Skip to main content
Log in

Quantifying TiO2 abundance of lunar soils: Partial least squares and stepwise multiple regression analysis for determining causal effect

  • Published:
Journal of Earth Science Aims and scope Submit manuscript

Abstract

Partial least squares (PLS) regression was applied to the Lunar Soil Characterization Consortium (LSCC) dataset for spectral estimation of TiO2. The LSCC dataset was split into a number of subsets including the low-Ti, high-Ti, total mare soils, total highland, Apollo 16, and Apollo 14 soils to investigate the effects of interfering minerals and nonlinearity on the PLS performance. The PLS weight loading vectors were analyzed through stepwise multiple regression analysis (SMRA) to identify mineral species driving and interfering the PLS performance. PLS exhibits high performance for estimating TiO2 for the LSCC low-Ti and high-Ti mare samples and both groups analyzed together. The results suggest that while the dominant TiO2-bearing minerals are few, additional PLS factors are required to compensate the effects on the important PLS factors of minerals that are not highly corrected to TiO2, to accommodate nonlinear relationships between reflectance and TiO2, and to correct inconsistent mineral-TiO2 correlations between the high-Ti and low-Ti mare samples. Analysis of the LSCC highland soil samples indicates that the Apollo 16 soils are responsible for the large errors of TiO2 estimates when the soils are modeled with other subgroups. For the LSCC Apollo 16 samples, the dominant spectral effects of plagioclase over other dark minerals are primarily responsible for large errors of estimated TiO2. For the Apollo 14 soils, more accurate estimation for TiO2 is attributed to the positive correlation between a major TiO2-bearing component and TiO2, explaining why the Apollo 14 soils follow the regression trend when analyzed with other soils groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References cited

  • Blewett, D. T., Lucey, P. G., Hawke, B. R., et al., 1997. Clementine Images of the Lunar Sample-Return Stations: Refinement of FeO and TiO2 Mapping Techniques. J. Geophys. Res., 102(E7): 16319–16325

    Article  Google Scholar 

  • Charette, M. P., McCord, T. B., Pieters, C. M., et al., 1974. Application of Remote Spectral Reflectance Measurements to Lunar Geology Classification and Determination of Titanium Content of Lunar Soils. J. Geophys. Res., 79(11): 1605–1613

    Article  Google Scholar 

  • De Jong, S., 1993. SIMPLS: An Alternative Approach to Partial Least Squares Regression. Chemometrics and Intelligent Laboratory Systems, 18(3): 251–263

    Article  Google Scholar 

  • Geladi, P., Kowalski, B. R., 1986. Partial Least Squares Regression: A Tutorial. Analytia Chimica Acta, 185: 1–17, doi: 10.1016/0003-2670(86)80028-9

    Article  Google Scholar 

  • Giguere, T. A., Taylor, G. J., Hawke, B. R., et al., 2000. The Titanium Contents of Lunar Mare Basalts. Meteorit. Planet. Sci., 35(1): 193–200

    Article  Google Scholar 

  • Gillis, J. J., Jolliff, B. L., Elphic, R. C., 2003. A Revised Algorithm for Calculating TiO2 from Clementine UVVIS Data: A Synthesis of Rock, Soil, and Remotely Sensed TiO2 Concentrations. J. Geophys. Res., 108(E2): 5009, doi: 10.1029/2001JE0 01515

    Article  Google Scholar 

  • Gillis, J. J., Jolliff, B. L., Korotev, R. L., 2004. Lunar Surface Geochemistry: Global Concentrations of Th, K, and FeO as Derived from Lunar Prospector and Clementine Data. Geochim. Cosmochim. Acta, 68(18): 3791–3805, doi: 10.1016/j.gca.2004.03.024

    Article  Google Scholar 

  • Gillis-Davis, J. J., Lucey, P. G., Hawke, B. R., 2006. Testing the Relation between UV-VIS Color and TiO2 Content of the Lunar Maria. Geochim. Cosmochim. Acta, 70(24): 6079–6102, doi: 10.1016/j.gca.2006.08.035

    Article  Google Scholar 

  • Greeley, R., Kadel, S. D., Williams, D. A., et al., 1993. Galileo Imaging Observations of Lunar Maria and Related Depos its. J. Geophys. Res., 98(E9): 17183–17205

    Article  Google Scholar 

  • Haaland, D. M., Thomas, E. V., 1988a. Partial Least-Squares Methods for Spectral Analyses. 1. Relation to Other Quantitative Calibration Methods and the Extraction of Qualitative Information. Analytical Chemistry, 60(11): 1193–1202

    Article  Google Scholar 

  • Haaland, D. M., Thomas, E. V., 1988b. Partial Least-Squares Methods for Spectral Analyses. 2. Application to Simulated and Glass Spectral Data. Analytical Chemistry, 60(11): 1202–1208

    Article  Google Scholar 

  • Hapke, B., 2005. Theory of Reflectance and Emittance Spectroscopy. Cambridge Univ. Press, Cambridge

    Google Scholar 

  • Jaumann, R., 1991. Spectral-Chemical Analysis of Lunar Surface Materials. J. Geophys. Res., 96(E5): 22793–22807

    Article  Google Scholar 

  • Johnson, J. R., Larson, S. M., Singer, R. B., 1991. Remote Sensing of Potential Lunar Resources 1. Near-Side Compositional Properties. J. Geophys. Res., 96(E3): 18861–18882

    Article  Google Scholar 

  • Kodama, S., Yamaguchi, Y., 2003. Lunar Mare Volcanism in the Eastern Nearside Region Derived from Clementine UV/VIS Data. Meteorit. Planet. Sci., 38(10): 1461–1484

    Article  Google Scholar 

  • Kodama, S., Yamaguchi, Y., 2005. Mare Volcanism on the Moon Inferred from Clementine UVVIS Data. In: Proceedings of 36th Lunar and Planetary Science Conference. Huston, United States

  • Korokhin, V. V., Kaydash, V. G., Shkuratov, Y. G., et al., 2008. Prognosis of TiO2 Abundance in Lunar Soil Using a Non-Linear Analysis of Clementine and LSCC Data. Planet. Space Sci., 56(8): 1063–1078

    Article  Google Scholar 

  • Le Mouelic, S., Langevin, Y., Erard, S., et al., 2000. Discrimination between Maturity and Composition of Lunar Soils from Integrated Clementine UV-Visible/Near-Infrared Data: Application to the Aristarchus Plateau. J. Geophys. Res., 105(E4): 9445–9455

    Article  Google Scholar 

  • Lestander, T. A., Leardi, R., Geladi, P., 2003. Selection of Near Infrared Wavelengths Using Genetic Algorithms for the Determination of Seed Moisture Content. Journal of Near Infrared Spectroscopy, 11(6): 433–446

    Article  Google Scholar 

  • Li, L., 2006. Partial Least Squares Modeling to Quantify Lunar Soil Composition with Hyperspectral Reflectance Spectra. J. Geophys. Res., 111: E04002, doi: 10.1029/2005JE002598

    Article  Google Scholar 

  • Li, L., 2008a. Quantifying Lunar Soil Composition with Partial Least Squares Modeling of Reflectance. Advances in Space Research, 42(2): 267–274

    Article  Google Scholar 

  • Li, L., 2008b. Partial Least Squares Methods for Spectrally Estimating Lunar Soil FeO Abundance: A Stratified Approach to Revealing Nonlinear Effect and Qualitative Interpretation. J. Geophys. Res., 113(E12): E12013, doi: 10.1029/2008JE003213

    Article  Google Scholar 

  • Lucey, P. G., Blewett, D. T., Hawke, B. R., 1998b. Mapping the FeO and TiO2 Content of the Lunar Surface with Multispectral Imagery. J. Geophys. Res., 103(E2): 3679–3699

    Article  Google Scholar 

  • Lucey, P. G., Blewett, D. T., Jolliff, B. L., 2000. Lunar Iron and Titanium Abundance Algorithms Based on Final Processing of Clementine Ultraviolet-Visible Images. J. Geophys. Res., 105(E8): 20297–20305

    Article  Google Scholar 

  • Lucey, P. G., Taylor, G. J., Hawke, B. R., et al., 1998a. FeO and TiO2 Concentrations in the South Pole-Aitken Basin: Implications for Mantle Composition and Basin Formation. J. Geophys. Res., 103(E2): 3701–3708

    Article  Google Scholar 

  • Martens, H., Naes, T., 1992. Multivariate Calibration. John Wiley and Sons Ltd, New York. 438

    Google Scholar 

  • McCord, T. B., Clark, R. N., Hawke, B. R., et al., 1981. Moon: Near-Infrared Spectral Reflectance, a First Good Look. J. Geophys. Res., 86(B11): 10883–10892

    Article  Google Scholar 

  • McCord, T. B., Pieters, C., Feierberg, M. A., 1976. Multispectral Mapping of the Lunar Surface Using Ground-Based Telescopes. Icarus, 29(1): 1–34

    Article  Google Scholar 

  • Melendrez, D., Johnson, J. R., Larson, S. M., et al., 1994. Remote Sensing of Potential Lunar Resources. 2. High Spatial Resolution Mapping of Spectral Reflectance Ratios and Implications for Nearside Mare TiO2 Content. J. Geophys. Res., 99(E3): 5601–5619

    Article  Google Scholar 

  • Miller, A. J., 2002. Subset Selection in Regression. Chapman & Hall/CRS, New York. 238

    Book  Google Scholar 

  • Pieters, C. M., 1978. Mare Basalt Types on the Front Side of the Moon: A Summary of Spectral Reflectance Data. In: Proceedings of 9th Lunar and Planetary Science Conference. Huston, United States. 2825–2849

  • Pieters, C. M., Head, J. W., Sunshine, J. M., et al., 1993. Crustal Diversity of the Moon: Compositional Analysis of Galileo Solid State Imaging Data. J. Geophys. Res., 98(E9): 17127–17148

    Article  Google Scholar 

  • Pieters, C. M., Shkuratov, Y. G., Kaydash, V. G., et al., 2006. Lunar Soil Characterization Consortium Analyses: Pyroxene and Maturity Estimates Derived from Clementine Image Data. Icarus, 184(1): 83–101

    Article  Google Scholar 

  • Pieters, C. M., Stankevich, D. G., Shkuratov, Y. G., et al., 2002. Statistical Analysis of the Links among Lunar Mare Soil Mineralogy, Chemistry, and Reflectance Spectra. Icarus, 155: 285–298

    Article  Google Scholar 

  • Riner, M. A., Robinson, M. S., Tangeman, J. A., et al., 2005. Is Ilmenite always the Dominant Carrier of Titanium in Lunar Mare Basalts? In: Proceedings of 36th Lunar and Planetary Science Conference. Huston, United States

  • Shkuratov, Y. G., Kaydash, V. G., Opanasenko, N. V., 1999. Iron and Titanium Abundance and Maturity Degree Distribution on the Lunar Nearside. Icarus, 137(2): 222–234

    Article  Google Scholar 

  • Shkuratov, Y. G., Kaydash, V. G., Pieters, C. M., 2005b. Lunar Clinopyroxene and Plagioclase: Surface Distribution and Composition. Solar Sys. Res., 39(4): 255–266

    Article  Google Scholar 

  • Shkuratov, Y. G., Kaydash, V. G., Stankevich, D. G., et al., 2005a. Derivation of Elemental Abundance Maps at Intermediate Resolution from Optical Interpolation of Lunar Prospector Gamma-Ray Spectrometer Data. Planet. Space Sci., 53(12): 1287–1301

    Article  Google Scholar 

  • Shkuratov, Y. G., Pieters, C. M., Omelchenko, V. V., et al., 2003a. Estimates of the Lunar Surface Composition with Clementine Images and LSCC Data. In: Proceedings of 34th Lunar and Planetary Science Conference. Huston, United States

  • Shkuratov, Y. G., Stankevich, D. G., Kaydash, V. G., et al., 2003b. Composition of the Lunar Surface as will be Seen from SMART-1: A Simulation Using Clementine Data. J. Geophys. Res., 108(E4): 5020, doi: 10.1029/2002JE001971

    Article  Google Scholar 

  • Taylor, L. A., Morris, R. V., Keller, L. P., et al., 2000b. Major Contributions to Spectral Reflectance Opacity by Non-Agglutinitic, Surface-Correlated Nanophase Iron. In: Proceedings of 31st Lunar and Planetary Science Conference. Huston, United States

  • Taylor, L. A., Morris, R. V., Pieters, C. M., et al., 2000a. Chemical Characterization of Lunar Mare Soils. In: Proceedings of 31st Lunar and Planetary Science Conference. Huston, United States

  • Taylor, L. A., Patchen, A., Taylor, D. S., et al., 2000c. Mineralogical Characterization of Lunar Mare Soils. In: Proceedings of 31st Lunar and Planetary Science Conference. Huston, United States

  • Taylor, L. A., Pieters, C. M., Keller, L. P., et al., 2001. Lunar Mare Soils: Space Weathering and the Major Effects of Surface-Correlated Nanophase Fe. J. Geophys. Res., 106(E11): 27985–27999

    Article  Google Scholar 

  • Taylor, L. A., Pieters, C. M., Morris, R. V., et al., 1999. Integration of the Chemical and Mineralogical Characteristics of Lunar Soils with Reflectance Spectroscopy. In: Proceedings of 30th Lunar and Planetary Science Conference. Huston, United States

  • Taylor, L. A., Pieters, C. M., Patchen, A., et al., 2003. Mineralogical Characterization of Lunar Highland Soils. In: Proceedings of 34th Lunar and Planetary Science Conference. Huston, United States

  • Williams, D. A., Greeley, R., Neukum, G., et al., 1995. Multispectral Studies of Western Limb and Farside Maria from Galileo Earth-Moon Encounter-1. J. Geophys. Res., 100(E11): 23291–23299

    Article  Google Scholar 

  • Wold, H., 1966a. Nonlinear Estimation by Iterative Least Squares Procedure. In: David, F., ed., Research Papers in Statistics. Wiley & Sons, New York. 441–444

    Google Scholar 

  • Wold, H., 1966b. Estimation of Principal Components and Related Models by Iterative Least Squares. In: Krishnaiah, P. R., ed., Multivariate Analysis. Academic Press, New York. 391–420

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Li.

Additional information

This study was supported by the Research Support Funds Grant (RSFG) program of Indiana University-Purdue University at Indianapolis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, L. Quantifying TiO2 abundance of lunar soils: Partial least squares and stepwise multiple regression analysis for determining causal effect. J. Earth Sci. 22, 549–565 (2011). https://doi.org/10.1007/s12583-011-0206-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12583-011-0206-5

Key Words

Navigation