Skip to main content

Advertisement

Log in

Compositional Mapping and Spectral Analysis of Sulpicius Gallus Dark Mantling Deposits Using Lunar Orbital Data Sets Including Chandrayaan-1 Moon Mineralogy Mapper

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

Impact cratering and volcanism are two significant processes that shape the lunar surface. Volcanism covers 17% of the lunar surface and has been confined to the near side. The regional dark mantling deposits (DMD) are ancient fire fountains related to volcanic activity. These regional DMD magma source region are deeper than mare basalt lava flows. The Sulpicius Gallus deposits are one among these regional DMD. In this context, remote sensing based lunar orbital data sets were used for compositional mapping, and Chandrayaan-1 hyperspectral data Moon Mineralogy Mapper (M3) helped unravel the surface chemistry and mineralogy of the investigative site. The Sulpicius Gallus deposits are rich in ferrous and titanium have been recognized by compositional analysis of lunar orbital data sets such as Clementine UVVIS, Kaguya multiband imager, and lunar reconnaissance orbiter camera (LROC) wide angle camera (WAC). Further, the Sulpicius Gallus deposits are enriched in ilmenite content along with volcanic glasses and therefore are potential sites for oxygen extraction and in-situ resource utilization. High-resolution Chandrayaan-1 M3 is intensively utilized to unravel the study region's composition and spectral analysis. The Sulpicius Gallus deposits M3 mosaic subjected to intensive hyperspectral image reduction and processing techniques such as principal component analysis (PCA). The 2D Scatterplot was generated between PCA-1 and PCA-2. The density sliced scatterplot morphology was utilized to select and determine Sulpicius Gallus deposits endmembers spectra. Spectral band parameters such as band center and band depth were derived after the continuum removal process. Volcanic glasses also exhibit absorption around 1000 and 2000 nm like pyroxenes, but absorption peaks differ. Absorption position peaks of 1000 versus 2000 nm were compared with synthetic pyroxene and volcanic glasses from Reflectance Experiment Laboratory spectral library. This study indicates that the Sulpicius Gallus DMD are enriched in ferrous, titanium, ilmenite, and volcanic glasses. M3 based reflectance spectra analysis of Sulpicius Gallus deposits indicates absorption around 1000 and 2000 nm central peaks almost lie within the glass region and are relevant/related to orange and green glass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

source vent “E”; cf Elevation profile generated using LRO LOLA DEM data using 3D analyst module

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abrams, M. J., Brown, D., Lepley, L., & Sadowski, R. (1983). Remote sensing for porphyry copper deposits in southern Arizona. Economic Geology, 78(4), 591–604.

    Article  Google Scholar 

  • Adams, J. B. (1974). Visible and near-infrared diffuse reflectance spectra of pyroxenes as applied to remote sensing of solid objects in the solar system. Journal of Geophysical Research, 79(32), 4829–4836. https://doi.org/10.1029/JB079i032p04829

    Article  Google Scholar 

  • Ajith Kumar, P. A., & Kumar, S. (2014). Estimation of optical maturity parameter for lunar soil characterization using Moon Mineralogy Mapper (M3). Advances in Space Research, 53(12), 1694–1719. https://doi.org/10.1016/j.asr.2014.01.009

    Article  Google Scholar 

  • Allen, C. C., Morris, R. V., & McKay, D. S. (1996). Oxygen extraction from lunar soils and pyroclastic glass. Journal of Geophysical Research: Planets, 101(E11), 26085–26095. https://doi.org/10.1029/96JE02726

    Article  Google Scholar 

  • Anand, M., Crawford, I. A., Balat-Pichelin, M., Abanades, S., Van Westrenen, W., Péraudeau, G., Péraudeau, R. J., & Seboldt, W. (2012). A brief review of chemical and mineralogical resources on the Moon and likely initial in situ resource utilization (ISRU) applications. Planetary and Space Science, 74(1), 42–48. https://doi.org/10.1016/j.pss.2012.08.012

    Article  Google Scholar 

  • Barker, M. K., Mazarico, E., Neumann, G. A., Zuber, M. T., Haruyama, J., & Smith, D. E. (2016). A new lunar digital elevation model from the Lunar Orbiter Laser Altimeter and SELENE Terrain Camera. Icarus, 273, 346–355. https://doi.org/10.1016/j.icarus.2015.07.039

    Article  Google Scholar 

  • Bennett, A. F. (1993). Microhabitat use by the long-nosed potoroo, Potorous tridactylus, and other small mammals in remnant forest vegetation, south-western Victoria. Wildlife Research, 20(3), 267–285.

    Article  Google Scholar 

  • Berezhnoy, A. A., Kozlova, E. A., Sinitsyn, M. P., Shangaraev, A. A., & Shevchenko, V. V. (2012). Origin and stability of lunar polar volatiles. Advances in Space Research, 50(12), 1638–1646. https://doi.org/10.1016/j.asr.2012.03.019

    Article  Google Scholar 

  • Besse, S., Sunshine, J., Staid, M., Boardman, J., Pieters, C., Guasqui, P., Malaret, E., McLaughlin, S., Yokota, Y., & Li, J.-Y. (2013a). A visible and near-infrared photometric correction for Moon Mineralogy Mapper (M3). Icarus, 222(1), 229–242. https://doi.org/10.1016/j.icarus.2012.10.036

    Article  Google Scholar 

  • Besse, S., Yokota, Y., Boardman, J., Green, R., Haruyama, J., Isaacson, P., Mall, U., Matsunaga, T., Ohtake, M., Pieters, C., & Staid, M. (2013b). One Moon, many measurements 2: Photometric corrections. Icarus, 226(1), 127–139. https://doi.org/10.1016/j.icarus.2013.05.009

    Article  Google Scholar 

  • Besse, S., Sunshine, J. M., & Gaddis, L. R. (2014). Volcanic glass signatures in spectroscopic survey of newly proposed lunar pyroclastic deposits. Journal of Geophysical Research: Planets, 119(2), 355–372. https://doi.org/10.1002/2013JE004537

    Article  Google Scholar 

  • Bhandari, N. (2005). Chandrayaan-1: Science goals. Journal of Earth System Science, 114(6), 701–709. https://doi.org/10.1007/BF02715953

    Article  Google Scholar 

  • Blewett, D. T., Lucey, P. G., Hawke, B. R., & Jolliff, B. L. (1997). Clementine images of the lunar sample-return stations: Refinement of FeO and TiO2 mapping techniques. Journal of Geophysical Research: Planets, 102(E7), 16319–16325. https://doi.org/10.1029/97JE01505

    Article  Google Scholar 

  • Boardman, J. W., Pieters, C. M., Green, R. O., Lundeen, S. R., Varanasi, P., Nettles, J., Petro, N., Isaacson, P., Besse, S., & Taylor, L. A. (2011). Measuring moonlight: An overview of the spatial properties, lunar coverage, selenolocation, and related level 1B products of the Moon Mineralogy Mapper. Journal of Geophysical Research: Planets. https://doi.org/10.1029/2010JE003730

    Article  Google Scholar 

  • Burns, R. G., & Burns, R. G. (1993). Mineralogical applications of crystal field theory 5. Cambridge University Press.

    Book  Google Scholar 

  • Cameron, E. N. (1988). Helium mining on the moon: Site selection and evaluation. WCSAR.

  • Carter, L. M., Campbell, B. A., Hawke, B. R., Campbell, D. B., & Nolan, M. C. (2009). Radar remote sensing of pyroclastic deposits in the southern Mare Serenitatis and Mare Vaporum regions of the Moon. Journal of Geophysical Research: Planets. https://doi.org/10.1029/2009JE003406

    Article  Google Scholar 

  • Cheek, L. C., Pieters, C. M., Boardman, J. W., Clark, R. N., Combe, J. P., Head, J. W., & Isaacson, P. J. (2011). Goldschmidt crater and the Moon’s north polar region: Results from the Moon Mineralogy Mapper (M3). Journal of Geophysical Research: Planets. https://doi.org/10.1029/2010JE003702

    Article  Google Scholar 

  • Chevrel, S. D., Pinet, P. C., Daydou, Y., Maurice, S., Lawrence, D. J., Feldman, W. C., & Lucey, P. G. (2002). Integration of the Clementine UV-VIS spectral reflectance data and the Lunar Prospector gamma-ray spectrometer data: A global-scale multielement analysis of the lunar surface using iron, titanium, and thorium abundances. Journal of Geophysical Research: Planets, 107(E12), 15–21. https://doi.org/10.1029/2000JE001419

    Article  Google Scholar 

  • Cloutis, E. A., & Gaffey, M. J. (1991). Pyroxene spectroscopy revisited: Spectral-compositional correlations and relationship to geothermometry. Journal of Geophysical Research: Planets, 96(E5), 22809–22826. https://doi.org/10.1029/91JE02512

    Article  Google Scholar 

  • Cloutis, E. A., Gaffey, M. J., Jackowski, T. L., & Reed, K. L. (1986). Calibrations of phase abundance, composition, and particle size distribution for olivine-orthopyroxene mixtures from reflectance spectra. Journal of Geophysical Research: Solid Earth, 91(B11), 11641–11653. https://doi.org/10.1029/JB091iB11p11641p11641

    Article  Google Scholar 

  • Coombs, C. R., Hawke, B. R., & Gaddis, L. R. (1987). Explosive volcanism on the Moon. In Lunar and planetary science conference (Vol. 18).

  • Coombs, C. R., Hawke, B. R., Peterson, C. A., & Zisk, S. H. (1990). Regional pyroclastic deposits in the north-central portion of the lunar nearside. In Lunar and planetary science conference (Vol. 21).

  • Elkins-Tanton, L. T., Burgess, S., & Yin, Q. Z. (2011). The lunar magma ocean: Reconciling the solidification process with lunar petrology and geochronology. Earth and Planetary Science Letters, 304(3–4), 326–336. https://doi.org/10.1016/j.epsl.2011.02.004

    Article  Google Scholar 

  • Fogel, R., & Rutherford, M. (1995). Magmatic volatiles in primitive lunar glasses, I, FTIR and EPMA analyses of Apollo 15 green and yellow glasses and revision of the volatile-assisted fire-fountain theory. Geochimica Et Cosmochimica Acta, 59, 201–215. https://doi.org/10.1016/0016-7037(94)00377-X

    Article  Google Scholar 

  • Gaddis, L. R., Pieters, C. M., & Hawke, B. R. (1985). Remote sensing of lunar pyroclastic mantling deposits. Icarus, 61(3), 461–489. https://doi.org/10.1016/0019-1035(85)90136-8

    Article  Google Scholar 

  • Gaddis, L. R., Hawke, B. R., Robinson, M. S., & Coombs, C. (2000). Compositional analyses of small lunar pyroclastic deposits using Clementine multispectral data. Journal of Geophysical Research: Planets, 105(E2), 4245–4262. https://doi.org/10.1029/1999JE001070

    Article  Google Scholar 

  • Gaddis, L. R., Staid, M. I., Tyburczy, J. A., Hawke, B. R., & Petro, N. E. (2003). Compositional analyses of lunar pyroclastic deposits. Icarus, 161(2), 262–280. https://doi.org/10.1016/S0019-1035(02)00036-2

    Article  Google Scholar 

  • Goswami, J. N., & Annadurai, M. (2008). Chandrayaan-1 mission to the Moon. Acta Astronautica, 63(11–12), 1215–1220. https://doi.org/10.1016/j.actaastro.2008.05.013

    Article  Google Scholar 

  • Green, R. O., Pieters, C., Mouroulis, P., Eastwood, M., Boardman, J., Glavich, T., Isaacson, P., Annadurai, M., Besse, S., Barr, D., & Buratti, B. (2011). The Moon Mineralogy Mapper (M3) imaging spectrometer for lunar science: Instrument description, calibration, on-orbit measurements, science data calibration and on-orbit validation. Journal of Geophysical Research: Planets. https://doi.org/10.1029/2011JE003797

    Article  Google Scholar 

  • Gustafson, J. O., Bell, J. F., Gaddis, L. R., Hawke, B. R., & Giguere, T. A. (2012). Characterization of previously unidentified lunar pyroclastic deposits using Lunar Reconnaissance Orbiter Camera data. Journal of Geophysical Research: Planets. https://doi.org/10.1029/2011JE003893

    Article  Google Scholar 

  • Gustafson, J. O., Gaddis, L. R., Bell, J. F., III., & Gustafson, J. A. (2020). An investigation of potential pyroclastic deposits on the southeast limb of the Moon. Icarus. https://doi.org/10.1016/j.icarus.2020.113828

    Article  Google Scholar 

  • Hawke, B. R. (1990). Remote sensing and geologic studies of lunar dark mantle deposits: A review. In Workshop on Lunar Volcanic Glasses: Scientific and Resource Potential. A Lunar and Planetary Institute Workshop, sponsored by LPI and the Lunar and Planetary Sample Team, held October 10–11, 1989, at the Lunar and Planetary Institute, in Houston, Texas. Edited by John W. Delano and Grant H. Heiken. LPI Technical Report 90–02, published by Lunar and Planetary Institute, 3303 NASA Road 1, Houston, TX 77058, 1990, p. 34 (p. 34).

  • Hawke, B. R., Coombs, C. R., & Clark, B. (1990). Ilmenite-rich pyroclastic deposits: An ideal lunar resource. In Lunar and Planetary Science Conference Proceedings (Vol. 20, pp. 249–258).

  • Hawke, B. R., Coombs, C. R., Campbell, B. A., Lucey, P. G., Peterson, C. A., & Zisk, S. H. (1991). Remote sensing of regional pyroclastic deposits on the north central portion of the lunar nearside. In Lunar and Planetary Science Conference Proceedings (Vol. 21, pp. 377–389).

  • Head, J. W. (1974). Lunar dark-mantle deposits-possible clues to the distribution of early mare deposits. In Lunar and Planetary Science Conference Proceedings (Vol. 5, pp. 207–222).

  • Head, J. W., III. (1976). Lunar volcanism in space and time. Reviews of Geophysics, 14(2), 265–300. https://doi.org/10.1029/RG014i002p00265

    Article  Google Scholar 

  • Head, J. W., III., & Wilson, L. (1992). Lunar mare volcanism: Stratigraphy, eruption conditions, and the evolution of secondary crusts. Geochimica Et Cosmochimica Acta, 56(6), 2155–2175. https://doi.org/10.1016/0016-7037(92)90183-J

    Article  Google Scholar 

  • Head, J. W., & Wilson, L. (2017). Generation, ascent and eruption of magma on the Moon: New insights into source depths, magma supply, intrusions and effusive/explosive eruptions (Part 2: Predicted emplacement processes and observations). Icarus, 283, 176–223. https://doi.org/10.1016/j.icarus.2016.05.031

    Article  Google Scholar 

  • Head III, J. W., & Wilson, L. (1979). Alphonsus-type dark-halo craters-Morphology, morphometry and eruption conditions. In Lunar and Planetary Science Conference Proceedings (Vol. 10, pp. 2861–2897).

  • Head, J. W., Adams, J. B., Hawke, B. R., McCord, T. B., Pieters, C., & Zisk, S. (1980). Sulpicius Gallus Pryoclastic Deposits, Southwestern Serenitatis Region of the Moon: Preliminary Studies. In Lunar and Planetary Science Conference (Vol. 11, pp. 418–420).

  • Heiken, G. H., McKay, D. S., & Brown, R. W. (1974). Lunar deposits of possible pyroclastic origin. Geochimica Et Cosmochimica Acta, 38(11), 1703–1718. https://doi.org/10.1016/0016-7037(74)90187-2

    Article  Google Scholar 

  • Hiesinger, H., & Head, J. W., III. (2006). New views of lunar geoscience: An introduction and overview. Reviews in Mineralogy and Geochemistry, 60(1), 1–81. https://doi.org/10.2138/rmg.2006.60.1

    Article  Google Scholar 

  • Horgan, B. H., Cloutis, E. A., Mann, P., & Bell, J. F., III. (2014). Near-infrared spectra of ferrous mineral mixtures and methods for their identification in planetary surface spectra. Icarus, 234, 132–154. https://doi.org/10.1016/j.icarus.2014.02.031

    Article  Google Scholar 

  • Jozwiak, L. M., Head, J. W., Zuber, M. T., Smith, D. E., & Neumann, G. A. (2012). Lunar floor-fractured craters: Classification, distribution, origin and implications for magmatism and shallow crustal structure. Journal of Geophysical Research: Planets. https://doi.org/10.1029/2012JE004134

    Article  Google Scholar 

  • Kaufman, G. A., Kaufman, D. W., & Finck, E. J. (1988). Influence of fire and topography on habitat selection by Peromyscus maniculatus and Reithrodontomys megalotis in ungrazed tallgrass prairie. Journal of Mammalogy, 69(2), 342–352.

    Article  Google Scholar 

  • Kaur, P., Bhattacharya, S., Chauhan, P., & Kumar, A. K. (2013). Mineralogy of Mare Serenitatis on the near side of the Moon based on Chandrayaan-1 Moon Mineralogy Mapper (M3) observations. Icarus, 222(1), 137–148. https://doi.org/10.1016/j.icarus.2012.10.020

    Article  Google Scholar 

  • Klima, R. L., Pieters, C. M., & Dyar, M. D. (2007). Spectroscopy of synthetic Mg-Fe pyroxenes I: Spin-allowed and spin-forbidden crystal field bands in the visible and near-infrared. Meteoritics & Planetary Science, 42(2), 235–253. https://doi.org/10.1111/j.1945-5100.2007.tb00230.x

    Article  Google Scholar 

  • Klima, R. L., Pieters, C. M., Boardman, J. W., Green, R. O., Head, J. W., Isaacson, P. J., & Tompkins, S. (2011). New insights into lunar petrology: Distribution and composition of prominent low-Ca pyroxene exposures as observed by the Moon Mineralogy Mapper (M3). Journal of Geophysical Research: Planets. https://doi.org/10.1029/2010JE003719

    Article  Google Scholar 

  • Kodama, S., & Yamaguchi, Y. (2003). Lunar mare volcanism in the eastern nearside region derived from Clementine UV/VIS data. Meteoritics & Planetary Science, 38(10), 1461–1484. https://doi.org/10.1111/j.1945-5100.2003.tb00251.x

    Article  Google Scholar 

  • Kumaresan, P. R., Saravanavel, J., & Palanivel, K. (2020). Lithological mapping of Eratosthenes crater region using Moon Mineralogy Mapper of Chandrayaan-1. Planetary and Space Science, 182, 104817. https://doi.org/10.1016/j.pss.2019.104817

    Article  Google Scholar 

  • Lemelin, M., Lucey, P. G., Song, E., & Taylor, G. J. (2015). Lunar central peak mineralogy and iron content using the Kaguya Multiband Imager: Reassessment of the compositional structure of the lunar crust. Journal of Geophysical Research: Planets, 120(5), 869–887. https://doi.org/10.1002/2014JE004778

    Article  Google Scholar 

  • Lemelin, M., Lucey, P. G., Miljković, K., Gaddis, L. R., Hare, T. M., & Ohtake, M. (2019). The compositions of the lunar crust and upper mantle: Spectral analysis of the inner rings of lunar impact basins. Planetary and Space Science, 165, 230–243. https://doi.org/10.1016/j.pss.2018.10.003

    Article  Google Scholar 

  • Lemelin, M., P. G. Lucey, L.R. Gaddis, T. Hare, and M. Ohtake (2016), Global map products from the Kaguya Multiband Imager at 512 ppd: Minerals, FeO and OMAT. In Lunar and Planetary Science Conference (No. 1903, p. 2994).

  • Lough, J. M. (1991). Rainfall variations in Queensland, Australia: 1891–1986. International Journal of Climatology, 11(7), 745–768.

    Article  Google Scholar 

  • Lucey, P. G., Taylor, G. J., & Malaret, E. (1995). Abundance and distribution of iron on the Moon. Science, 268(5214), 1150–1153. https://doi.org/10.1126/science.268.5214.1150

    Article  Google Scholar 

  • Lucey, P. G., Blewett, D. T., & Jolliff, B. L. (2000). Lunar iron and titanium abundance algorithms based on final processing of Clementine ultraviolet-visible images. Journal of Geophysical Research: Planets, 105(E8), 20297–20305. https://doi.org/10.1029/1999JE001117

    Article  Google Scholar 

  • McEwen, A. S., Robinson, M. S., Eliason, E. M., Lucey, P. G., Duxbury, T. C., & Spudis, P. D. (1994). Clementine observations of the Aristarchus region of the Moon. Science, 266(5192), 1858–1862. https://doi.org/10.1126/science.266.5192.1858

    Article  Google Scholar 

  • Mendell, W. W. (1985). Lunar bases and space activities of the 21st century. Lunar and Planetary Institute.

    Google Scholar 

  • Morris, R. V. (1978), The surface exposure (maturity) of lunar soils: Some concepts and Is/FeO compilation, In Proceedings of the 9th Lunar and Planetary Science Conference, pp. 2287–2297, Pergamon, New York.

  • Mustard, J. F., Pieters, C. M., Isaacson, P. J., Head, J. W., Besse, S., Clark, R. N., Klima, R. L., Petro, N. E., Staid, M. I., Sunshine, J. M., & Runyon, C. J. (2011). Compositional diversity and geologic insights of the Aristarchus crater from Moon Mineralogy Mapper data. Journal of Geophysical Research: Planets. https://doi.org/10.1029/2010JE003726

    Article  Google Scholar 

  • Nicholis, M. G., & Rutherford, M. J. (2009). Graphite oxidation in the Apollo 17 orange glass magma: Implications for the generation of a lunar volcanic gas phase. Geochimica Et Cosmochimica Acta, 73(19), 5905–5917. https://doi.org/10.1016/j.gca.2009.06.022

    Article  Google Scholar 

  • Pieters, C. M., & Noble, S. K. (2016). Space weathering on airless bodies. Journal of Geophysical Research: Planets, 121(10), 1865–1884. https://doi.org/10.1002/2016JE005128

    Article  Google Scholar 

  • Pieters, C. M., Boardman, J., Buratti, B., Chatterjee, A., Clark, R., Glavich, T., Green, R., Head III, J., Isaacson, P., Malaret, E. and McCord, T. (2009). The Moon Mineralogy Mapper (M3) on Chandrayaan-1. Current Science, 500–505.

  • Pinori, S., & Bellucci, G. (2001). Imaging spectroscopy of selected regional dark mantle deposits of the Moon. Planetary and Space Science, 49(5), 487–500. https://doi.org/10.1016/S0032-0633(00)00140-9

    Article  Google Scholar 

  • Ready, P., & Wintz, P. (1973). Information extraction, SNR improvement, and data compression in multispectral imagery. IEEE Transactions on Communications, 21(10), 1123–1131.

    Article  Google Scholar 

  • Robinson, M. S., Brylow, S. M., Tschimmel, M., Humm, D., Lawrence, S. J., Thomas, P. C., Denevi, B. W., Bowman-Cisneros, E., Zerr, J., Ravine, M. A., & Hiesinger, H. (2010). Lunar reconnaissance orbiter camera (LROC) instrument overview. Space Science Reviews, 150(1–4), 81–124. https://doi.org/10.1007/s11214-010-9634-2

    Article  Google Scholar 

  • Rogers, N. (2018). Volcanism. In W. M. White (Ed.), Encyclopedia of geochemistry: A comprehensive reference source on the chemistry of the earth, Encyclopedia of earth sciences series. Cham: Springer. https://doi.org/10.1007/978-3-319-39312-4_298

    Chapter  Google Scholar 

  • Rutherford, M. J., & Papale, P. (2009). Origin of basalt fire-fountain eruptions on Earth versus the Moon. Geology, 37(3), 219–222.

    Article  Google Scholar 

  • Saal, A. E., Hauri, E. H., Cascio, M. L., Van Orman, J. A., Rutherford, M. C., & Cooper, R. F. (2008). Volatile content of lunar volcanic glasses and the presence of water in the Moon’s interior. Nature, 454(7201), 192–195. https://doi.org/10.1038/nature07047

    Article  Google Scholar 

  • Sato, H., Robinson, M. S., Lawrence, S. J., Denevi, B. W., Hapke, B., Jolliff, B. L., & Hiesinger, H. (2017). Lunar mare TiO2 abundances estimated from UV/Vis reflectance. Icarus, 296, 216–238. https://doi.org/10.1016/j.icarus.2017.06.013

    Article  Google Scholar 

  • Shkuratov, Y., Starukhina, L., Hoffmann, H., & Arnold, G. (1999). A model of spectral albedo of particulate surfaces: Implications for optical properties of the Moon. Icarus, 137(2), 235–246. https://doi.org/10.1006/icar.1998.6035

    Article  Google Scholar 

  • Smith, D. E., Zuber, M. T., Neumann, G. A., Lemoine, F. G., Mazarico, E., Torrence, M. H., McGarry, J. F., Rowlands, D. D., Head, J. W., Duxbury, T. H., & Bartels, A. E. (2010). Initial observations from the lunar orbiter laser altimeter (LOLA). Geophysical Research Letters. https://doi.org/10.1029/2010GL043751

    Article  Google Scholar 

  • Sparks, R. S. J., & Walker, G. P. L. (1973). The ground surge deposit: A third type of pyroclastic rock. Nature Physical Science, 241(107), 62–64. https://doi.org/10.1038/physci241062a0

    Article  Google Scholar 

  • Spudis, P. D. (1999). The case for renewed human exploration of the Moon. Earth, Moon, and Planets, 87(3), 159–171. https://doi.org/10.1023/A:1013186823933

    Article  Google Scholar 

  • Spudis, P. D. (2015). Volcanism on the Moon. In The Encyclopedia of Volcanoes (pp. 689–700). Academic Press.

  • Staid, M. I., & Pieters, C. M. (2001). Mineralogy of the last lunar basalts: Results from Clementine. Journal of Geophysical Research: Planets, 106(E11), 27887–27900. https://doi.org/10.1029/2000JE001387

    Article  Google Scholar 

  • Sun, L., Ling, Z., Zhang, J., Li, B., Chen, J., Wu, Z., & Liu, J. (2016). Lunar iron and optical maturity mapping: Results from partial least squares modeling of Chang’E-1 IIM data. Icarus, 280, 183–198. https://doi.org/10.1016/j.icarus.2016.07.010

    Article  Google Scholar 

  • Surkov, Y., Shkuratov, Y., Kaydash, V., Korokhin, V., & Videen, G. (2020). Lunar ilmenite content as assessed by improved Chandrayaan-1 M3 data. Icarus, 341, 113661. https://doi.org/10.1016/j.icarus.2020.113661

    Article  Google Scholar 

  • Surkov, Y., Shkuratov, Y., Kaydash, V., Korokhin, V., & Videen, G. (2019). Mapping the 1.5 µm Ilmenite Spectral Feature with Chandrayaan-1 M3 Data. In Lunar and Planetary Science Conference (No. 2132, pp. 1026).

  • Tangestani, M. H., & Moore, F. (2001). Comparison of three principal component analysis techniques to porphyry copper alteration mapping: A case study, Meiduk area, Kerman Iran. Canadian Journal of Remote Sensing, 27(2), 176–182. https://doi.org/10.1080/07038992.2001.10854931

    Article  Google Scholar 

  • Thiessen, F., Besse, S., Staid, M. I., & Hiesinger, H. (2014). Mapping lunar mare basalt units in mare Imbrium as observed with the Moon Mineralogy Mapper (M3). Planetary and Space Science, 104, 244–252. https://doi.org/10.1016/j.pss.2014.10.003

    Article  Google Scholar 

  • Tompkins, S., & Pieters, C. M. (1999). Mineralogy of the lunar crust: Results from Clementine. Meteoritics & Planetary Science, 34(1), 25–41. https://doi.org/10.1111/j.1945-5100.1999.tb01729.x

    Article  Google Scholar 

  • Varatharajan, I., Srivastava, N., & Murty, S. V. (2014). Mineralogy of young lunar mare basalts: Assessment of temporal and spatial heterogeneity using M3 data from Chandrayaan-1. Icarus, 236, 56–71. https://doi.org/10.1016/j.icarus.2014.03.045

    Article  Google Scholar 

  • Warren, P. H. (1985). The magma ocean concept and lunar evolution. Annual Review of Earth and Planetary Sciences, 13(1), 201–240.

    Article  Google Scholar 

  • Weitz, C. M., Head, J. W., III., & Pieters, C. M. (1998). Lunar regional dark mantle deposits: Geologic, multispectral, and modeling studies. Journal of Geophysical Research: Planets, 103(E10), 22725–22759. https://doi.org/10.1029/98JE02027

    Article  Google Scholar 

  • Wetzel, D. T., Hauri, E. H., Saal, A. E., & Rutherford, M. J. (2015). Carbon content and degassing history of the lunar volcanic glasses. Nature Geoscience, 8, 755–758. https://doi.org/10.1038/ngeo2511

    Article  Google Scholar 

  • Wilhelms, D. E., & McCauley, J. F. (1971). Geologic map of the near side of the Moon. US Geological Survey.

    Google Scholar 

  • Wilson, L., & Head, J. W. (1979). Lunar Volcanic Cones and Dark Mantling Deposits: Consequences of Patterns of Volatile Release. In Lunar and Planetary Science Conference (Vol. 10, pp. 1353–1355).

  • Wilson, L., Head III, J.W., Tye, A.R., (2014). Lunar regional pyroclastic deposits: Evidence for eruption from dikes emplaced into the near-surface crust. In: Proceedings of Lunar and Planetary Science Conference, XLV abstract 1223.

  • Wilson, L., & Head, J. W. (2017). Generation, ascent and eruption of magma on the Moon: New insights into source depths, magma supply, intrusions and effusive/explosive eruptions (Part 1: Theory). Icarus, 283, 146–175. https://doi.org/10.1016/j.icarus.2015.12.039

    Article  Google Scholar 

Download references

Acknowledgements

This research study was carried out under the Chandrayaan-1 AO program. We thank M3 Team, Chandrayaan-1 mission, Indian Space Research Organization (ISRO), Japanese lunar mission SELENE and NASA's planetary missions for making the availability of data set in the public domain through web portals. We express our sincere thanks to Editor for handling and improving the article. Extend our thanks to two anonymous reviewers for their critical review of our manuscript and many insightful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. R. Kumaresan.

Ethics declarations

Conflict of interest

The authors declares that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumaresan, P.R., Saravanavel, J. Compositional Mapping and Spectral Analysis of Sulpicius Gallus Dark Mantling Deposits Using Lunar Orbital Data Sets Including Chandrayaan-1 Moon Mineralogy Mapper. J Indian Soc Remote Sens 50, 1301–1319 (2022). https://doi.org/10.1007/s12524-022-01529-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-022-01529-4

Keywords

Navigation