal effect. J Earth Sci 22(5):549–565

    Article  Google Scholar 

  • Ling Z, Zhang J, Liu J et al (2011) Preliminary results of FeO mapping using imaging interferometer data from Chang’E-1. Chin Sci Bull 56(4–5):376–379

    Article  Google Scholar 

  • Liu B, Liu J, Zhang G et al (2013) Reflectance conversion methods for the VIS/NIR imaging spectrometer aboard the Chang’E-3 lunar rover: based on ground validation experiment data. Res Astron Astrophys 13(7):862–874

    Article  Google Scholar 

  • Lucey PG (2004) Mineral maps of the moon. Geophys Res Lett 31:L08701

    Article  Google Scholar 

  • Lucey PG, Taylor GJ, Malaret E (1995) Abundance and distribution of iron on the moon. Science 268(5214):1150–1153

    Article  Google Scholar 

  • Lucey PG, Blewett DT, Hawke BR (1998) Mapping the FeO and TiO2 content of the lunar surface with multispectral imagery. J Geophys Res 103(E3):3679–3699

    Article  Google Scholar 

  • Lucey PG, Blewett DT, Jolliff BL (2000) Lunar iron and titanium abundance algorithms based on final processing of Clementine ultraviolet–visible images. J Geophys Res 105(E8):20297–20305

    Article  Google Scholar 

  • Mckay DS, Fruland RM, Heiken GH (1974) Grain size and the evolution of lunar soils. In: Proceedings of the lunar science conference 3rd, Pergamon Press, New York, pp 983–995

    Google Scholar 

  • Milliken RE, Mustard JF (2005) Quantifying absolute water content of minerals using near-infrared reflectance spectroscopy. J Geophys Res 110:E12001

    Article  Google Scholar 

  • NASA PDS Geosciences Node ftp://pds-geosciences.wustl.edu/geocopy/imaging/clem1-l-u-5-dim-uvvis-v1.0/cl_4001/catalog/

  • Pieters CM, Stankevich DG, Shkuratov YG et al (2002) Statistical analysis of the links among lunar mare soil mineralogy, chemistry, and reflectance spectra. Icarus 155:285–298

    Article  Google Scholar 

  • Pieters CM, Shkuratov Y, Kaydash V et al (2006) Lunar soil characterization consortium analysis: pyroxene and maturity estimates derived from Clementine image data. Icarus 184:83–101

    Article  Google Scholar 

  • Warren PH, Haskin L (1991) Lunar chemistry. In: Heiken GH et al (eds) Lunar sourcebook. Cambridge University Press, Cambridge, pp 357–474

    Google Scholar 

  • Whiting ML, Li L, Ustin SL (2004) Predicting water content using Gaussian model on soil spectra. Remote Sens Environ 89:535–552

    Article  Google Scholar 

  • Wilcox BB, Lucey PG, Gillis JJ (2005) Mapping iron in the lunar mare: an improved approach. J Geophys Res 110:E1101

    Google Scholar 

  • Wood JA, Dickey JS, Jr, Marvin UB et al (1970) Lunar anorthosites and a geophysical model of the moon. In: Proceedings of the Apollo 11 lunar science conference, Pergamon Press, New York, pp 965–988

    Google Scholar 

  • Wu Y, Xue B, Zhao B et al (2012) Global estimates of lunar iron and titanium contents from the Chang’E-1 IIM data. J Geophys Res 117:E02001

    Google Scholar 

  • Yen AS, Murray BC, Rossman GR (1998) Water content of the Martian soil: laboratory simulations of reflectance spectra. J Geophys Res 103:11125–11133

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (11003012, U1231103), the Natural Science Foundation of Shandong Province (ZR2011AQ001), Independent Innovation Foundation of Shandong University (2013ZRQP004), and Graduate Innovation Foundation of Shandong University at WeiHai, GIFSDUWH (yjs13026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zongcheng Ling .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sun, L., Ling, Z. (2015). Partial Least Squares Modeling of Lunar Surface FeO Content with Clementine Ultraviolet-Visible Images. In: Jin, S., Haghighipour, N., Ip, WH. (eds) Planetary Exploration and Science: Recent Results and Advances. Springer Geophysics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45052-9_1

Download citation

Publish with us

Policies and ethics