Skip to main content

Part of the book series: Progress in Sensory Physiology ((PHYSIOLOGY,volume 10))

  • 43 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams CE, Cepeda C, Boylan MK, Fisher RS, Hull CD, Buchwald NA, Wainer BH, Levine MS (1986) Basal forebrain neurons have axon collaterals that project to widely divergent cortical areas in the cat. Brain Res 397:365–371

    Article  PubMed  CAS  Google Scholar 

  • Adams PR, Brown DA, Constanti A (1982) Pharmacological inhibition of the M-current. J Physiol (Lond) 332:223–262

    CAS  Google Scholar 

  • Adams RW, Lambert G A, Lance JW (1988) Brain-stem facilitation of electrically evoked visual response in the cat. Source, pathway and role of nicotinic receptors. Electroencephalogr Clin Neurophysiol 69:45–54.

    Article  PubMed  CAS  Google Scholar 

  • Aden A, Synnergren B, Botros M, Ohman B, Winblad B, Nordberg A (1987) (3H) acetylcholine nicotinic recognition sites in human brain; characterization of agonist binding. Neurosci Lett 83:298–302.

    Article  Google Scholar 

  • Adrien J, Buisseret P, Fregnac Y, Gray-Bobo E, Imbert M, Tassin JP, Trotter Y (1982) Noradrenaline et plasticité du cortex visuel du chaton: un réexamen. C R Acad Sci [III] 295:745-750

    CAS  Google Scholar 

  • Ahlsén G (1984) Brain stem neurones with differential projection to functional subregions of the dorsal lateral geniculate complex in the cat. Neuroscience 12:817–838.

    Article  PubMed  Google Scholar 

  • Ahlsén G, Lindstrôm S, Lo FS (1982) Functional distinction of perigeniculate and reticular neurons in the cat. Exp Brain Res 46:118–126.

    Article  PubMed  Google Scholar 

  • Ahlsén G, Lindstrôm S, Lo FS (1984) Inhibition from the brain stem of inhibitory interneurones in the cat’s dorsal lateral geniculate nucleus. J Physiol (Lond) 347:593–609.

    Google Scholar 

  • Ahlsén G, Lindstrôm S, Lo FS (1985) Interaction between inhibitory pathways to principal cells in the lateral geniculate nucleus in the cat. Exp Brain Res 58:134–143.

    Article  PubMed  Google Scholar 

  • Akasu T, Koketsu K (1986) 5-Hydroxytryptamine decreases the sensitivity of nicotinic acetylcholine receptor in bull-frog sympathetic ganglion cells. J Physiol (Lond) 380:93–109.

    CAS  Google Scholar 

  • Albus K (1981) Hypothalamic and basal forebrain afferents to the cat’s visual cortex: a study with horseradish peroxidase. Neurosci Lett 24:117–121.

    Article  PubMed  CAS  Google Scholar 

  • Andén NE, Fuxe K, Hamberger B, Hôkfelt T (1966) A quantitative study on the nigrostriatal dopamine neuron system in the rat. Acta Physiol Scand 67:306–312.

    Article  PubMed  Google Scholar 

  • Armstrong DM, Saper CB, Levey AI, Wainer BH, Terry RD (1983) Distribution of cholinergic neurons in rat brain demonstrated by the immunocytochemical localization of choline acetyltransferase. J Comp Neurol 216:53–68.

    Article  PubMed  CAS  Google Scholar 

  • Armstrong-James M, Fox M (1983) Effects of iontophoresed noradrenaline on the spontaneous activity of neurones in rat primary somatosensory cortex. J Physiol (Lond) 335:427–447

    CAS  Google Scholar 

  • Artola A, Singer W (1987) Long-term potentiation and NMD A receptors in rat visual cortex. Science 330:649–652

    CAS  Google Scholar 

  • Ascher P, Nowak L (1987) Electrophysiological studies of NMD A receptors. Trends Neurosci 10:284–287

    Article  CAS  Google Scholar 

  • Aston-Jones G, Bloom FE (1981) Activity of norepinephrine-containing locus coeruleus neurons in behaving rats anticipates fluctuations in sleep-waking cycle. J Neurosci 1:876–886

    PubMed  CAS  Google Scholar 

  • Aston-Jones G, Shaver R, Dinan TG (1985) Nucleus basalis neurons exhibit axonal branching with decreased impulse conduction velocity in rat cerebrocortex. Brain Res 325:271–285

    Article  PubMed  CAS  Google Scholar 

  • Bartlett JR, Doty RW (1974) Influence of mesencephalic stimulation on unit activity in striate cortex of squirrel monkey. J Neurophysiol 37:642–652.

    PubMed  CAS  Google Scholar 

  • Bartlett JR, Doty RW, Pecci-Saavedra J, Wilson PD (1973) Mesencephalic control of lateral geniculate nucleus. III. Modifications with state of alertness. Exp Brain Res 18:214–224.

    Article  PubMed  CAS  Google Scholar 

  • Baughman RW, Gilbert CD (1980) Aspartate and glutamate as possible neurotransmitters of cells in layer 6 of the visual cortex. Nature 287:848–850.

    Article  PubMed  CAS  Google Scholar 

  • Baughman RW, Gilbert CD (1981) Aspartate and glutamate as possible neurotransmitters in the visual cortex. J Neurosci 4:427–439.

    Google Scholar 

  • Bear MF, Carnes KM, Ebner FF (1985) An investigation of cholinergic circuitry in cat striate cortex using acetylcholinesterase histochemistry. J Comp Neurol 234:411–430.

    Article  PubMed  CAS  Google Scholar 

  • Bear MF, Singer W (1986) Modulation of visual cortical plasticity by acetylcholine and noradrenaline. Nature 320:172–176.

    Article  PubMed  CAS  Google Scholar 

  • Beaudet A, Descarries L (1976) Quantitative data on serotonin nerve terminals in adult rat neocortex. Brain Res 111:301–309.

    Article  PubMed  CAS  Google Scholar 

  • Beaudet A, Descarries L (1978) The monoamine innervation of rat cerebral cortex: synaptic and non-synaptic axon terminals. Neuroscience 3:851–860.

    Article  PubMed  CAS  Google Scholar 

  • Beaudet A, Descarries L (1981) The fine structure of central serotonin neurons. J Physiol (Paris) 77:193–203

    CAS  Google Scholar 

  • Benardo LS, Prince DA (1982) Cholinergic excitation of mammalian hippocampal pyramidal cells. Brain Res 249:315–331.

    Article  PubMed  CAS  Google Scholar 

  • Ben-Ari Y, Dingledine R, Kanazawa I, Kelly JS (1976) Inhibitory effects of acetylcholine on neurons in the feline nucleus reticularis thalami. J Physiol (Lond) 261:647–671.

    CAS  Google Scholar 

  • Berardi N, Morrone MC (1983) The role of gamma-aminobutyric acid mediated inhibition in the response properties of cat lateral geniculate nucleus neurones. J Physiol (Lond) 357:505–523

    Google Scholar 

  • Berger B, Tassin JP, Blanc G, Moyne MA, Thierry AM (1974) Histochemical confirmation for dopaminergic innervation of the rat cerebral cortex after destruction of the noradrenergic ascending pathways. Brain Res 81:332–337.

    Article  PubMed  CAS  Google Scholar 

  • Berger B, Verney C, Alvarez C, Vigny A, Helle KB (1985) New dopaminergic terminal fields in the motor, visual (area 18b) and retrosplenial cortex in the young and adult rat. Immunocytochemical and catecholamine analyses. Neuroscience 15:983–998.

    Article  PubMed  CAS  Google Scholar 

  • Bernardi G, Cherubini E, Marciani MG, Mercuri N, Stranzione P (1982) Responses of intracellular recorded cortical neurons to the iontophoretic application of dopamine. Brain Res 245:267–274.

    Article  PubMed  CAS  Google Scholar 

  • Bevan P, Bradshaw CM, Szabadi E (1977) The pharmacology of adrenergic neuronal responses in the cerebral cortex: evidence for excitatory a- and inhibitory-receptors. Br J Pharmacol 59:635–641.

    PubMed  CAS  Google Scholar 

  • Biegon A, Rainbow TC, McEwen BS (1982) Quantitative autoradiography of serotonin receptors in the rat brain. Brain Res 242:197–204.

    Article  PubMed  CAS  Google Scholar 

  • Bigl B, Woolf NJ, Butcher LL (1982) Cholinergic projections from the basal forebrain to frontal, parietal, temporal, occipital, and cingulate cortices: a combined fluorescent tracer and acetylcholinesterase analysis. Brain Res Bull 8:727–749.

    Article  PubMed  CAS  Google Scholar 

  • Bishop PO (1964) Properties of afferent synapses and sensory neurons in the lateral geniculate nucleus. Int Rev Neurobiol 6:191–255.

    Article  PubMed  CAS  Google Scholar 

  • Bizzi E (1966) Discharge patterns of single geniculate neurons during the rapid eye movements of sleep. J Neurophysiol 29:1087–1095.

    PubMed  CAS  Google Scholar 

  • Bjorklund A, Lindvall O (1984) Dopamine-containing systems in the CNS. In: Bjorklund A, Hokfelt T (eds) Handbook of chemical neuroanatomy. Elsevier, Amsterdam, pp 55–132.

    Google Scholar 

  • Bjorklund A, Lindvall O (1986) Catecholaminergic brain stem regulatory systems. In: Mountcastle VB, Bloom FE (eds) Handbook of physiology, sect. 1, vol 4. American Physiological Society, Bethesda MD, pp 155–235

    Google Scholar 

  • Bjórklund A, Nobin A (1973) Fluorescence histochemical and microspectrofluorometric mapping of dopamine and noradrenaline cell groups in the rat diencephalon. Brain Res 51:193–205

    Article  PubMed  Google Scholar 

  • Bjórklund A, Divac I, Lindvall O (1978) Regional distribution of catecholamines in monkey cerebral cortex, evidence for a dopaminergic innervation of the primate prefrontal cortex. Neurosci Lett 7:115–119.

    Article  PubMed  Google Scholar 

  • Blakemore C, Tobin E (1972) Lateral inhibition between orientation detectors in the cat’s visual cortex. Exp Brain Res 15:439–440.

    Article  PubMed  CAS  Google Scholar 

  • Bloch V, Fischbein W (1975) Sleep and psychological functions: memory. In: Lairy GC, Salzarulo P (eds) Experimental study of human sleep: methodological problems. Elsevier, Amsterdam, pp 157–173.

    Google Scholar 

  • Bloom FE (1983) The endorphins: a growing family of pharmacologically pertinent peptides. Annu Rev Pharmacol Toxicol 231:151–170.

    Article  Google Scholar 

  • Bloom FE, Battenberg E, Ferron A, Mancillas J, Milner RJ, Siggins GR, Sutcliffe JG (1987) Transmitter synergism and diversity. In: Edelman GM, Gall WE, Cowan WM (eds) Synaptic function. Wiley, New York, pp 289–301.

    Google Scholar 

  • Bobillier P, Séguin S, Degueurce A, Lewis BD, Pujol JF (1979) The efferent connections of the nucleus raphe centralis superior in the rat as revealed by radioautography. Brain Res 166:1–8

    Article  PubMed  CAS  Google Scholar 

  • Bode-Greuel KM, Singer W, Aldenhoff JB (1987) A current source density analysis of field potentials evoked in slices of visual cortex. Exp Brain Res 69:213–219.

    Article  PubMed  CAS  Google Scholar 

  • Bowery NG, Hudson AL, Price GW (1987) GABAa and GABAb receptor site distribution in the rat central nervous system. Neuroscience 20:365–383.

    Article  PubMed  CAS  Google Scholar 

  • Bowker RM, Morrison AR (1976) The startle reflex and PGO spikes. Brain Res 102:185–190.

    Article  PubMed  CAS  Google Scholar 

  • Bowling DB, Michael CR (1984) Terminal patterns of single, physiologically characterized optic tract fibers in the cat’s lateral geniculate nucleus. J Neurosci 4:198–216.

    PubMed  CAS  Google Scholar 

  • Boyson SJ, McGonigle P, Molinoff PB (1986) Quantitative autoradiographic localization of the D1 and D2 subtypes of dopamine receptors in rat brain. J Neurosci 6:3177–3188.

    PubMed  CAS  Google Scholar 

  • Bremer F, Bonnet V (1950) Interpretation des reactions rhythmiques prolongées des aires sensorielles de l’écorce cérébrale. Electroencephalogr Clin Neurophysiol 2:389–400.

    Article  PubMed  CAS  Google Scholar 

  • Bremer F, Stoupel N (1959) Facilitation et inhibition des potentiels oqués corticaux dans l’éveil cerebral. Arch Int Physiol Biochim 67:240–275.

    Article  PubMed  CAS  Google Scholar 

  • Brooks DC, Bizzi E (1963) Functional connections between pontine reticular formation and lateral geniculate nucleus during deep sleep. Arch Ital Biol 101:648–666.

    PubMed  CAS  Google Scholar 

  • Bullier J, Henry GH (1979) Laminar distribution of first order neurons and afferent terminals in cat striate cortex. J Neurophysiol 42:1271–1281.

    PubMed  CAS  Google Scholar 

  • Burges JC, Grieve KL, Murphy PC, Sillito AM (1985) Iontophoretically applied bicuculline reveals excitatory responses from the non-dominant eye receptive fields of cells in the A laminae of the cat dorsal lateral geniculate nucleus (dLGN). J Physiol (Lond) 369:36P

    Google Scholar 

  • Büttner U, Fuchs AF (1973) Influence of saccadic eye movements on unit activity in simian lateral geniculate and pregeniculate nuclei. J Neurophysiol 36:127–141

    PubMed  Google Scholar 

  • Carey RG, Rieck RW (1987) Topographic projections to the visual cortex from the basal forebrain in the rat. Brain Res 424:205–215.

    Article  PubMed  CAS  Google Scholar 

  • Chang HT (1952) Cortical response to stimulation of lateral geniculate body and the potentiation thereof by continuous illumination of retina. J Neurophysiol 15:5–26.

    PubMed  CAS  Google Scholar 

  • Chesselet MF (1984) Presynaptic regulation of neurotransmitter. Neuroscience 12:347–375.

    Article  PubMed  CAS  Google Scholar 

  • Clark PBS, Pert CB, Pert A (1984) Autoradiographic distribution of nicotine receptors in rat brain. Brain Res 323:390–395.

    Article  Google Scholar 

  • Clark PBS, Schwartz RD, Paul SM, Pert CB, Pert A (1985) Nicotinic binding in rat brain: autoradiographic comparison of (3H)acetylcholine, (3H)nicotine, and (125I)-a-bungarotoxin. J Neurosci 5:1307–1315

    Google Scholar 

  • Coenen AM, Vendrik AJH (1972) Determination of the transfer ratio of cat’s geniculate neurons through quasi-intracellular recordings and the relation with the level of alertness. Exp Brain Res 14:227–242.

    Article  PubMed  CAS  Google Scholar 

  • Collingridge GL, Bliss TVP (1987) NMDA receptors—their role in long-term potentiation. Trends Neurosci 10:288–298.

    Article  CAS  Google Scholar 

  • Collingridge GL, Kehl SI, McLennan H (1983) Excitatory amino acid in synaptic transmission in the Schaffer collateral-commissural pathway of the rat hippocampus. J Physiol (Lond) 334:33–46.

    CAS  Google Scholar 

  • Colonnier M (1966) The structural design of the neocortex. In: Eccles JC (ed) Brain and conscious experience. Springer, New York pp 1–23.

    Google Scholar 

  • Commissiong JW (1981) Spinal monoaminergic systems: an aspect of somatic motor function. Fed Proc 40:2771–2777.

    PubMed  CAS  Google Scholar 

  • Conrad LCA, Leonard CM, Pfaff DW (1974) Connections of the median and dorsal raphe nuclei in the rat: an autoradiographic and degeneration study. J Comp Neurol 156:179–206

    Article  PubMed  CAS  Google Scholar 

  • Consolazione A, Priestley JV, Cuello AC (1984) Serotonin-containing projections to the thalamus in the rat revealed by a horseradish peroxidase and peroxidase antiperoxidase double-staining technique. Brain Res 322:233–243.

    Article  PubMed  CAS  Google Scholar 

  • Corrazza R, Lombroso CT (1970) The neuronal dark discharges during eye movements in awake “encéphale isolé” cats. Brain Res 34:345–359.

    Article  Google Scholar 

  • Cotman CW, Monaghan DT, Ottersen OP, Storm-Mathisen J (1987) Anatomical organization of excitatory amino acid receptors and their pathways. Trends Neurosci 10:273–279.

    Article  CAS  Google Scholar 

  • Creutzfeldt OD, Kuhnt U (1973) Electrophysiology and topographical distribution of visual evoked potentials in animals. In: Jung R (ed) Visual centers in the brain. Springer, Berlin Heidelberg New York, pp 595–646. (Handbook of sensory physiology, vol VII 3/B)

    Chapter  Google Scholar 

  • Creutzfeldt OD, Garey LJ, Kuroda R, Wolff JR (1977) The distribution of degenerating axons after small lesions in the intact and isolated visual cortex of the cat. Exp Brain Res 27:419–440

    Article  PubMed  CAS  Google Scholar 

  • Cropper EC, Eisenman JS, Azmitia EC (1984) An immunocytochemical study of the serotonergic innervation of the thalamus of the rat. J Comp Neurol 2245:38–50.

    Article  Google Scholar 

  • Cross AJ, Deakin JFW (1985) Cortical serotonin receptor subtypes after lesion of ascending cholinergic neurones in rat. Neurosci Lett 60:261–265.

    Article  PubMed  CAS  Google Scholar 

  • Crunelli V, Leresche N, Pirchio M (1985) Non-NMDA receptors mediate the optic nerve input to the rat LGN in vitro. J Physiol (Lond) 365:40P

    Google Scholar 

  • Crunelli V, Haby M, Jassik-Gerschenfeld D, Leresche N, Pirchio M (1988) CL and K + dependent inhibitory postsynaptic potentials evoked by interneurons of the rat lateral geniculate nucleus. J Physiol (Lond) 399:153–176.

    CAS  Google Scholar 

  • Cucchiaro JB, Uhlrich DJ, Sherman SM (1986) Parabrachial innervation of the cat’s dorsal lateral geniculate nucleus: an electron microscopic study using the tracer Phaseolus vulgaris leucoagglutinin (PHA-L). J Neurosci 8:4576–4588.

    Google Scholar 

  • Cunningham ET, LeVay S (1986) Laminar and synaptic organization of the projection from the thalamic nucleus centralis to primary visual cortex in the cat. J Comp Neurol 254:65–77

    Article  Google Scholar 

  • Curtis DR, Davis R (1962) Pharmacological studies upon neurones of the lateral geniculate nucleus of the cat. Br J Pharmacol 18:217–246.

    CAS  Google Scholar 

  • Curtis DR, Johnston GAR (1974) Amino acid transmitters in the mammalian central nervous system. Ergeb Physiol 69:94–188.

    Google Scholar 

  • Curtis DR, Watkins JC (1963) Acidic amino acids with strong excitatory actions on mammalian neurones. J Physiol (Lond) 166:1–14.

    CAS  Google Scholar 

  • Cymerman U, Palacios JM, Cortes R, Skangiel-Krasma J (1987) Autoradiographic localization of muscarinic cholinergic receptors in visual areas of cat brain: variations insensitivity of N-(3H)methylscopolamine binding sites to carbachol and pirenzepine. Neurosci Lett 81:13–18.

    Article  PubMed  CAS  Google Scholar 

  • Dagnino N, Favale E, Manfredi M, Seitun A, Tartaglione A (1971) Tonic changes in excitability of thalamocortical neurons during the sleep-waking cycle. Brain Res 29:354–357

    Article  PubMed  CAS  Google Scholar 

  • Dahlström A, Fuxe K (1964) Evidence for the existence of monoamine-containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brainstem neurons. Acta Physiol Scand [Suppl] 232:1–55.

    Google Scholar 

  • Davies JD, Watkins JC (1982a) Actions of D and L forms of 2-aminophosphono valerate and 2-amino-4-phosphonobutyrate in the cat spinal cord. Brain Res 235:378–386.

    Article  PubMed  CAS  Google Scholar 

  • Davies JD, Watkins JC (1982b) Selective excitatory amino acid antagonist action of Y-D- glutamylaminometyl-sulphonate (GAMS) on cat spinal neurones. J Physiol (Lond) 332:108–109P

    Google Scholar 

  • Daw NW, Rader RK, Robertson TW, Ariel M (1983) Effects of 6-hydroxydopamine on visual deprivation in the kitten striate cortex. J Neurosci 3:904–914.

    Google Scholar 

  • DeFelipe D, Fairen A (1982) A type of basket cell in superficial layers of the cat visual cortex. A Golgi-electron microscope study. Brain Res 244:9–16.

    Article  PubMed  CAS  Google Scholar 

  • DeFelipe D, Hendry SHC, Jones EG (1986) A correlative electron microscopic study of basket cells and large GABAergic neurons in the monkey sensory-motor cortex. Neuroscience 17:991–1009.

    Article  PubMed  CAS  Google Scholar 

  • DeLima AD, Singer W (1986) Cholinergic innervation of the cat striate cortex: a choline acetyltransferase immunocytochemical analysis. J Comp Neurol 250:324–338.

    Article  CAS  Google Scholar 

  • DeLima AD, Singer W (1987) The brainstem projection to the lateral geniculate nucleus in the cat: identification of cholinergic and monoaminergic elements. J Comp Neurol 259:92–121.

    Article  CAS  Google Scholar 

  • DeLima AD, Montero YM, Singer W (1985) The cholinergic innervation of the visual thalamus: an EM immunocytochemical study. Exp Brain Res 59:206–212.

    CAS  Google Scholar 

  • Dement W, Kleitman N (1957) The relation of eye movements during sleep to dream activity: an objective method for the study of dreaming. J Exp Psychol 53:339–346.

    Article  PubMed  CAS  Google Scholar 

  • Dement W, Ferguson J, Cohen H, Barchas J (1969) Nonchemical methods and data using a biochemical model: the REM quanta. In: Mendell A, Mendall MP (eds) Psychochemical research in man—methods, strategy and theory. Academic, New York, pp 275–325.

    Google Scholar 

  • DeOlmos J, Heimer L (1980) Double and triple labeling of neurons with fluorescent substances; the study of collateral pathways in the ascending raphe system. Neurosci Lett 19:7–12

    Article  CAS  Google Scholar 

  • Descarries L, Lapierre Y (1975) Noradrenergic axon terminals in the cerebral cortex of rat. I. Radioautographic visualization after topical application of DL-( 3 H) norepinephrine. Brain Res 51:141–160

    Article  Google Scholar 

  • Descarries L, Beaudet A, Watkins KC (1975) Serotonin nerve terminals in adult rat neocortex. Brain Res 100:563–588.

    Article  PubMed  CAS  Google Scholar 

  • Descarries L, Lemay G, Doucet G, Berger B (1987) Regional and laminar density of the dopamine innervation in adult rat cerebral cortex. Neuroscience 21:807–824.

    Article  PubMed  CAS  Google Scholar 

  • Deschénes M, Paradis M, Roy JP, Steriade M (1984) Electrophysiology of neurons of lateral thalamic nuclei in cat: resting properties and burst discharges. J Neurophysiol 51:1196–1219

    PubMed  Google Scholar 

  • Deschénes M, Madariaga-Domich A, Steriade M (1985) Dendrodendritic synapses in the cat reticularis thalamic nucleus: a structural basis for thalamic spindle synchronization. Brain Res 334:165–168

    Article  PubMed  Google Scholar 

  • Dingledine R, Kelly JS (1977) Brain stem stimulation and the acetylcholine-evoked inhibition of neurones in the feline nucleus reticularis thalami. J Physiol (Lond) 271:135–154

    CAS  Google Scholar 

  • Disturnal JZ, Reiner PB, Semba K, Atmadja S, McGeer EG, Fibiger HC (1985) Anatomical and physiological studies of brainstem afferents to the basal forebrain. Soc Neurosci Abstr 11:904

    Google Scholar 

  • Domich L, Oakson G, Steriade M (1986) Thalamic burst patterns in the naturally sleeping cat: a comparison between cortically-projecting and reticularis neurones. J Physiol (Lond) 379:429–449

    CAS  Google Scholar 

  • Donoghue JP, Carroll KL (1987) Cholinergic modulation of sensory responses in rat primary somatic sensory cortex. Brain Res 408:367–371.

    Article  PubMed  CAS  Google Scholar 

  • Doty RW (1983) Nongeniculate afferents to striate cortex in macaques. J Comp Neurol 218:159–173

    Article  PubMed  CAS  Google Scholar 

  • Doty RW, Kimura DS, Mogenson G J (1964) Photically and electrically elicited responses in the central visual system of the squirrel monkey. Exp Neurol 10:19–51.

    Article  PubMed  CAS  Google Scholar 

  • Dreifuss J J, Kelly JS, Krnjevic K (1969) Cortical inhibition and gamma-aminobutyric acid. Exp Brain Res 9:137–154.

    Article  PubMed  CAS  Google Scholar 

  • Duffy FH, Burchfield JL (1975) Eye movement-evoked inhibition of primate visual neurons. Brain Res 89:121–132

    Article  PubMed  CAS  Google Scholar 

  • Dumont S, Dell P (1960) Facilitation réticulaire des mécanismes visuels corticaux. Electroencephalogr Clin Neurophysiol 12:769–796.

    Article  PubMed  CAS  Google Scholar 

  • Dykes RW, Landry P, Metherate R, Hicks TP (1984) Functional role of G ABA in primary somatosensory cortex: shaping receptive fields of cortical neurons. J Neurophysiol 52:1066–1093

    PubMed  CAS  Google Scholar 

  • Eckenstein F, Baughman RW (1984) Two types of cholinergic innervation in cortex, one co-localized with vasoactive intestinal polypeptide. Nature 309:153–155.

    Article  PubMed  CAS  Google Scholar 

  • Eckenstein F, Thoenen H (1983) Cholinergic neurons in the rat cerebral cortex demonstrated by immunohistochemical localization of choline acetyltransferase. Neurosci Lett 36:211–215

    Article  PubMed  CAS  Google Scholar 

  • Emson PC (1979) Peptides as neurotransmitter candidates in the mammalian CNS. Prog Neurobiol 13:61–116

    Article  CAS  Google Scholar 

  • Emson PC, Koob GF (1978) The origin and distribution of dopamine-containing afferents to the rat frontal cortex. Brain Res 142:249–267.

    Article  PubMed  CAS  Google Scholar 

  • Emson PC, Lindvall O (1979) Distribution of putative neurotransmitters in the neocortex. Neuroscience 4:1–30

    Article  PubMed  CAS  Google Scholar 

  • Engberg I, Flatman J A, Lambert JDC (1979) The actions of excitatory amino acids on motoneurones in the feline spinal cord. Brain Res 288:227–261.

    CAS  Google Scholar 

  • Enna SJ, Gallagher JP (1983) Biochemical and electrophysiological characteristics of mammalian GABA receptors. Int Rev. Neurobiol 24:181–212.

    Article  PubMed  CAS  Google Scholar 

  • Evarts EV (1960) Effects of sleep and waking on spontaneous and evoked discharges of single units in visual cortex. Fed Proc (Suppl 4): 828–83.

    Google Scholar 

  • Eysel UT (1976) Quantitative studies of intracellular postsynaptic potentials in the lateral geniculate nucleus of the cat with respect to optic tract stimulation. Exp Brain Res 25:469–486

    Article  PubMed  CAS  Google Scholar 

  • Eysel UT, Pape HC, Van Schayck R (1986) Excitatory and differential disinhibitory actions of acetylcholine in the lateral geniculate nucleus of the cat. J Physiol (Lond) 370:233–254.

    CAS  Google Scholar 

  • Fagg GE, Foster AC (1983) Amino acid neurotransmitters and their pathways in the mammalian central nervous system. Neuroscience 9:701–719.

    Article  PubMed  CAS  Google Scholar 

  • Fallon JH, Loughlin SE (1982) Monoamine innervation of the forebrain: collateralization. Brain Res Bull 9:295–307.

    Article  PubMed  CAS  Google Scholar 

  • Ferster D (1987) Origin of orientation-selective EPSPs in simple cells of cat visual cortex. J Neurosci 7:1780–1791.

    PubMed  CAS  Google Scholar 

  • Ferster D, Koch C (1987) Neuronal connections underlying orientation selectivity in cat visual cortex. Trends Neurosci 10:487

    Article  Google Scholar 

  • Ferster D, LeVay S (1978) The axonal arborizations of lateral geniculate neurons in the striate cortex of the cat. J Comp Neurol 182:923–944.

    Article  PubMed  CAS  Google Scholar 

  • Ferster D, Lindström S (1983) An intracellular analysis of geniculo-cortical connectivity in area 17 of the cat. J Physiol (Lond) 342:181–215.

    CAS  Google Scholar 

  • Fisken RA, Garey LJ, Powell TPS (1975) The intrinsic association and commissural connections of area 17 of the visual cortex. Philos Trans R Soc Lond [Biol] 272:487–536.

    Article  CAS  Google Scholar 

  • Fitzpatick D, Raczkowski D (1990) The morphology of cholinergic projections from the reticular formation to the lateral geniculate nucleus and other thalamic nuclei in the cat. In: Steriade M, Biesold D (eds) Brain cholinergic systems. Oxford University Press, Oxford, New York, in press

    Google Scholar 

  • Fitzpatrick D, Penny GR, Schmechel DE (1984) Glutamic acid decarboxylase-immunoreactive neuronsand terminals in the lateral geniculate nucleus of the cat. J Neurosci 4:1809–1829.

    PubMed  CAS  Google Scholar 

  • Flatman JA, Schwindt PC, Crill WE, Stafstrom CE (1983) Multiple actions of iV-methyl-D- aspartate on cat neocortical neurons in vitro. Brain Res 266:169–173.

    Article  PubMed  CAS  Google Scholar 

  • Florence SL, Casagrande VA (1987) Organization of individual afferent axons in layer IV of striate cortex in a primate. J Neurosci 7:3850–3868.

    PubMed  CAS  Google Scholar 

  • Fonnum F, Storm-Mathisen J, Divac I (1981) Biochemical evidence for glutamate as neurotransmitter in corticostriatal and corticothalamic fibres in rat brain. Neuroscience 6:863–873

    Article  PubMed  CAS  Google Scholar 

  • Foote SL, Freedman R, Oliver AP (1975) Effects of putative neurotransmitters on neuronal activity in monkey auditory cortex. Brain Res 86:229–242.

    Article  PubMed  CAS  Google Scholar 

  • Foote SL, Bloom GE, Aston-Jones G (1983) Nucleus locus ceruleus: new evidence of anatomical and physiological specificity. Physiol Rev 63:844–914.

    PubMed  CAS  Google Scholar 

  • Forsythe ID, Westbrook GL (1988) Slow excitatory postsynaptic currents mediated byN- methyl-D-aspartate receptors on cultured mouse central neurones. J Physiol (Lond) 396:515–533

    CAS  Google Scholar 

  • Fourment A, Hirsch JC, Chastanet M, Guidet C (1983) The effect of midbrain reticular stimulation upon perigeniculate neurons activity during different states of the sleep-waking cycle in the cat. Brain Res 259:301–307.

    Article  PubMed  CAS  Google Scholar 

  • Fourment A, Hirsch JC, Marc ME, Guidet C (1984) Modulation of postsynaptic activities of thalamic lateral geniculate neurons by spontaneous changes in number of retinal inputs in chronic cats I Input-output relations. Neuroscience 11:453–464

    Article  Google Scholar 

  • Fourment A, Hirsch JC, Marc ME (1988) Reticular control of thalamic transmission during behavioral states: a study in dorsal lateral geniculate nucleus relay neurons of the cat. Exp Neurol 100:305–321

    Article  PubMed  CAS  Google Scholar 

  • Francesconi W, Müller CM, Singer W (1984) Acetylcholine mediates the effect of mesencephalic reticular formation stimulation in the lateral geniculate nuelcus of the cat. Neurosci Lett (Suppl) 18:s309

    Google Scholar 

  • Francesconi W, Müller CM, Singer W (1988) Cholinergic mechanisms in the reticular control of transmission in the cat lateral geniculate nucleus. J Neurophysiol 59:1690–1718.

    PubMed  CAS  Google Scholar 

  • Frederickson RCA, Jordan LM, Phillis JW (1971) The action of noradrenaline on cortical neurons: effects of pH. Brain Res 5:556–560.

    Article  Google Scholar 

  • Freund TF, Powell JF, Smith AD (1984) Tyrosine hydroxylase-immunoreactive boutons in synaptic contact with identified striatonigral neurons, with particular reference to dendritic spines. Neuroscience 13:1189–1215.

    Article  PubMed  CAS  Google Scholar 

  • Friedländer MJ, Lin CS, Sherman SM (1979) Structure of physiologically identified X and Y cells in the cat’s lateral geniculate nucleus. Science 204:1114–1117.

    Article  PubMed  Google Scholar 

  • Friedländer MJ, Lin CS, Stanford LR, Sherman SM (1981) Morphology of functionally identified neurons in lateral geniculate nucleus of the cat. J Neurophysiol 46:80–129.

    PubMed  Google Scholar 

  • Friedman DP, Clarke PBS, O’Neill JB, Pert A (1985) Distributions of nicotinic and muscarinic cholinergic receptors in monkey thalamus. Soc Neurosci Abstr 11:307

    Google Scholar 

  • Fuxe K (1965) Evidence for the existence of monoamine neurons in the central nervous system. IV. Distribution of monoamine nerve terminals in the central nervous system. Acta Physiol Scand 64:37–85.

    Article  Google Scholar 

  • Fuxe K, Hambuerger B, Hökfelt T (1968) Distribution of noradrenaline terminals in cortical areas of the rat. Brain Res 8:125–131.

    Article  PubMed  CAS  Google Scholar 

  • Gabbott PL A, Somogyi J, Stewart MG, Hamori J (1986) GABA-immunoreactive neurons in the rat dorsal lateral geniculate nucleus of the rat: characterization by combined Golgi-impregnation and immunocytochemistry. Exp Brain Res 61:311–322.

    PubMed  CAS  Google Scholar 

  • Gabbott PL A, Somogyi J, Stewart MG, Hamori J (1988) The orientation of interneurones in the dorsal lateral geniculate nucleus of the rat: a quantitative study. Brain Res 438:379–384.

    Article  PubMed  CAS  Google Scholar 

  • Gallagher JP, Shinnick-Gallagher P (1983) Electrophysiological characteristics of GABA-receptor complexes. In: Enna SJ (ed) The G AB A receptors. Humana, Clifton, NJ, pp 25–61.

    Google Scholar 

  • Gaudin-Chazal G, Daszuta A, Faudon M, Ternaux JP (1979) 5-HT concentration in cat’s brain. Brain Res 160:281–293.

    Article  PubMed  CAS  Google Scholar 

  • Geisert EE (1980) Cortical projections of the lateral geniculate nucleus in the cat. J Comp Neurol 190:793–812

    Article  PubMed  Google Scholar 

  • Giardina WJ, Pedemonte WA, Sabelli HC (1973) Iontophoretic study of the effects of norepinephrine and 2-phenylethylamine on single cortical neurons. Life Sci 12:153–161.

    Article  CAS  Google Scholar 

  • Gilbert CD, Kelly JP (1975) The projections of cells in different layers of the cat’s visual cortex. J Comp Neurol 163:81–106.

    Article  PubMed  CAS  Google Scholar 

  • Gilbert CD, Wiesel TN (1979) Morphology and intracortical projections of functionally identified neurons in the cat visual cortex. Nature 280:120–125.

    Article  PubMed  CAS  Google Scholar 

  • Gilbert CD, Wiesel TN (1981) Laminar specialization and intracortical connections in cat primary visual cortex. In: Schmitt FO, Worden FG, Adelman G, Dennis SG (eds) The organization of the cerebral cortex. MIT Press, Cambridge, pp 163–191.

    Google Scholar 

  • Gilbert CD, Wiesel TN (1983) Clustered intrinsic connections in cat visual cortex. J Neueurosci 3:1116–1133.

    CAS  Google Scholar 

  • Godfraind JM (1978a) Acetylcholine and somatically evoked inhibition on perigeniculate°neurons in the cat. Br J Pharmacol 63:295–302.

    PubMed  CAS  Google Scholar 

  • Godfraind JM (1978b) Acetylcholine effects in the lateral geniculate nucleus region. In: Ryall RW, Kelly JS (eds) Iontophoresis and transmitter mechanisms in the mammalian central nervous system. Elsevier, Amsterdam, pp 406–408.

    Google Scholar 

  • Godfraind JM, Meulders M (1969) Effets de la stimulation sensorielle somatique sur les champs visuels des neurones de la région genouillée chez le chat anesthésié au chloralose. Exp Brain Res 9:183–200.

    Article  PubMed  CAS  Google Scholar 

  • Graybiel AM (1978) A satellite system of the superior colliculus: the parabigeminal nucleus and its projections to the superficial collicular layers. Brain Res 145:365–4374.

    Article  PubMed  CAS  Google Scholar 

  • Guillery RW (1966) A study of Golgi preparations from the lateral geniculate nucleus of the adult cat. J Comp Neurol 128:21–50.

    Article  PubMed  CAS  Google Scholar 

  • Guillery RW (1969a) The organization of synaptic interconnections in the laminae of the dorsal lateral geniculate nucleus of the cat. Z Zellforsch Mikrosk Anat 96:1–38.

    Article  PubMed  CAS  Google Scholar 

  • Guillery RW (1969b) A quantitative study of synaptic interconnections in the dorsal lateral geniculate nucles of the cat. Z Zellforsch Mikrosk Anat 96:39–48.

    Article  Google Scholar 

  • Guy J, Vaudry H, Pelletier G (1981) Differential projections of two immunoreactive a-melanocyte stimulating hormone (a-MSH) neuronal systems in the rat brain. Brain Res 220:199–202

    Article  PubMed  CAS  Google Scholar 

  • Guyenet PG (1980) The coeruleospinal noradrenergic neurons: anatomical and electrophysiological studies in the rat. Brain Res 189:121–133

    Article  PubMed  CAS  Google Scholar 

  • Haenny PE, Schiller PH (1988) State dependent activity in monkey visual cortex. I. Single cell activity in VI and V4 on visual tasks. Exp Brain Res 6:225–244.

    Article  Google Scholar 

  • Hagihara K, Tsumoto T, Sato H, Hata Y (1988) Actions of excitatory amino acid antagonists on geniculo-cortical transmission in the cat’s visual cortex. Exp Brain Res 69:407–416.

    Article  PubMed  CAS  Google Scholar 

  • Halaris AE, Jones BE, Moore RY (1976) Axonal transport in serotonin of the midbrain raphe. Brein Res 107:555–574.

    Article  CAS  Google Scholar 

  • Hallenger AE, Levey AI, Lee HJ, Rye DB, Wainer BH (1987) The origin of cholinergic and other subcortical afferents to the thalamus in the rat. J Comp Neurol 262:105–124.

    Article  Google Scholar 

  • Hamori J, Pasik P, Pasik T (1983) Differential frequency of P-cells and I-cells in magnocellular and parvocellular laminae of monkey lateral geniculate nucleus. An ultrastructural study. Exp Brain Res 52:57–66.

    Article  PubMed  CAS  Google Scholar 

  • Hamos JE, Van Horn SC, Raczkowski D, Uhlrich DJ, Sherman SM (1985) Synaptic connectivity of a local circuit neuron in the cat’s lateral geniculate nucleus. Nature 317:618–621

    Article  PubMed  CAS  Google Scholar 

  • Harvey AR (1980) The afferent connexions and laminar distribution of cells in area 18 of the cat. J. Physiol (Lond) 302:483–505.

    CAS  Google Scholar 

  • Hashikawa T, Lieshout DV, Harting JK (1986) Projections from the parabigeminal nucleus to the dorsal lateral geniculate nucleus in the tree shrew Tupaia glis. J. Comp Neurol 246:382–394

    Article  PubMed  CAS  Google Scholar 

  • Hebb CO, Krnjevic J, Silver A (1963) Effect of undercutting on the acetylcholinesterase and choline acetyltransferase activity in cat’s cerebral cortex. Nature 198:692

    Article  CAS  Google Scholar 

  • Henderson Z (1987a) Source of cholinergic input to ferret visual cortex. Brain Res 412:261–268

    Article  PubMed  CAS  Google Scholar 

  • Henderson Z (1987b) Cholinergic innervation of ferret visual system. Neuroscience 20:503–518

    Article  PubMed  CAS  Google Scholar 

  • Hendrickson AE, Orgren MP, Vaughn JE, Barber RP, Wu JY (1983) Light and electron microscopic immunocytochemical localization of glutamic acid decarboxylase in monkey geniculate complex: evidence for GABAergic neurons and synapses. J Neurosci 3:1245–1262

    PubMed  CAS  Google Scholar 

  • Hendry SHC, Houser, CR, Jones EG, Vaughn JE (1983) Synaptic organization of immunocytochemically identified GABAergic neurons in monkey sensory-motor cortex. J Neurocytol 12:639–660.

    Article  PubMed  CAS  Google Scholar 

  • Hendry SHC, Jones EG, DeFelipe J, Schmechel D, Brandon C, Emson PC (1984a) Neuropeptide containing neurons of the cerebral cortex are also GABAergic. Proc Natl Acad Sci USA 81:6526–6530.

    Article  PubMed  CAS  Google Scholar 

  • Hendry SHC, Jones EG, Emson PC (1984b) Morphology, distribution, and synaptic relations of somatostatin and neuropeptide Y-immunoreactive neurons in rat and monkey cortex. J Neurosci 4:2497–2517

    PubMed  CAS  Google Scholar 

  • Herman JH, Erman M, Boys R, Peiser L, Taylor ME, Roffwarg HP (1984) Evidence for a directional correspondence between eye movements and dream imagery in REM sleep. Sleep 7:52–63

    PubMed  CAS  Google Scholar 

  • Hess R, Murata K (1974) Effects of glutamate and GAB A on specific response properties of neurones in the visual cortex. Exp Brain Res 21:285–297.

    Article  PubMed  CAS  Google Scholar 

  • Hirsch JC, Burnod Y (1987) A synaptically evoked late hyperpolarization in the rat dorsolateral geniculate neurons in vitro. Neuroscience 23:457–468.

    Article  PubMed  CAS  Google Scholar 

  • Hirsch JC, Fourment A, Marc ME (1982) Heterogeneity of the suprageniculate region: an electrophysiological study during sleep and wakefulness in the cat. Exp Neurol 77:436–454.

    Article  PubMed  CAS  Google Scholar 

  • Hirsch JC, Fourment A, Marc ME (1983) Sleep-related variations of membrane potential in the lateral geniculate body relay neurons of the cat. Brain Res 259:308–312

    Article  PubMed  CAS  Google Scholar 

  • Hobson J A, McCarley RW, Wyzinski PW (1975) Sleep cycle oscillation: reciprocal dischargesby two brainstem neuronal groups. Science 189:55–58

    Article  PubMed  CAS  Google Scholar 

  • Hokfelt T (1987) Neuronal communications through multiple coexisting messengers. In: Edelman GM, Gall WE, Cowan WM (eds) Synaptic function. Wiley-Interscience, New York, pp 179–211

    Google Scholar 

  • Hokfelt T, Fuxe K, Goldstein M, Johansson O (1974) Immunohistochemical evidence for theexistence of adrenaline neurons in the rat brain. Brain Res 66:235–251

    Article  CAS  Google Scholar 

  • Hokfelt T, Halasz N, Ljungdahl A, Johansson O, Goldstein M, Park D (1975) Histochemical support for a dopaminergic mechanism in the dendrites of certain periglomerular cells in the rat olfactory bulb. Neurosci Lett 1:85–90

    Article  PubMed  CAS  Google Scholar 

  • Hokfelt T, Johansson O, Fuxe, K, Goldstein M, Park D (1976) Immunohistochemical studies on the localization and distribution of monoamine neuron systems in the rat brain. I. Tyrosine hydroxylase in the mes- and diencephalon. Med Biol 54:427–453

    PubMed  CAS  Google Scholar 

  • Hoover DB, Baisden RH (1980) Localization of putative cholinergic neurons innervating heanteroventral thalamus. Brain Res Bull 5:519–524

    Article  PubMed  CAS  Google Scholar 

  • Hoover DB, Jacobowitz DM (1979) Neurochemical and histochemical studies of the effect of a lesion of the nucleus cuneiformis on the cholinergic innervation of discrete areas of the rat brain.

    Google Scholar 

  • Houser CR, Vaughn JE, Barber RP, Roberts E (1980) GABA neurons are the major cell typeof the nucleus reticularis thalami. Brain Res 200:341–354

    Article  PubMed  CAS  Google Scholar 

  • Houser CR, Crawford GD, Barber RP, Salvaterra PM, Vaughn JE (1983) Organization and morphological characteristics of cholinergic neurons: an immunocytochemical study with a monoclonal antibody to choline acetyltransferase. Brain Res 266:97–119

    Article  PubMed  CAS  Google Scholar 

  • Houser CR, Crawford GD, Salvaterra PM, Vaughn JE (1985) Immunocytochemical localization of choline acetyltransferase in rat cerebral cortex: a study of cholinergic neurons and synapses. J Comp Neurol 234:17–34

    Article  PubMed  CAS  Google Scholar 

  • Hu B, Bouhassira D, Steriade M, Deschenes M (1988) The blockage of ponto-geniculo-occipital waves in the cat lateral geniculate nucleus by nicotinic antagonists. Brain Res 473:394–397

    Article  PubMed  CAS  Google Scholar 

  • Hu B, Steriade M, Deschenes M (1989a) The effects of brainstem peribrachial stimulation onreticular thalamic neurons: the blockage of spindle waves. Neuroscience 31:1–12

    Article  PubMed  CAS  Google Scholar 

  • Hu B, Steriade M, Deschenes M (1989b) The effects of brainstem peribrachial stimulation onneurons of the lateral geniculate nucleus. Neuroscience 31:13–24

    Article  PubMed  CAS  Google Scholar 

  • Hu B, Steriade M, Deschenes M (1989c) The cellular mechanisms of thalamic ponto-geniculo-occipital (PGO) waves. Neuroscience 31:25–35

    Article  PubMed  CAS  Google Scholar 

  • Hubel DH (1959) Single unit activity in striate cortex of unrestrained cats. J Physiol (Lond) 147:226–238

    CAS  Google Scholar 

  • Hubel DH (1960) Single unit activity in lateral geniculate body and optic tract of unrestrainedcats. J. Physiol (Lond) 150:91–104

    CAS  Google Scholar 

  • Hubel DH, Wiesel TN (1972) Laminar and columnar distribution of geniculo-cortical fibersin the macaque monkey. J Comp Neurol 146:421–443

    Article  PubMed  CAS  Google Scholar 

  • Hubel DH, Wiesel TN (1977) Functional architecture of macaque monkey visual cortex. Proc R Soc London [Biol] 198:1–59

    Article  CAS  Google Scholar 

  • Huerta MF, Harting JK (1984) Connectional organization of the superior colliculus. Trends Neurosci 7:286–289

    Article  Google Scholar 

  • Hughes JR (1964) Responses from the visual cortex of unanesthetized monkeys. Int Rev Neurobiol 7:99–152

    Article  Google Scholar 

  • Humphrey AL, Sur M, Uhlrich DJ, Sherman SM (1985a) Projection patterns of individual X- and Y-cell axons from the lateral geniculate nucleus to cortical area 17 in the cat. J Comp Neurol 233:159–189

    Article  PubMed  CAS  Google Scholar 

  • Humphrey AL, Sur M, Uhlrich DJ, Sherman SM (1985b) Termination patterns of invidual X- and Y-cell axons in the visual cortex of the cat: projections to area 18, to the 17/18 border region, and to both areas 17 and 18. J Comp Neurol 233:190–212

    Article  PubMed  CAS  Google Scholar 

  • Ichikawa T, Hirata Y (1986) Organization of choline acetyltransferase-containing structuresin the forebrain of the rat. J Neurosci 6:281–292

    PubMed  CAS  Google Scholar 

  • Ide LS (1982) The fine structure of the perigeniculate nucleus in the cat. J Comp Neurol 210:317–334

    Article  PubMed  CAS  Google Scholar 

  • Isaacson LG, Tanaka D (1986) Cholinergic and non-cholinergic projections from the canine pontomesencephalic tegmentum Ch 5 area to the caudal intralaminar thalamic nuclei. Exp. Brain Res 62:179–188

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa M, Tanaka C (1977) Morphological organization of catecholamine terminals in thediencephalon of the rhesus monkey. Brain Res 119:43–55

    Article  PubMed  CAS  Google Scholar 

  • Iversen LL, Mitchell JF, Srinivasan V (1971) The release of y-aminobutyric acid duringinhibition in the cat visual cortex. J Physiol (Lond) 212:519–534

    CAS  Google Scholar 

  • Jahnsen H, Llinäs R (1984a) Electrophysiological properties of guinea-pig thalamic neurones:an in vitro study. J Physiol (Lond) 349:205–226

    CAS  Google Scholar 

  • Jahnsen H, Llinäs R (1984b) Ionic basis for the electroresponsiveness and oscillatoryproperties of guinea-pig thalamic neurones in vitro. J Physiol (Lond) 349:227–247

    CAS  Google Scholar 

  • Jeannerod M, Putkonen TPS (1971) Lateral geniculate unit activity and eye movementsaccades-locked changes in dark and in light. Exp Brain Res 24:125–129

    Google Scholar 

  • Johnson ES, Roberts MHT, Straughan DW (1969) The responses of cortical neurones tomonoamines under differing anaesthetic conditions. J Physiol (Lond) 203:261–280

    CAS  Google Scholar 

  • Johnson JL, Aprison MH (1971) The distribution of glutamate and total free amino acids inthirteen specific regions of the cat CNS. Brain Res 24:141–148

    Article  Google Scholar 

  • Johnston MV, McKinney M, Coyle JT (1979) Evidence for a cholinergic projection to neocortex from neurons in the basal forebrain. Proc Natl Acad Sci USA 76:5392–5396

    Article  PubMed  CAS  Google Scholar 

  • Jones BE, Beaudet A (1987a) Distribution of acetylcholine and catecholamine neurons in the cat brain stem studied by choline acetyltransferase and tyrosine hydroxylase immunohisto-chemistry. J Comp Neurol 261:15–32

    Article  PubMed  CAS  Google Scholar 

  • Jones BE, Beaudet A (1987b) Retrograde labeling of neurons in the brain stem followinginjections of (3H) choline into the forebrain of the rat. Exp Brain Res 65:437–448

    PubMed  CAS  Google Scholar 

  • Jones BE, Moore RY (1977) Ascending projections of the locus coeruleus in the rat. II. Autoradiographic study. Brain Res 127:23–53

    Article  Google Scholar 

  • Jones BE, Yang TZ (1985) The efferent projections from the reticular formation and the locus coeruleus studied by anterograde and retrograde axonal transport in the rat. J Comp Neurol 242:56–92

    Article  PubMed  CAS  Google Scholar 

  • Jones EG (1983) The thalamus. In: Emson PC (ed) Chemical neuroanatonmy. Raven, New York, pp 257–293

    Google Scholar 

  • Jones EG (1985) The thalamus. Plenum, New York, pp 935 Jones EG (1986) Neurotransmitters in the cerebral cortex. J Neurosurg 65:135–153

    Google Scholar 

  • Jones EG (1987) GABA-peptide neurons of the primate cerebral cortex. J Mind Behav 8: 519–536

    Google Scholar 

  • Jones LS, Gauger LL, Davis JN (1983) Brain a t-adrenergic receptors: suitability of (1125)HEAT as a radioligand for in vitro autoradiography. Eur J Phar 93:291–292

    Article  CAS  Google Scholar 

  • Jones RSG (1982a) A comparison of the responses of cortical neurones to iontophoretically applied tryptamine and 5-hydroxytryptamine in the rat. Neuropharmacology 21:209–214

    Article  PubMed  CAS  Google Scholar 

  • Jones RSG (1982b) Responses of cortical neurones to stimulation of the nucleus raphe medianus: a pharmacological analysis of the role of indoleamines. Neuropharmacology 21:511–520

    Article  PubMed  CAS  Google Scholar 

  • Jones RSG, Dourish CT (1982) Variation in response to stimulation of central 5-hydroxytryptamine mechanisms in two strains of albino rat. Brain Res 248:172–176

    Article  Google Scholar 

  • Jones PSG, Olpe H (1984) On the role of baseline firing rate in determining responsiveness of cingulate cortical neurons to iontophoretically applied SP and ACh. J pharm Pharmacol 32:623–625

    Article  Google Scholar 

  • Jordan LM, Frederickson RCA, Phillis JW, Lake N (1972a) Microelectrophoresis of 5-hydroxytryptamine: a clarification of its action on cerebral cortical neurons. Brain Res 40:552–558

    Article  PubMed  CAS  Google Scholar 

  • Jordan LM, Lake N, Phillis JW (1972b) Mechanism of noradrenaline depression of corticalneurones: a species comparison. Eur J Pharmacol 20:381–384

    Article  PubMed  CAS  Google Scholar 

  • Jouvet M (1972) The role of monoamines and acetylcholine-containing neurons in theregulation of the sleep-waking cycle. Ergeb Physiol 64:166–307

    PubMed  CAS  Google Scholar 

  • Jouvet M, Delorme JF (1965) Locus coeruleus et sommeil paradoxal. C R Soc Biol (Paris) 159:895–899

    Google Scholar 

  • Jung R (1961) Neuronal integration in the visual cortex and its significance for visual information. In: Rosenblith WA (ed) Sensory communication. Wiley, New York, pp 627–676

    Google Scholar 

  • Kaas JH, Lin CS, Casagrande VA (1976) The relay of ipsilateral and contralateral retinal input from the lateral geniculate nucleus to striate cortex in the owl monkey: a transneuronal transport study. Brain Res 106:371–378

    Article  PubMed  CAS  Google Scholar 

  • Kaneko T, Mizuno N (1988) Immunohistochemical study of glutaminase-containing neuronsin the cerebral cortex and thalamus of the rat. J Comp Neurol 267:590–602

    Article  PubMed  CAS  Google Scholar 

  • Kasamatsu T, Heggelund P (1982) Single cell responses in cat visual cortex to visualstimulation during iontophoresis of noradrenaline. Exp Brain Res 45:317–327

    Article  PubMed  CAS  Google Scholar 

  • Kasamatsu T, Pettigrew JD (1976) Depletion of brain catecholamines: failure of oculardominance shift after monocular occulsion in kittens. Science 194:206–209

    Article  PubMed  CAS  Google Scholar 

  • Kasamatsu T, Watabe K, Scholler E, Heggelund P (1983) Restoration of neuronal plasticity in cat visual cortex by electrical stimulation of the locus coeruleus. Soc Neurosci Abstr 9:911

    Google Scholar 

  • Kaufman LS, Morrison AR (1981) Spontaneous and elicited PGO spikes in rats. Brain Res 214:61–72

    Article  PubMed  CAS  Google Scholar 

  • Kawamura K, Chiba M (1979) Cortical neurons projecting to the pontine nuclei in the cat. An experimental study with the horseradish peroxidase technique. Exp Brain Res 35:269–285

    PubMed  CAS  Google Scholar 

  • Kayama Y, Negi T, Sugitani M, Iwama K (1982) Effects of locus coeruleus stimulation on neuronal activities of dorsal lateral geniculate nucleus and perigeniculate reticular nucleus of the rat. Neuroscience 7:655–666

    Article  PubMed  CAS  Google Scholar 

  • Kayama Y, Sumitomo I, Ogawa T (1986a) Does the ascending cholinergic projection inhibitor excite neurons in the rat thalamic reticular nucleus. J Neurophysiol 56:1310–1320

    PubMed  CAS  Google Scholar 

  • Kayama Y, Takagi M, Ogawa T (1986b) Cholinergic influence of the laterodorsal tegmental nucleus on neuronal activity in the rat lateral geniculate nucleus. J Neurophysiol 56:1297–1309

    PubMed  CAS  Google Scholar 

  • Kehr W, Lindqvist M, Carlsson A (1976) Distribution of dopamine in the rat cerebral cortex. J Neural Transm 38:173–180

    Article  PubMed  CAS  Google Scholar 

  • Kelly JS (1982) Electrophysiology of peptides in the central nervous system. Br Med Bull 38:283–290

    PubMed  CAS  Google Scholar 

  • Kelly JP, Gilbert CD (1975) The projections of different morphological types of ganglion cellsin the cat retina. J Comp Neurol 163:65–80

    Article  PubMed  CAS  Google Scholar 

  • Kelly JS, Godfraind JM, Maruyama S (1979a) The presence and nature of inhibition in small slices of dorsal lateral geniculate nucleus of rat and cat incubated in vitro. Brain Res 168:388–392

    Article  PubMed  CAS  Google Scholar 

  • Kelly JS, Dodd J, Dingledine R (1979b) Acetylcholine as an excitatory and inhibitory transmitter in the mammalian central nervous system. In: Tucek S (ed) Progress in brain research. Elsevier, Amsterdam, pp 253–266

    Google Scholar 

  • Kemp JA (1984) Intracellular recordings from rat visual cortical cells in vitro and the action of GABA. J Physiol (Lond) 349:13P

    Google Scholar 

  • Kemp JA, Sillito AM (1982) The nature of the excitatory transmitter mediating X and Y cellinputs to the cat dorsal lateral geniculate nucleus. J Physiol (Lond) 323:377–391

    CAS  Google Scholar 

  • Kemp JA, Roberts HC, Sillito AM (1982) Further studies on the action of 5-hydroxy-tryptamine in the dorsal lateral geniculate nucleus of the rat. Brain Res 246:334–337

    Article  PubMed  CAS  Google Scholar 

  • Kievit J, Kuypers HGJM (1975) Basal forebrain and hypothalamic connections to frontal andparietal cortex in the rhesus monkey. Science 187:660–662

    Article  PubMed  CAS  Google Scholar 

  • Kimura H, McGeer PL, Peng JH, McGeer EG (1981) The central cholinergic system studied by choline acetyltransferase immunohistochemistry in the cat. J Comp Neurol 200:151–201

    Article  PubMed  CAS  Google Scholar 

  • Kisvarday ZF, Martin KAC, Whitteridge D, Somogyi P (1985) Synaptic connections of intracellularly filled clutch cells, a type of small basket in the visual cortex of the cat. J Comp Neurol 241:111–137

    Article  PubMed  CAS  Google Scholar 

  • Kisvarday ZF, Cowey A, Somogyi P (1986) Synaptic relationships of a type of GABA-immunoreactive neuron (clutch cell), spiny stellate cells and lateral geniculate nucleus afferents in layer I VC of the monkey striate cortex. Neuroscience 19:741–761

    Article  PubMed  CAS  Google Scholar 

  • Kitsikis A, Steriade M (1981) Immediate behavioral effects of kainic acid injections into themidbrain reticular core. Behav Brain Res 3:361–380

    Article  PubMed  CAS  Google Scholar 

  • Koch C (1987) The action of the corticofugal pathway on sensory thalamic nuclei: ahypothesis. Neuroscience 23:399–406

    Article  PubMed  CAS  Google Scholar 

  • Koch C, Poggio T, Torre V (1982) Retinal ganglion cells: a functional interpretation ofdendritic morphology. Philos Trans R Soc Lond 298:227–264

    Article  CAS  Google Scholar 

  • Köhler C, Swanson LW, Haglund L, Wu JY (1985) The cytoarchitecture, histochemistry andprojections of the tuberomamillary nucleus in the rat. Neuroscience 16:85–110

    Article  PubMed  Google Scholar 

  • Komatsu Y, Nakajima S, Toyama K, Fetz EE (1988) Intracortical connectivity revealed by spike-triggered averaging in slice preparations of cat visual cortex. Brain Res 442:359–362

    Article  PubMed  CAS  Google Scholar 

  • Kosmal A (1981) Subcortical afferents of the prefrontal cortex in dogs: afferents to the medialcortex. Acta Neurobiol Exp (Warsz) 41:339–356

    CAS  Google Scholar 

  • Kosofsky BE, Molliver ME, Morrison JH, Foote SL (1984) The serotonin and norepinephrine innervation of primary visual cortex in the cynomolgus monkey (Macaca fascicularis) J Comp Neurol 230:168–178

    Article  CAS  Google Scholar 

  • Krnjevic K (1974) Chemical nature of synaptic transmission in vertebrates. Physiol Rev 54:418–540

    CAS  Google Scholar 

  • Krnjevic K, Phillis JW (1962) Iontophoretic studies of neurones in the mammalian cerebralcortex. J Physiol (Lond) 165:274–304

    Google Scholar 

  • Krnjevic K, Phillis JW (1963a) Actions of certain amines on cerebral cortical neurones. Br J Pharmacol Chemother 20:471–490

    PubMed  CAS  Google Scholar 

  • Krnjevic K, Phillis JW (1963b) Acetylcholine sensitive cells in the cerebral cortex. J Physiol (Lond) 166:296–327

    CAS  Google Scholar 

  • Krnjevic K, Phillis JW (1963c) Pharmacological properties of acetylcholine-sensitive cells inthe cerebral cortex. J Physiol (Lond) 166:328–350

    CAS  Google Scholar 

  • Krnjevic K, Schwartz S (1966) Is y-amino butyric acid an inhibitory transmitter? Nature 211:1372–1374

    Article  PubMed  CAS  Google Scholar 

  • Krnjevic K, Schwartz S (1967) The action of y-aminobutyric acid on cortical neurons. Exp Brain Res 3:320–336

    Article  PubMed  CAS  Google Scholar 

  • Krnjevic K, Pumain R, Renaud L (1971a) Effects of Ba and tetraethylammonium on cortical neurones. J Physiol (Lond) 215:223–245

    CAS  Google Scholar 

  • Krnjevic K, Pumain R, Renaud L (1971b) The mechanism of excitation by acetylcholine in thecerebral cortex. J Physiol (Lond) 215:247–268

    CAS  Google Scholar 

  • Krnjevic K, Lamour Y, MacDonald JF, Nistri A (1978) Intracellular actions of onoaminetransmitters. Can J Physiol Pharmacol 56:896–900

    Article  PubMed  CAS  Google Scholar 

  • Kromer LF, Moore RY (1980) A study of the organization of the locus coeruleus projectionsto the lateral geniculate nuclei in the albino rat. Neuroscience 5:255–271

    Article  PubMed  CAS  Google Scholar 

  • Kuhar M J, Yamamura HI (1975) Light autoradiographic localisation of cholinergic muscarinic receptors in rat brain by specific binding of a potent antagonist. Nature 253:560–561

    Article  PubMed  CAS  Google Scholar 

  • Lamour Y, Dutar P, Jobert A (1983a) Excitatory effect of acetylcholine on different types of neurons in rat SI somatosensory neocortex of the rat: laminar distribution and pharmacological characteristics. Neuroscience 7:1483–1494

    Article  Google Scholar 

  • Lamour Y, Dutar P, Jobert A (1983b) Effects of neuropeptides on rat cortical neurons: laminar distribution and interaction with the effect of acetylcholine. Neuroscience 10:107–117

    Article  PubMed  CAS  Google Scholar 

  • Lamour Y, Dutar P, Rascol O, Jobert A (1986) Basal forebrain neurons projecting to rat frontoparietal cortex: electrophysiological and pharmacological properties. Brain Res 362:122–131

    Article  PubMed  CAS  Google Scholar 

  • Laurent JP, Cespuglio R, Jouvet M (1974) Délimitation des voies ascendantes de l’activitéponto-géniculo-occipitale chez le chat. Brain Res 65:29–52

    Article  PubMed  CAS  Google Scholar 

  • Léger L, Wiklund AL (1982) Distribution and numbers of indoleamine cell bodies in the cat brainstem determined with Falck-Hillarp fluorescence histochemistry. Brain Res Bull 9:245–251

    Article  PubMed  Google Scholar 

  • Léger L, Sakai K, Touret M, Jouvet M (1975) Delineation of dorsal lateral geniculate afferents from the cat brainstem as visualized by the horseradish peroxidase technique. Brain Res 93:490–496

    Article  PubMed  Google Scholar 

  • Lehman J, Nagy JI, Atmadja S, Fibiger HC (1980) The nucleus basalis magnocellularis: the origin of a cholinergic projection to the neocortex in the rat. Neuroscience 5:1161–1174

    Article  Google Scholar 

  • Lehman J, Struble RG, Antuono PG, Coyle JT, Cork LC, Price DL (1984) Regional heterogeneity of choline acetyltransferase activity primate neocortex. Brain Res 322:361–364

    Article  Google Scholar 

  • LeVay S (1973) Synaptic patterns in the visual cortex of the cat and monkey. Electronmicroscopy of Golgi preparations. J Comp Neurol 150:53–86

    Article  PubMed  CAS  Google Scholar 

  • LeVay S, Ferster D (1977) Relay cell classes in the lateral geniculate nucleus of the cat and theeffects of visual deprivation. J Comp Neurol 172:563–584

    Article  PubMed  CAS  Google Scholar 

  • LeVay S, Ferster D (1979) Proportion of interneurons in the cat’s lateral geniculate nucleus. Brain Res 164:304–308

    Article  PubMed  CAS  Google Scholar 

  • LeVay S, Gilbert CD (1976) Laminar patterns of geniculocortical projection in the cat. Brain Res 113:1–20

    Article  PubMed  CAS  Google Scholar 

  • Leventhal AG (1982) Morphology and distribution of retinal ganglion cells projecting to different layers of the dorsal lateral geniculate nucleus in normal and Siamese cats. J Neurosci 2:1024–1042

    PubMed  CAS  Google Scholar 

  • Levey AI, Wainer BH, Rye DB, Mufson EJ, Mesulam MM (1984) Choline acetyltransferase-immunoreactive neurons intrinsic to rodent cortex and distinction from acetyl-cholinesterase-positive neurons. Neuroscience 13:341–353

    Article  PubMed  CAS  Google Scholar 

  • Levey AI, Hallenger AE, Wainer BH (1987a) Choline acetyltransferase immunoreactivity inthe rat thalamus. J Comp Neurol 257:317–332

    Article  PubMed  CAS  Google Scholar 

  • Levey AI, Hallenger AE, Wainer BH (1987b) Cholinergic nucleus basalis neurons may influence the cortex via the thalamus. Neurosci Lett 74:7–13

    Article  PubMed  CAS  Google Scholar 

  • Levitt P, Moore RY (1978) Noradrenaline neuron innervation of the neocortex in the rat. Brain Res 139:219–231

    Article  PubMed  CAS  Google Scholar 

  • Levitt P, Rakic P, Goldman-Rakic P (1984) Region-specific distribution of catecholamine afferents in primate cerebral cortex: a fluorescence histochemical analysis. J Comp Neurol 227:23–36

    Article  PubMed  CAS  Google Scholar 

  • Lidov HGW, Grzanna R, Molliver ME (1980) The serotonin innervation of the cerebralcortex in the rat—an immunohistochemical analysis. Neuroscience 5:207–227

    Article  PubMed  CAS  Google Scholar 

  • Lin JS, Luppi PH, Salvert D, Sakai K, Jouvet M (1986) Neurones immunoreactifs a Thistamine dans Fhypothalamus chez le chat. C R Acad Sci [III] 303:371–376

    CAS  Google Scholar 

  • Lindvall O, Björklund A, Nobin A, Stenevi U (1974) The adrenergic innervation of the rat thalamus as revealed by the glyoxylic acid fluorescence method. J Comp Neurol 154:317–348

    Article  PubMed  CAS  Google Scholar 

  • Lindvall O, Björklund A, Divac I (1978) Organization of catecholamine neurons projecting tothe frontal cortext in the rat. Brain Res. 142:1–24

    Article  PubMed  CAS  Google Scholar 

  • Livingstone MS, Hubel DH (1981) Effects of sleep and arousal on the processing of visualinformation in the cat. Nature 291:554–561

    Article  PubMed  CAS  Google Scholar 

  • London ED, Waller SB, Wamsley JK (1985) Autoradiographic localization of (3H)nicotinebinding sites in the rat brain. Neurosci Lett 53:179–184

    Article  PubMed  CAS  Google Scholar 

  • Loughlin SE, Foote SL, Fallon JH (1982) Locus coeruleus projections to cortex: topography, morphology and collateralization. Brain Res Bull 9:287–294

    Article  PubMed  CAS  Google Scholar 

  • Lund JS (1973) Organization of neurons in the visual cortex, area 17, of the monkey (Macacamulatto). J. Comp Neurol 147:455–496

    Article  PubMed  CAS  Google Scholar 

  • Lund JS (1981) Intrinsic organization of the primate visual cortex, area 17, as seen in Golgi preparations. In: Schmitt FO, Worden FG, Adelman G, Dennis SG (eds) The organization of the cerebral cortex. MIT Press, Cambridge, pp. 105–124

    Google Scholar 

  • Lund JS, Lund RD, Hendrickson AE, Bunt AG, Fuchs AF (1975) The origin of efferent pathways from the primary visual cortex, area 17, of the macaque monkey as shown by retrograde transport of horseradish peroxides. J Comp Neurol 164:287–304

    Article  PubMed  CAS  Google Scholar 

  • Lund JS, Henry GH, MacQueen CL, Harvey AR (1979) Anatomical organization of the primary visual cortex (area 17) of the cat. A comparison with area 17 of the macaque monkey. J Comp Neurol 184:599–618

    Article  PubMed  CAS  Google Scholar 

  • Lund-Karlsen R, Fonnum F (1978) Evidence for glutamate as a neurotransmitter in the corticofugal fibres to the dorsal lateral geniculate body and the superior colliculus in rats. Brain Res 151:457–468

    Article  Google Scholar 

  • Lysakowski A, Wainer BH, Rye BD, Bruce G, Hersh LB (1986) Cholinergic innervation displays strikingly different laminar preferences in several cortical areas. Neurosci Lett 64:102–108

    Article  PubMed  CAS  Google Scholar 

  • MacDermott AB, Dale N (1987) Receptors, ion channels and synaptic potentials underlyingthe integrative actions of excitatory amino acids. Trends Neurosci 10:280–283

    Article  CAS  Google Scholar 

  • MacDonald JF, Wojtowicz JM (1980) Two conductance mechanisms activated by applications of l-glutamic, l-aspartic, ldl-homocysteic, iV-methyl-d-aspartic, and dl-kainic acids to cultured mammalian central neurones. Can J Physiol Pharmacol 58:1393–1397

    Article  PubMed  CAS  Google Scholar 

  • Mackay-Sim A, Sefton AJ, Martin PR (1983) Subcortical projections to lateral geniculate andthalamic reticular nuclei in the hooded rat. J Comp Neurol 213:24–35

    Article  PubMed  CAS  Google Scholar 

  • Magistretti PJ, Morrison JH (1988) Noradrenaline- and vasoactive intestinal peptide- containing neuronal systems in neocortex: functional convergence with contrasting morphology. Neuroscience 24:367–378

    Article  PubMed  CAS  Google Scholar 

  • Malcolm LJ, Bruce ISC, Burke W (1970) Excitability of the lateral geniculate nucleus in the alert, non-alert and sleeping cat. Exp Brain Res 10:283–297

    Article  PubMed  CAS  Google Scholar 

  • Malmfors T (1963) Evidence of noradrenergic neurons with synaptic terminals in the retina of rats demonstrated with fluorescence and electron microscopy. Acta Physiol Scand 58:99–100

    Article  PubMed  CAS  Google Scholar 

  • Mantyh PW, Kemp J A (1983) The distribution of putative neurotransmitters in the lateralgeniculate nucleus of the rat. Brain Res 288:344–348

    Article  PubMed  CAS  Google Scholar 

  • Marin-Padilla M (1974) Three-dimensional reconstruction of the pericellular nests (baskets) of the motor (area 4) and visual (area 17) areas of the human cerebral cortex. A Golgi study. Z Anat Entwicklungsgeschichte 144:123–135

    Article  CAS  Google Scholar 

  • Markowitsch HJ, Irle E (1981) Widespread cortical projections of the ventral tegmental areaand other brainstem structures in the cat. Exp Brain Res 41:233–246

    PubMed  CAS  Google Scholar 

  • Martin KAC, Somogyi P, Whitteridge D (1983) Physiological and morphological propertiesof identified basket cells in the cat’s visual cortex. Exp Brain Res 50:193–200

    Article  PubMed  CAS  Google Scholar 

  • Mash DC, Potter LT (1986) Autoradiographic localization of Ml and M2 muscarinereceptors in the rat brain. Neuroscience 19:551–564

    Article  PubMed  CAS  Google Scholar 

  • Mason ST, Fibiger HC (1979) Regional topography within noradrenergic locus coeruleus as revealed by retrograde transport of horseradish peroxidase. J. Comp Neurol 187:703–724

    Article  PubMed  CAS  Google Scholar 

  • Mates SL, Lund JS (1983a) Neuronal composition and development in lamina 4C of monkeystriate cortex. J Comp Neurol 221:60–90

    Article  PubMed  CAS  Google Scholar 

  • Mates SL, Lund JS (1983b) Spine formation and maturation of type 1 synapses on spinystellate neurons in primate visual cortex. J Comp Neurol 221:91–97

    Article  PubMed  CAS  Google Scholar 

  • Mates SL, Lund JS (1983c) Developmental changes in the relationship between type 2synapses and spiny neurons in the monkey visual cortex. J. Comp Neurol 221:98–105

    Article  PubMed  CAS  Google Scholar 

  • Matsubara J, Cynader M, Swindale NV, Stryker MP (1985) Intrinsic projections within visual cortex: evidence for orientation-specific local connections. Proc Natl Acad Sci USA 82:935–939

    Article  PubMed  CAS  Google Scholar 

  • Mayer ML, Westbrook GL (1984) Mixed-agonist action of excitatory amino acids on mousespinal cord neurones under voltage clamp. J Physiol (Lond) 354:29–53

    CAS  Google Scholar 

  • Mayer ML, Westbrook GL (1987) The physiology of excitatory amino acids in the vertebratecentral nervous system. Prog Neurobiol 28:197–276

    Article  PubMed  CAS  Google Scholar 

  • McBride RL, Suttin J (1976) Projections of the locus coeruleus and adjacent pontinetegmentum in the cat. J Comp Neurol 165:265–284

    Article  PubMed  CAS  Google Scholar 

  • McCance I, Phillis JW, Tebecis AK, Westerman RA (1968) The pharmacology ofacetylcholine excitation of thalamic neurones. Br J Pharmacol Chemother 32:652–662

    PubMed  CAS  Google Scholar 

  • McCarley RW, Nelson JP, Hobson JA (1978) Ponto-geniculo-occipital (PGO) burst neurons:correlative evidence for the generation of PGO waves. Science 201:269–272

    Article  PubMed  CAS  Google Scholar 

  • McCarley RW, Benoit O, Barrionueovo G (1983) Lateral geniculate nucleus unitary discharge in sleep and waking: state- and rate-specific aspects. J Neurophysiol 50:798–818

    PubMed  CAS  Google Scholar 

  • McCormick DA, Pape HC (1988) Acetylcholine inhibits identified interneurones in the catlateral geniculate nucleus. Nature (Lond) 334:246–248

    Article  CAS  Google Scholar 

  • McCormick DA, Prince DA (1985) Two types of muscarinic response to acetylcholine inmammalian cortical neurons. Proc Natl Acad Sci USA 82:6344–6348

    Article  PubMed  CAS  Google Scholar 

  • McCormick DA, Prince DA (1986a) Mechanisms of action of acetylcholine in the guinea-pigcerebral cortex in vitro. J Physiol (Lond) 375:169–194

    CAS  Google Scholar 

  • McCormick DA, Prince DA (1986b) Acetylcholine induces burst firing in thalamic reticularneurones by activating a potassium conductance. Nature 319:402–405

    Article  PubMed  CAS  Google Scholar 

  • McCormick DA, Prince DA (1987) Actions of acetylcholine in the guinea pig and cat medialand lateral geniculate nuclei, in vitro. J Physiol (Lond) 392:147–165

    CAS  Google Scholar 

  • McCormick DA, Prince DA (1988) Noradrenergic modulation of firing pattern in guinea pigand cat thalamic neurons in vitro. J Neurophysiol 59:978–996

    PubMed  CAS  Google Scholar 

  • McGinty DJ, Harper RM (1976) Dorsal raphe neurons: depression of firing during sleep in cats. Brain Res 101:569–575

    Article  PubMed  CAS  Google Scholar 

  • McGuire BA, Hornung JP, Gilbert CD, Wiesel TN (1983) Layer 6 cells primarily contact smooth and sparsely spiny neurons in layer 4 of cat striate cortex. Soc Neurosci Abstr 9:617

    Google Scholar 

  • McLennan H (1983) Receptors for the excitatory amino acids in the mammalian centralnervous system. Prog Neurobiol 20:251–271

    Article  PubMed  CAS  Google Scholar 

  • McLennan H, Hicks TP (1978) Pharmacological characterization of the excitatory cholinergic receptors of rat central neurones. Neuropharmacology 17:329–334

    Article  PubMed  CAS  Google Scholar 

  • Mesulam MM, Mufson EJ, Wainer BH, Levey AI (1983) Central cholinergic pathways in the rat: an overview based on an alternative nomenclature (Chl-Ch6). Neuroscience 10:1185–1201

    Article  PubMed  CAS  Google Scholar 

  • Metherate R, Tremblay N, Dykes RW (1987) Acetylcholine permits long-term enhancement of neuronal responsiveness in cat primary somatosensory cortex. Neuroscience 22:75–81

    Article  PubMed  CAS  Google Scholar 

  • Meulders M, Godfraind JM (1969) Influence du réveil d’origine réticulaire sur l’étendue des champs visuels des neurones de la région genouillée chez le chat avec cerveau intact ou avec cerveau isolé. Exp Brain Res 9:201–220

    Article  PubMed  CAS  Google Scholar 

  • Meyer G, Albus K (1981) Spiny stellates as cells of origin of association fibres from area 17 toarea 18 in the cat’s neocortex. Brain Res 210:335–341

    Article  PubMed  CAS  Google Scholar 

  • Michael J A, Ichinose LY (1970) Influence of oculomotor activities on visual processing. Brain Res 22:249–253

    Article  PubMed  CAS  Google Scholar 

  • Mitzdorf U (1985) Current source-density method and application in cat cerebral cortex:investigation of evoked potentials and EEG phenomena. Physiol Rev 65:37–100

    PubMed  CAS  Google Scholar 

  • Mitzdorf U, Singer W (1978) Prominent excitatory pathways in the cat visual cortex (A 17 and A18): a current source density analysis of electrically evoked potentials. Exp Brain Res 33:371–394

    Article  PubMed  CAS  Google Scholar 

  • Mitzdorf U, Singer W (1979) Excitatory synaptic ensemble properties of the visual cortex of the macaque monkey: a current source density analysis of electrically evoked potentials. J Comp Neurol 187:71–84

    Article  PubMed  CAS  Google Scholar 

  • Mize RR, Payne MP (1987) The innervation density of serotonergic (5-HT) fibers varies in different subdivisions of the cat lateral geniculate nucleus complex. Neurosci Lett 82:133–139

    Article  PubMed  CAS  Google Scholar 

  • Montero VM (1986) Localization of gamma-aminobutyric acid (GABA) in type 3 cells and demonstration of their source to F2 terminals in the cat lateral geniculate nucleus: a Golgi-electron-microscopic-GABA-immunocytochemical study. J Comp Neurol 254:228–245

    Article  PubMed  CAS  Google Scholar 

  • Montero VM (1987) Ultrastructural identification of synaptic terminals from the axon of type 3 interneurons in the cat lateral geniculate nucleus. J Comp Neurol 264:268–283

    Article  PubMed  CAS  Google Scholar 

  • Montero VM, Scott GL (1981) Synaptic terminals in dorsal lateral geniculate nucleus from neurons of the thalamic reticular nucleus A light and electron microscope autoradiographic study. Neuroscience 6:2561–2577

    Article  PubMed  CAS  Google Scholar 

  • Montero VM, Singer W (1984) Ultrastructure and synaptic relations of neural elements containing glutamic acid decarboxylase (GAD) in the perigeniculate nucleus of the cat. Exp Brain Res 56:115–125

    Article  PubMed  CAS  Google Scholar 

  • Montero VM, Singer W (1985) Ultrastructure and synaptic relations of neural elements containing glutamic acid decarboxylase (GAD) in the perigeniculate nucleus of the cat. Exp Brain Res 59:151–165

    Article  PubMed  CAS  Google Scholar 

  • Montero VM, Zempel J (1985) Evidence for two types of GABA-containing interneurons in the A-laminae of the cat lateral geniculate nucleus: a double-label HRP and GABA-immunocytochemical study. Exp Brain Res 60:603–609

    PubMed  CAS  Google Scholar 

  • Moore RY, Halaris AE, Jones BE (1978) Serotonin neurons of the midbrain raphe: ascendingprojections. J Comp Neurol 180:417–438

    Article  PubMed  CAS  Google Scholar 

  • Morgan R, Vrbova G, Wolstencroft JH (1972) Correlation between the retinal input to lateral geniculate neurones and their relative response to glutamate and aspartate. J Physiol (Lond) 224:41–42P

    Google Scholar 

  • Morrison JH, Foote SL (1986) Noradrenergic and serotoninergic innervation of cortical, thalamic, and tectal visual structures in old and new world monkey. J Comp Neurol 243:117–138

    Article  PubMed  CAS  Google Scholar 

  • Morrison JH, Grzanna R, Molliver ME, Coyle JT (1978) The distribution and orientation of noradrenergic fibers in neocortex of the rat: an immunofluorescence study. J Comp Neurol 181:17–40

    Article  PubMed  CAS  Google Scholar 

  • Morrison JH, Molliver ME, Grzanna R (1979) Noradrenergic innervation of cerebral cortex:widespread effects of local cortical lesions. Science 205:313–316

    Article  PubMed  CAS  Google Scholar 

  • Morrison JH, Molliver ME, Grzanna ME, Coyle JT (1981) The intracortical trajectory of the coeruleo-cortical projection in the rat: a tangentially organized cortical afferent. Neuroscience 6:139–158

    Article  PubMed  CAS  Google Scholar 

  • Morrison JH, Foote SL, Molliver ME, Bloom FE, Lidov HGW (1982a) Noradrenergic arid serotonergic fibers innervate complementary layers in monkey primary visual cortex: an immunohistochemical study. Proc Natl Sci USA 79:2401–2405

    Article  CAS  Google Scholar 

  • Morrison JH, Foote SL, O’Connor D, Bloom FE (1982b) Laminar, tangential and regional organization of the noradrenergic innervation of monkey cortex: dopamine-β-hydroxylase immunohistochemistry. Brain Res Bull 9:309–319

    Article  PubMed  CAS  Google Scholar 

  • Morrison JH, Magistretti PJ, Benoit R, Bloom FE (1984) The distribution and morphological characteristics of the intracortical VIP-positive cell: an immunohistochemical analysis. Brain Res 292:269–282

    Article  PubMed  CAS  Google Scholar 

  • Moruzzi G, Magoun HW (1949) Brain stem reticular formation and activation of the EEG. Electroencephalog Clin Neurophysiol 1:455–473

    CAS  Google Scholar 

  • Mountcastle VB, Andersen RA, Motter BC (1981) The influence of attentive fixation upon the excitability of the light-sensitive neurons of the posterior parietal cortex. J Neurosci 1:1218–1235

    PubMed  CAS  Google Scholar 

  • Mountcastle VB, Motter BC, Steinmetz MA, Duffy CJ (1984) Looking and seeing: the visual functions of the parietal lobe. In: Edelman GM, Gall WE, Cowan WM (eds) Dynamic aspects of neocortical functions. Wiley-Interscience, New York, pp 159–193

    Google Scholar 

  • Mouret J, Jeannerod M, Jouvet M (1963) L’activité électrique du système visuel au cours de laphase paradoxale du sommeil chez le chat. J Physiol (Paris) 55:305–306

    CAS  Google Scholar 

  • Mufson EJ, Martin TL, Mash DC, Wainer BH, Mesulam MM (1986) Cholinergic projections from the parabigeminal nucleus (Ch8) to the superior colliculus in the mouse: a combined analysis of horseradish peroxidase transport and choline acetyltransferase immunohistochemistry. Brain Res 370:144–148

    Article  PubMed  CAS  Google Scholar 

  • Mukhametov LM, Rizolatti G, Seitun A (1970a) An analysis of the spontaneous activity of lateral geniculate neurons and of optic tract fibers in free moving cats. Arch Ital Biol 108:325–347

    PubMed  CAS  Google Scholar 

  • Mukhametov LM, Rizolatti G, Tradardi V (1970b) Spontaneous activity of neurones ofnucleus reticularis thalami in freely moving cats. J Physiol (Lond) 210:651–667

    CAS  Google Scholar 

  • Mulligan KA, Tôrk I (1987) Sterotonergic axons form basket-like terminals in cerebralcortex. Neurosci Lett 81:7–12

    Article  PubMed  CAS  Google Scholar 

  • Munson JB (1972) Multiunit activity with eye movements during fast-wave sleep in cats. Exp Neurol 37:446–450

    Article  PubMed  CAS  Google Scholar 

  • Nagy JI, LaBella LA, Buss M (1984) Immunohistochemistry of adenosine deaminase:implications for adenosine neurotransmission. Science 224:166–168

    Article  PubMed  CAS  Google Scholar 

  • Nakajima S, Komatsu Y, Toyama K (1988) Synaptic action of layer I fibers on cells in catstriate cortex. Brain Res (in press)

    Google Scholar 

  • Nathanson J A (1977) Cyclic nucleotides and nervous system function. Physiol Rev 576:157–256

    Google Scholar 

  • Nelson JP, McCarley RW, Hobson J A (1983) REM sleep burst neurons, PGO waves and eyemovements information. J Neurophysiol 50:784–797

    PubMed  CAS  Google Scholar 

  • Nistri A, Constanti A (1979) Pharmacological characterization of different types of GAB Aand glutamate receptors in vertebrates and invertebrates. Prog Neurobiol 13:117–235

    Article  PubMed  CAS  Google Scholar 

  • Noda H (1975) Discharges of relay cells in lateral geniculate nucleus of the cat duringspontaneous eye movements in light and darkness. J Physiol (Lond) 250:579–595

    CAS  Google Scholar 

  • Ogawa T (1963) Midbrain reticular influence upon single neurons in the lateral geniculatenucleus. Science 139:343–344

    Article  PubMed  CAS  Google Scholar 

  • Ohara PT, Lieberman AR (1985) The thalamic reticular nucles of the adult rat: experimentalanatomical studies. J Neurocytol 14:365–411

    Article  PubMed  CAS  Google Scholar 

  • Ohara PT, Sefton A J, Lieberman AR (1980) Mode of termination of afferents from the thalamic reticular nucleus in the dorsal lateral geniculate nucleus of the rat. Brain Res 197:503–506

    Article  PubMed  CAS  Google Scholar 

  • Ohara PT, Lieberman AR, Hunt SP, Wu J Y (1983) Neural elements containing glutamic acid decarboxylase (GAD) in the dorsal lateral geniculate nucleus of the rat: immunohisto-chemical studies by light and electron microscopy. Neuroscience 8:189–211

    Article  PubMed  CAS  Google Scholar 

  • O’Hearn E, Molliver ME (1984) Organization of raphe-cortical projections in rat: aquantitative retrograde study. Brain Res Bull 13:709–726

    Article  PubMed  Google Scholar 

  • Olpe HR (1981) The cortical projection of the dorsal raphe nucleus: some electrophysiologicaland pharmacological properties. Brain Res 216:61–71

    Article  PubMed  CAS  Google Scholar 

  • Olschowka JA, Molliver ME, Grzanna R, Rice FL, Coyle JT (1981) Ultrastructural demonstration of noradrenergic synapses in the rat central nervous system by dopamines-hydroxylase immunocytochemistry. J. Histochem Cytochem 29:271–280

    Article  PubMed  CAS  Google Scholar 

  • Olszewski J, Baxter D (1954) Cytoarchitecture of the human brain stem. Lippincott, Philadelphia

    Google Scholar 

  • O’Neill JB, Clarke PBS, Friedman DP, Pert A (1985) Distributions of nicotinic andmuscarinic receptors in monkey cerebral cortex. Soc Neurosci Abstr 11:307

    Google Scholar 

  • Palacios JM, Kuhar MJ (1980) Beta-adrenergic-receptor localization by light microscopicautoradiography. Science 208:1378–1380

    Article  PubMed  CAS  Google Scholar 

  • Palkovits M, Zaborszky L, Brownstein MJ, Fekete MIK, Herman JP, Kanyicska B (1979) Distribution of norepinephrine and dopamine in cerebral cortical areas of the rat. Brain Res Bull 4:593–601

    Article  PubMed  CAS  Google Scholar 

  • Palmer LA, Rosenquist AC (1974) Visual receptive fields of single striate cortical unitsprojecting to the superior colliculus in the cat. Brain Res 67:27–42

    Article  PubMed  CAS  Google Scholar 

  • Pape HC, Eysel UT (1987) Modulatory action of the reticular transmitters norepinephrine and 5-hydroxytraptamine (serotonin) in the cat’s visual thalamus. Soc Neurosci Abstr 13:86

    Google Scholar 

  • Paré D, Steriade M, Deschénes M, Oakson G (1987) Physiological properties of anterior thalamic nuclei, a group devoid of inputs from the reticular thalamic nucleus. J Neurophysiol 57:1669–1685

    PubMed  Google Scholar 

  • Paré D, Smith Y, Parent A, Steriade M (1988) Projections of upper brainstem reticular cholinergic and non-cholinergic neurons of cat to intralaminar and reticular thalamic nuclei. Neuroscience 25:69–86

    Article  PubMed  Google Scholar 

  • Parent A, Butcher LL (1976) Organization and morphologies of acetylcholinesterase-containing neurons in the thalamus and hypothalamus of the rat. J Comp Neurol 170:205–226

    Article  PubMed  Google Scholar 

  • Parent A, Descarries L, Beaudet A (1981) Organization of ascending serotonin systems in the adult rat brain. A radioautographic study after intraventricular administration of (3H)5-hydroxytryptamine. Neuroscience 6:115–138

    Article  PubMed  CAS  Google Scholar 

  • Parent A, Paré D, Smith Y, Steriade M (1988) Basal forebrain cholinergic and non-cholinergic projections to the thalamus and brainstem in cats and primates. J Comp Neurol 277:281–301

    Article  PubMed  CAS  Google Scholar 

  • Parnavelas JG (1986) Morphology and distribution of peptide-containing neurones in the cerebral cortex. In: Emson PC, Rossor MN, Tohyama M (eds) Progress in brain research. Elsevier, Amsterdam, pp 119–134

    Google Scholar 

  • Parnavelas JG, Cavanagh ME (1988) Transient expression of neurotransmitters in thedeveloping neocortex. TINS 11:92–94

    PubMed  CAS  Google Scholar 

  • Parnavelas JG, McDonald JK (1983) The cerebral cortex. In: Emson PC (ed) Chemical Neuroanatomy. Raven, New York, pp 505–549

    Google Scholar 

  • Parnavelas JG, Kelly W, Franke E, Eckenstein F (1986) Cholinergic neurons and fibers in therat visual cortex. J Neurochem 15:329–336

    CAS  Google Scholar 

  • Pasquier DA, Villar MJ (1982a) Specific serotonergic projections to the lateral geniculatebody from the lateral cell groups of the dorsal raphe nucleus. Brain Res 249:142–146

    Article  PubMed  CAS  Google Scholar 

  • Pasquier DA, Villar MJ (1982b) Subcortical projections to the lateral geniculate body in therat. Exp Brain Res 48:409–419

    Article  PubMed  CAS  Google Scholar 

  • Patel BT, Tudball N, Wada H, Watanabe T (1986) Adenosine deaminase and histidinedecarboxylase coexist in certain neurons of the rat brain. Neurosci Lett 63:185–189

    Article  PubMed  CAS  Google Scholar 

  • Paxinos G, Watson CRR, Emson PC (1980) AChE-stained horizontal sections of the rat brainin stereotaxic coordinates. J Neurosci Methods 3:129–149

    Article  PubMed  CAS  Google Scholar 

  • Pazos A, Cortes R, Palacios JM (1985) Quantitative autoradiographic mapping of serotoninseceptors in the rat brain. II. Serotonin-2receptors. Brain Res 346:231–249

    Article  PubMed  CAS  Google Scholar 

  • Pazos A, Palacios JM (1985) Quantitative autoradiographic mapping of serotonin receptorsin the rat brain. I. Serotonin-1receptors. Brain Res 346:205–230

    Article  PubMed  CAS  Google Scholar 

  • Pearson RCA, Gatter KC, Brodal P, Powell TPS (1983) The projection of the basal nucleus of Meynert upon the neocortex in the monkey. Brain Res 259:132–136

    Article  PubMed  CAS  Google Scholar 

  • Peters A, Kimerer LM (1981) Bipolar neurons in rat visual cortex: a combined Golgi-electronmicroscope study. J Neurocytol 10:921–946

    Article  PubMed  CAS  Google Scholar 

  • Peters A, Proskauer C, Ribak CE (1982) Chandelier cells in rat visual cortex. J Comp Neurol 206:397–416

    Article  PubMed  CAS  Google Scholar 

  • Pettigrew JD, Kasamatsu T (1978) Local perfusion of noradrenaline maintains visual corticalplasticity. Nature 271:761–763

    Article  PubMed  CAS  Google Scholar 

  • Phillis JW (1971) The pharmacology of thalamic and geniculate neurons. In Rev Neurobiol 14:1–48

    Google Scholar 

  • Phillis JW, Tebecis AK (1967) The responses of thalamic neurons to iontophoretically appliedmonoamines. J Physiol (Lond) 192:715–745

    CAS  Google Scholar 

  • Phillis JW, Wu PH (1981a) The role of adenosine and its nucleotides in central synaptictransmission. Prog Neurobiol 16:187–239

    Article  PubMed  CAS  Google Scholar 

  • Phillis JW, Wu PH (1981b) Catecholamine and the sodium pump in excitable cells. Prog Neurobiol 17:141–184

    Article  PubMed  CAS  Google Scholar 

  • Phillis JW, York D (1967) Cholinergic inhibition in the cerebral cortex. Brain Res 5:517–520

    Article  PubMed  CAS  Google Scholar 

  • Phillis JW, Tebecis AK, York DH (1967a) The inhibitory action of monoamines on lateralgeniculate neurons. J Physiol (Lond) 190:563–581

    CAS  Google Scholar 

  • Phillis JW, Tebecis AK, York DH (1967b) A study of cholinoceptive cells in the lateralgeniculate nucleus. J Physiol (Lond) 192:695–713

    CAS  Google Scholar 

  • Pollard H, Pachot I, Schwartz JC (1985) Monoclonal antibody against 1-histidinedecarboxylase for localization of histaminergic cells. Neurosci Lett 54:53–58

    Article  PubMed  CAS  Google Scholar 

  • Potter LT, Flynn DD, Hanchett HE, Kalinoski DL, Luber-Narod J, Mash DC (1984) independent Ml and M2 receptors: ligands, autoradiography and functions. Trends Pharmacol Sci (suppl):22–31

    Google Scholar 

  • Price JL, Stern R (1983) Individual cells in the nucleus basalis-diagonal band complex have restricted axonal projections to the cerebral cortex in the rat. Brain Res 269:352–356

    Article  PubMed  CAS  Google Scholar 

  • Purpura DP, McMurtry JG, Maekawa K (1966) Synaptic events in ventrolateral thalamic neurons during suppression of recruiting responses by brainstem reticular stimulation. Brain Res 1:63–76

    Article  PubMed  CAS  Google Scholar 

  • Raczkowski D, Fitzpatrick D (1989) The organization of cholinergic synapses in the cat’sdorsal lateral geniculate and perigeniculate nuclei. J Comp Neurol, in press

    Google Scholar 

  • Rainbow TC, Parsons B, Wolfe BB (1984) Quantitative autoradiography of and-adrenergic receptors in rat brain. Proc Natl Acad Sci USA 81:1585–1589

    Article  PubMed  CAS  Google Scholar 

  • Ramony Cajal S (1899) Estudios sobre la corteza cerebral humana. Corteza visual. RevTrimestr Microgr 4:1–63

    Google Scholar 

  • Ramony Cajal S (1911) Histologic du Systeme Nerveux de l’Homme et des Vertebres, vol 2. Maloine, Paris

    Google Scholar 

  • Ramony Cajal S (1922) Studien iiber die Sehrinde der Katze. J Psychol Neurol (Leipzig) 29:161–181

    Google Scholar 

  • Randic M, Siminoff R, Straughan DW (1964) Acetylcholine depression of cortical neurones. Exp Neurol 9:236–242

    Article  PubMed  CAS  Google Scholar 

  • Rassipardi BC, Wilson PD, Alvarez FL (1974) Reticular regulation of evoked potentials at the cortex and lateral geniculate nucleus of the unanesthetized squirrel monkey. Exp Neurol 44:282–294

    Article  Google Scholar 

  • Reader TA (1978) Effects of dopamine, noradrenaline and serotonin in visual cortex of cat. Experientia 34:1586–1588

    Article  PubMed  CAS  Google Scholar 

  • Reader TA (1981) Distribution of catecholamines and serotonin in the rat cerebral cortex:absolute levels and relative proportions. J Neural Transm 50:13–27

    Article  PubMed  CAS  Google Scholar 

  • Reader TA, Jasper H (1984) Interactions between monoamines and other transmitters in cerebral cortex. In: Chan-Palay V, Palay S (eds) Neurology and Neurobiology. Liss, New York, pp 195–225

    Google Scholar 

  • Reader TA, Ferron A, Descarries L, Jasper HH (1979a) Modulatory role for biogenic aminesin the cerebral cortex. Microiontophoretic studies. Brain Res 160:217–229

    Article  PubMed  CAS  Google Scholar 

  • Reader TA, Masse P, Champlain J (1979b) The intracortical distribution of norepinephrine, dopamine and serotonin in the cerebral cortex of the cat. Brain Res 177:499–513

    Article  PubMed  CAS  Google Scholar 

  • Ribak CE (1978) Aspinous and sparsely-spinous stellate neurons in the cortex of rats containglutamic acid decarboxylase. J Neurocytol 7:461–478

    Article  PubMed  CAS  Google Scholar 

  • Ribak CE, Kramer WG (1982) Cholinergic neurons in the basal forebrain of the cat havedirect projections to the sensorimotor cortex. Exp Neurol 75:453–465

    Article  PubMed  CAS  Google Scholar 

  • Robson J A, Hall WC (1975) Connections of layer VI in striate cortex of the grey squirrel (Sciureus carolinensis). Brain Res 93:133–139

    Article  PubMed  CAS  Google Scholar 

  • Rogawski MA, Aghajanian GK (1980a) Activation of lateral geniculate neurons bynorepinephrine: mediation by an a-adrenergic receptor. Brain Res 182:345–359

    Article  PubMed  CAS  Google Scholar 

  • Rogawski MA, Aghajanian GK (1980b) Norepinephrine and serotonin: opposite effects on the activity of lateral geniculate neurons evoked by optic pathway stimulation. Exp Neurol 69:678–694

    Article  PubMed  CAS  Google Scholar 

  • Room P, Postema F, Korf J (1981) Divergent axon collaterals of rat locus coeruleus neurons:demonstration by a fluorescent double labeling technique. Brain Res 221:219–230

    Article  PubMed  CAS  Google Scholar 

  • Rotter A, Birdsall NJM, Burgen ASV, Field PM, Hulme EC, Raisman G (1979) Muscarinic receptors in the central nervous system of the rat. I. Technique for autoradiographic localization of the binding of (3H)propylbenzylilcholine mustard and its distribution in the forebrain. Brain Res Rev 1:141–165

    Article  CAS  Google Scholar 

  • Rye DB, Wainer BH, Mesulam MM, Mufson EJ, Saper CB (1984) Cortical projections arising from the basal forebrain: a study of cholinergic and non-cholinergic components employing combined retrograde tracing and immunohistochemical localization of choline acetyltransferase. Neuroscience 13:627–643

    Article  PubMed  CAS  Google Scholar 

  • Rye DB, Saper CB, Lee HJ, Wainer BH (1987) Pedunculopontine tegmental nucleus of the: rat cytoarchitecture, cytochemistry, and some extrapyramidal connections of the mesopontine tegmentum. J Comp Neurol 259:483–528

    Article  PubMed  CAS  Google Scholar 

  • Rustioni A, Schmechel DE, Spreafico R, Cheema S, Cuenod M (1983) Excitatory and inhibitory amino acid putative transmitters in the ventralis posterior complex: an autoradiographic and immunocytochemical study in cats and rats. In: Macchi G, Rustioni A, Spreafico R (eds) Somatosensory integration of the thalamus. Elsevier, Amsterdam, pp 365–384

    Google Scholar 

  • Saint Marie RL, Peters A (1985) The morphology and synaptic connections of spiny stellate neurons in monkey visual cortex (area 17): a Golgi-electron microscopy study. J Comp Neurol 233:213–235

    Article  PubMed  CAS  Google Scholar 

  • Sakaguchi T, Nakamura S (1987) The mode of projections of single locus coeruleus neuronsto the cerebral cortex in rats. Neuroscience 20:221–230

    Article  PubMed  CAS  Google Scholar 

  • Sakai K (1980) Some anatomical and physiological properties of ponto-mesencephalic tegmental neurons with special reference to PGO waves and postural atonia during paradoxical sleep. In: Hobson JA, Brazier MAB (eds) The reticular formation of the brain. Raven, New York, pp 427–447

    Google Scholar 

  • Sakai K (1985) Anatomical and physiological basis of paradoxical sleep. In: McGinty DJ, Drucker-Colin R, Morrison A, Parmeggiani PL (eds) Brain mechanisms of sleep. Raven, New York, pp 111–137

    Google Scholar 

  • Sakai K, Jouvet M (1980) Brainstem PGO-on cells projecting directly to the cat lateralgeniculate nucleus. Brain Res 194:500–505

    Article  PubMed  CAS  Google Scholar 

  • Sakai K, Petitjean F, Jouvet M (1976) Effects of pontomesencephalic lesions and electrical stimulation upon PGO waves and EMPs in unanesthetized cats. Electroencephalogr Clin Neurophysiol 41:49–63

    Article  PubMed  CAS  Google Scholar 

  • Sakakura H (1968) Spontaneous and evoked unitary activities of cat lateral geniculateneurons in sleep and wakefulness. Jpn J Physiol 18:23–42

    Article  PubMed  CAS  Google Scholar 

  • Sakakura H, Iwama K (1967) Effects of bilateral eye enucleation upon single unit activity ofthe lateral geniculate body in free behaving cats. Brain Res 6:667–678

    Article  PubMed  CAS  Google Scholar 

  • Saldate M, Orrego F (1977) Electrically induced release of (3H)dopamine from slices obtained from different rat brain cortex regions. Evidence for a widespread dopaminergic innervation of the neocortex. Brain Res 130:483–494

    Article  PubMed  CAS  Google Scholar 

  • Saper CB (1984) Organization of cerebral cortical afferent systems in the rat. I. Magnocellularbasal nucleus. J Comp Neurol 222:313–342

    Article  PubMed  CAS  Google Scholar 

  • Saper CB (1985) Organization of cerebral cortical afferent systems in the rat. II. Hypo-thalamocortical projections. J Comp Neurol 237:21–46

    Article  PubMed  CAS  Google Scholar 

  • Saper CB (1986) Lateral hypothalamic innervation of the cerebral cortex: immunoreactive staining for a peptide resembling but immunohistochemically distinct from pituitary/arcuate a-melanocyte stimulating hormone. Brain Res Bull 16:107–120

    Article  PubMed  CAS  Google Scholar 

  • Sastry BSR, Phillis JW (1977) Inhibition of cerebral cortical neurons by a 5-hydroxy-tryptaminergic pathway from median raphe nucleus. Can J Physiol Pharmacol 55:737–743

    Article  PubMed  CAS  Google Scholar 

  • Satinsky D (1967) Pharmacological responsiveness of lateral geniculate nucleus neurons. Int J Neuropharmacol 6:387–397

    Article  PubMed  CAS  Google Scholar 

  • Satoh K, Fibiger HC (1985a) Distribution of central cholinergic neurons in the baboon (Papio papio). II. A topographic atlas correlated with catecholamine neurons. J Comp Neurol 236:215–233

    Article  PubMed  CAS  Google Scholar 

  • Satoh K, Fibiger HC (1985b) Distribution of central cholinergic neurons in the baboon (Papio papio) I General morphology. J Comp Neurol 236:197–214

    Article  PubMed  CAS  Google Scholar 

  • Satoh K, Fibiger HC (1986) Cholinergic neurons of the laterodorsal tegmental nucleus:efferent and afferent connections. J Comp Neurol 253:277–302

    Article  PubMed  CAS  Google Scholar 

  • Satoh K, Tohyama M, Yamamoto K, Sakumoto T, Shimizu N (1977) Noradrenaline innervation of the spinal cord studied by the horseradish peroxidase method combined with monoamine oxidase staining. Exp Brain Res 30:175–186

    Article  PubMed  CAS  Google Scholar 

  • Sawai H, Horigiwa K, Fukuda Y (1988) Effects of EEG synchronization on visual responses of the cat’s geniculate relay cells: a comparison among Y, X and W cells. Brain Res 455:394–400

    Article  PubMed  CAS  Google Scholar 

  • Scarnatti E, Gasbarri A, Campana E, Pacitti C (1987) The organization of nucleus tegmenti pedunculopontinus neurons projecting to basal ganglia and thalamus: a retrograde fluorescent double labeling study in the rat. Neurosci Lett 79:11–16

    Article  Google Scholar 

  • Scharfman HE, Sarvey JM (1987) Responses to GAB A recorded from identified rat visualcortical neurons. Neuroscience 23:407–422

    Article  PubMed  CAS  Google Scholar 

  • Scheibel ME, Scheibel AB (1966) The organization of the nucleus reticularis thalami: a Golgistudy. Brain Res 1:43–62

    Article  PubMed  CAS  Google Scholar 

  • Scheibner T, Tork I (1987) Ventromedial mesencephalic tegmental (VMT) projections to ten functionally different cortical areas in the cat: topography and quantitative analysis. J Camp Neurol 259:247–265

    Article  CAS  Google Scholar 

  • Schmechel DE, Vickrey BG, Fitzpatrick D (1984) GABAergic neurons of mammalian cerebral cortex: a widespread subclass defined by somatostatin content. Neurosci Lett 47:227–232

    Article  PubMed  CAS  Google Scholar 

  • Schwark HD, Malpeli JG, Weyand TG, Lee C (1986) Cat area 17. II. Response properties of infragranular neurons in the absence of supragranular activity. J Neurophysiol 56:1074–1087

    PubMed  CAS  Google Scholar 

  • Sherman SM (1985) Functional organization of the W-, X-, and Y-cell pathways: a review and hypothesis. In: Sprague JM, Epstein AN (eds) Progress in psychobiology and physiological psychology, vol II. Academic, New York, pp 233–314

    Google Scholar 

  • Sherman SM, Koch C (1986) The control of retinogeniculate transmission in the mammalianlateral geniculate nucleus. Exp Brain Res 63:1–20

    Article  PubMed  CAS  Google Scholar 

  • Shiosaka S, Shibasaki T, Tohyama M (1984) Bilateral a-melanocyte stimulating hormonergic fiber system from zona incerta to cerebral cortex: combined retrograde axonal transport and immunohistochemical study. Brain Res 309:350–353

    Article  PubMed  CAS  Google Scholar 

  • Sholl DA (1953) Dendritic organization in the neurons of the visual and motor cortices ofthe cat. J Anat (Lond) 87:387–406

    Article  CAS  Google Scholar 

  • Shotwell SL, Shatz CJ, Luskin MB (1986) Development of glutamic acid decarboxylaseimmunoreactivity in the cat’s lateral geniculate nucleus. J Neurosci 6:1410–1423

    PubMed  CAS  Google Scholar 

  • Shute CCD, Lewis PR (1967) The ascending cholinergic reticular system: neocortical, olfactory and subcortical projections. Brain 90:497–522

    Article  PubMed  CAS  Google Scholar 

  • Siggins GR, Gruol DL (1986) Mechanisms of transmitter action in the vertebrate central nervous system. In: Mountcastle VB, Bloom FE (eds) Handbook of physiology, sect 1, vol IV. American Physiological Society, Bethesda MD, pp 1–114

    Google Scholar 

  • Sillito AM (1975) The contribution of inhibitory mechanisms to the receptive field propertiesof neurones in the striate cortex of the cat. J Physiol (Lond) 250:305–329

    CAS  Google Scholar 

  • Sillito AM (1977) Inhibitory processes underlying the directional specificity of simple, complex and hypercomplex cells in the cat’s visual cortex. J Physiol (Lond) 271:699–720

    CAS  Google Scholar 

  • Sillito AM (1979) Inhibitory mechanisms influencing complex cell orientation selectivity andtheir modification at high resting discharge levels. J Physiol (Lond) 289:33–35

    CAS  Google Scholar 

  • Sillito AM (1986) Conflicts in the pharmacology of visual cortical plasticity. Trends Neurosci 9:301–303

    Article  Google Scholar 

  • Sillito AM, Kemp A J (1983a) Cholinergic modulation of the functional organization of the catvisual cortex. Brain Res 289:143–145

    Article  PubMed  CAS  Google Scholar 

  • Sillito AM, Kemp AJ (1983b) The influence of GABAergic inhibitory processes on the receptive field structure of X and Y cells in the cat dorsal lateral geniculate nucleus (dLGN). Brain Res 277:63–77

    Article  PubMed  CAS  Google Scholar 

  • Sillito AM, Kemp JA, Berardi N (1983) The cholinergic influence on the function of the catdorsal lateral geniculate nucleus (dLDN). Brain Res 280:299–307

    Article  PubMed  CAS  Google Scholar 

  • Singer W (1973) The effect of mesencephalic reticular stimulation on intracellular potentialsof cat lateral geniculate neurons. Brain Res 61:35–54

    Article  PubMed  CAS  Google Scholar 

  • Singer W (1977) Control of thalamic transmission by corticofugal and ascending reticularpathways in the visual system. Physiol Rev 57:386–420

    PubMed  CAS  Google Scholar 

  • Singer W (1979) Central-core control of visual cortex functions. In: Schmitt FO, Worden FG (eds) The neurosciences, 4th study program. MIT Press, Cambridge, pp 1093–1110

    Google Scholar 

  • Singer W, Bedworth N (1974) Correlation between the effects of brainstem stimulation and saccadic eye movements on transmission in the cat lateral geniculate nucleus. Brain Res 72:185–202

    Article  PubMed  CAS  Google Scholar 

  • Singer W, Tretter F, Cynader M (1976) The effect of reticular stimulation on spontaneous andevoked activity in the cat visual cortex. Brain Res 102:71–90

    Article  PubMed  CAS  Google Scholar 

  • Skagerberg G, Lindvall O, Bjórklund A (1984) Origin, course and termination of themesohabenular dopamine pathway in the rat. Brain Res 307:99–108

    Article  PubMed  CAS  Google Scholar 

  • Smith Y, Seguela P, Parent A (1987) Distribution of GABA-immunoreactive neurons in thethalamus of the squirrel monkey (Saimirí sciureus). Neuroscience 22:579–591

    Article  PubMed  CAS  Google Scholar 

  • Smith Y, Paré D, Deschénes M, Parent A, Steriade M (1988) Cholinergic and non-cholinergic projections from the upper brainstem core to the visual thalamus in the cat. Exp Brain Res 70:166–180

    PubMed  CAS  Google Scholar 

  • Sofroniew MV, Priestley JV, Consolazione A, Eckenstein F, Cuello AC (1985) Cholinergic projections from the midbrain and pons to the thalamus in the rat, identified by combined retrograde tracing and choline acetyltransferase immunohistochemistry. Brain Res 329:213–223

    Article  PubMed  CAS  Google Scholar 

  • Soltesz I, Haby M, Leresche N, Crunelli V (1988) The GABA b antagonist phaclofen inhibits the late K +-dependent IPSP in cat and rat thalamic and hippocampal neurones. Brain Res 448:351–354

    Article  PubMed  CAS  Google Scholar 

  • Somogyi P (1978) The study of Golgi stained cells and of experimental degeneration under the electron microscope: a direct method for the identification in the visual cortex of three successive links in a nueron chain. Neuroscience 3:167–180

    Article  PubMed  CAS  Google Scholar 

  • Somogyi P, Cowey A (1981) Combined Golgi and electron microscopic study on the synapses formed by double bouquet cells in the visual cortex of the cat and monkey. J Comp Neurol 195:547–566

    Article  PubMed  CAS  Google Scholar 

  • Somogyi P, Freund TF, Wu JY, Smith AD (1983a) The section-Golgi impregnation procedure. 2. Immnocytochemical demonstration of glutamate decarboxylase in Golgi-impregnated neurons and in their afferent synaptic boutons in the visual cortex of the cat. Neuroscience 9:475–490

    Article  PubMed  CAS  Google Scholar 

  • Somogyi P, Kisvarday ZF, Martin KAC, Whitteridge D (1983b) Synaptic connections of morphologically identified and physiologically characterized large basket cells in the striate cortex of cat. Neuroscience 10:261–294

    Article  PubMed  CAS  Google Scholar 

  • Somogyi P, Freund TF, Kisvarday ZF (1984a) Different types of 3H-GABA accumulating neurons in the visual cortex of the rat. Characterization by combined autoradiography and Golgi impregnation. Exp Brain Res 54:45–59

    PubMed  CAS  Google Scholar 

  • Somogyi P, Hodgson A J, Smith AD, Nunzi GM, Gorio A, Wu JY (1984b) Differentpopulations of GABAergic neurons in the visual cortex and hippocampus of cat contain somatostatinor cholecystokinin-immunoreactive material. J Neurosci 4:2590–2603

    PubMed  CAS  Google Scholar 

  • Spehlman R (1971) Acetylcholine and the synaptic transmission of non-specific impulses tothe visual cortex. Brain 94:139–150

    Article  Google Scholar 

  • Spehlman R, Danieis JC, Smathers CC (1971) Acetylcholine and the synaptic transmission ofspecific impulses to the visual cortex. Brain Res 94:125–138

    Google Scholar 

  • Staines WA, Daddona PE, Nagy JI (1987) The organization and hypothalamic projections of the tuberomamillary nucleus in the rat: an immunohistochemical study of adenosine deaminase-positive neurons and fibers. Neuroscience 23:571–596

    Article  PubMed  CAS  Google Scholar 

  • Stanford LR, Friedländer MJ, Sherman SM (1981) Morphology of physiologically identified W-cells in the C laminae of the cat’s lateral geniculate nucleus, J Neurosci 1:578–584

    PubMed  CAS  Google Scholar 

  • Steinbusch HWM (1981) Distribution of serotonin-immunoreactivity in the central nervoussystem of the rat—cell bodies and terminals. Neuroscience 6:557–618

    Article  PubMed  CAS  Google Scholar 

  • Steiner FA (1968) Influence of microelectrophoretically applied acetylcholine on the responsiveness of hippocampal and lateral geniculate neurones. Pflügers Arch 303:173–180

    Article  PubMed  CAS  Google Scholar 

  • Steriade M (1968) The flash-evoked afterdischarge. Brain Res 9:169–212

    Article  PubMed  CAS  Google Scholar 

  • Steriade M (1969) Physiologie des Voies et des Centres Visuels. Masson, Paris.

    Google Scholar 

  • Steriade M (1970) Ascending control of thalamic and cortical responsiveness. Int Rev Neurobiol 12:87–144

    Article  PubMed  CAS  Google Scholar 

  • Steriade M (1978) Cortical long-axoned cells and putative interneurons (with commentaries). Behav Brain Sci 3:465–514

    Article  Google Scholar 

  • Steriade M, Demetrescu M (1960) Unspecific systems of inhibition and facilitation ofpotentials evoked by intermittent light. J Neurophysiol 23:602–617

    Google Scholar 

  • Steriade M, Demetrescu M (1966) Post-primary cortical responses to flashes and their specificpotentiation by steady light. Electroencephalogr Clin Neurophysiol 20:576–590

    Article  PubMed  CAS  Google Scholar 

  • Steriade M, Demetrescu M (1967) Specific potentiation and its interaction with unspecific effects on the excitability cycle of the visual thalamo-cortical complex. Electroencephalogr Clin Neurophysiol 22:429–438

    Article  Google Scholar 

  • Steriade M, Deschenes M (1974) Inhibitory processes and interneuronal apparatus in motor cortex during sleep and waking. II. Recurrent and afferent inhibition of pyramidal tract neurons. J Neurophysiol 37:1093–1113

    PubMed  CAS  Google Scholar 

  • Steriade M, Deschenes M (1984) The thalamus as a neuronal oscillator. Brain Res Rev 8:1–63

    Article  Google Scholar 

  • Steriade M, Deschenes M (1988) Intrathalamic and brainstem-thalamic networks involved in resting and alert states. Bentivoglio M, Spreafico R (eds) Cellular thalamic mechanisms. Elsevier, Amsterdam, pp 37–62

    Google Scholar 

  • Steriade M, Glenn LL (1982) The neocortical and caudate projections of intralaminar thalamic neurons and their synaptic excitation from the midbrain core. J Neurophysiol 48:352–371

    PubMed  CAS  Google Scholar 

  • Steriade M, Hobson JA (1976) Neuronal activity during the sleep-waking cycle. Prog Neurobiol 6:155–376

    Article  PubMed  CAS  Google Scholar 

  • Steriade M, Ionescu D (1967) Specific potentiation of photically evoked activity in the visualcortex. Exp Brain Res 4:256–274

    Article  PubMed  CAS  Google Scholar 

  • Steriade M, Llinäs R (1988) The functional states of the thalamus and the associated neuronalinterplay. Physiol Rev 68:649–742

    PubMed  CAS  Google Scholar 

  • Steriade M, Belekhova M, Apostol V (1968) Reticular potentiation of cortical flash-evokedafterdischarge. Brain Res 11:276–280

    Article  PubMed  CAS  Google Scholar 

  • Steriade M, Apostol V, Oakson G (1971) Control of unitary activities in cerebellothalamic pathway during wakefulness and synchronized sleep. J Neurophysiol 34:389–413

    PubMed  CAS  Google Scholar 

  • Steriade M, Deschénes M, Wyzinski P, Hallé JY (1974) Input-output organization of the motor cortex during sleep and waking. In: Petre-Quadens O, Schlag J (eds) Basic sleep mechanisms. Academic, New York, pp 144–200

    Google Scholar 

  • Steriade M, Oakson G, Diallo A (1977) Reticular influences on lateralis posterior thalamicneurons. Brain Res 131:55–71

    Article  PubMed  CAS  Google Scholar 

  • Steriade M, Deschénes M, Domich L, Mulle C (1985) Abolition of spindle oscillations in thalamic neurons disconnected from nucleus reticularis thalami. J Neurophysiol 54:1473–1497

    PubMed  CAS  Google Scholar 

  • Steriade M, Domich L, Oakson G (1986) Reticularis thalamic neurons revisited: activitychanges during shifts in states of vigilance. J Neurosci 6:68–81

    PubMed  CAS  Google Scholar 

  • Steriade M, Domich L, Oakson G, Deschénes M (1987a) The deafferented reticular thalamicnucleus generates spindle rhythmicity. J Neurophysiol 57:260–273

    PubMed  CAS  Google Scholar 

  • Steriade M, Parent A, Paré D, Smith Y (1987b) Cholinergic and non-cholinergic neurons of cat basal forebrain project to reticular and mediodorsal thalamic nuclei. Brain Res 408:372–376

    Article  PubMed  CAS  Google Scholar 

  • Steriade M, Paré D, Parent A, Smith Y (1988) Projections of cholinergic and non-cholinergic neurons of the brainstem core to relay and associational thalamic nuclei in the cat and macaque monkey. Neuroscience 25:47–67

    Article  PubMed  CAS  Google Scholar 

  • Steriade M, Paré D, Bouhassira D, Deschénes M, Oakson G (1989) Phasic activation of lateral geniculate and perigeniculate thalamic neurons during sleep with ponto-geniculo-occipital waves. J Neurosci 9:2215–2229

    PubMed  CAS  Google Scholar 

  • Stichel CC, Singer W (1985) Organization and morphological characteristics of choline acetyltransferase-containing fibers in the visual thalamus and striate cortex of the cat. Neurosci Lett 53:155–160

    Article  PubMed  CAS  Google Scholar 

  • Stone J, Dreher B (1973) Projection of X- and Y-cells of the cat’s lateral geniculate nucleus toareas 17 and 18 of visual cortex. J Neurophysiol 36:551–567

    PubMed  CAS  Google Scholar 

  • Stone TW (1972) Cholinergic mechanisms in the rat somatosensory cortex. J Physiol (Lond) 225:485–499

    CAS  Google Scholar 

  • Stone TW (1977) Interactions between non-cyclic nucleotides and transmitters on centralneurones. Proc Int Union Physiol Sci 13:721

    Google Scholar 

  • Stone TW, Taylor DA, Bloom FE (1975) Cyclic AMP and cyclic GMP may mediate oppositeneuronal responses in the rat cerebral cortex. Science 187:845–846

    Article  PubMed  CAS  Google Scholar 

  • Sur M, Sherman SM (1982) Retinogeniculate terminations in cats: morphological differencesbetween X and Y cells axons. Science 218:389–391

    Article  PubMed  CAS  Google Scholar 

  • Swanson LW, Hartman BK (1975) The central adrenergic system An immunofluorescence study of the location of cell bodies and their efferent connections in the rat utilizing dopamines-hydroxylase as a marker. J Comp Neurol. 163:467–506

    Article  PubMed  CAS  Google Scholar 

  • Swanson LW, Teyler TJ, Thomson RF (1982) Hippocampal long-term potentiation:mechanisms and implications for memory. Neurosci Res Prog Bull 20:613–769

    Google Scholar 

  • Swanson LW, Simmons DM, Whiting PJ, Lindstrom J (1987) Immunohistochemical localization of neuronal nicotinic receptors in the rodent central nervous system. J Neurosci 7:3334–3342

    PubMed  CAS  Google Scholar 

  • Swartz BE, Woody CD (1979) Correlated effects of acetylcholine and cyclic guanosine monophosphate on membrane properties of mammalian neocortical neurons. J Neurobiol 10:465–488

    Article  PubMed  CAS  Google Scholar 

  • Swartz BE, Woody CD (1984) Effects of intracellular antibodies to cGMP on responses of cortical neurons of awake cats to extracellular application muscarinic agonists. Exp Neurol 86:388–404

    Article  PubMed  CAS  Google Scholar 

  • Szentágothai J (1973a) Neuronal and synaptic architecture of the lateral geniculate nucleus. In: Jung R (ed) Visual centers in the brain. Springer, Berlin Heidelberg New York, pp 141–176 (Handbook of sensory physiology, vol VII 3/B)

    Chapter  Google Scholar 

  • Szentagothai J (1973b) Synaptology of the visual cortex. In: Jung R (ed) Visual centers in the brain. Springer, Berlin Heidelberg New York, pp 269–324 (Handbook of sensory physiology, vol VII 3/B)

    Chapter  Google Scholar 

  • Szentagothai J (1975) The “module-concept” in cerebral cortex architecture. Brain Res 95:475–496

    Article  PubMed  CAS  Google Scholar 

  • Szerb JC (1967) Cortical acetylcholine release and electroencephalographic arousal. J Physiol (Lond) 192:329–343

    CAS  Google Scholar 

  • Takeda N, Inagaki S, Taguchi Y, Tohyama M, Watanabe T, Wada H (1984) Origin of histamine-containing fibers in the cerebral cortex of rats studied by immunohistochemistry with histidine decarboxylase as a marker and transection. Brain Res 323:55–63

    Article  PubMed  CAS  Google Scholar 

  • Tebecis AK, DiMaria A (1972) A re-evaluation of the mode of action of 5-hydroxytryptamine on lateral geniculate neurones: comparison with catecholamines and LSD. Exp Brain Res 14:480–493

    Article  PubMed  CAS  Google Scholar 

  • Thompson AM (1986a) A magnesium-sensitive post-synaptic potential in rat cerebral cortexresembles neuronal responses to N-methylaspartate. J Physiol (Lond) 370:531–540

    Google Scholar 

  • Thompson AM (1986b) Comparison of responses to transmitter candidates at an N- methylaspartate receptor mediated synapse, in slices of rat cerebral cortex. Neuroscience 17:37–41

    Article  Google Scholar 

  • Thompson AM (1988a) Inhibitory postsynaptic potentials evoked in thalamic neurones by stimulation of the reticularis nucleus evoke slow spikes in isolated rat brain slices. Neuroscience 25:491–502

    Article  Google Scholar 

  • Thompson AM (1988b) Biphasic responses of thalamic neurones to gamma-aminobutyricacid in isolated rat brain slices. Neuroscience 25:503–512

    Article  Google Scholar 

  • Tigges J, Tigges M, Cross NA, McBride RL, Letbetter WD, Anschel S (1982) Subcortical structures projecting to visual cortical areas in squirrel monkey. J Comp Neurol 209:29–40

    Article  PubMed  CAS  Google Scholar 

  • Tigges J, Walker LC, Tigges M (1983) Subcortical projections to the occipital and parietallobes of the chimpanzee brain. J Comp Neurol 220:106–115

    Article  PubMed  CAS  Google Scholar 

  • Tork I, Turner S (1981) Histochemical evidence for a catecholaminergic (presumably dopaminergic) projection from the ventral mesencephalic tegmentum to visual cortex in the cat. Neurosci Lett 24:215–219

    Article  PubMed  CAS  Google Scholar 

  • Torrealba F, Partlow GD, Guillery RW (1981) Organization of the projection from the superior colliculus to the dorsal lateral geniculate nucleus of the cat. Neuroscience 6:1341–1360

    Article  PubMed  CAS  Google Scholar 

  • Toyama K, Maekawa K, Takeda T (1973) An analysis of neuronal circuitry for two types of visual cortical neurones classified on the basis of their responses to photic stimuli. Brain Res 61:395–399

    Article  PubMed  CAS  Google Scholar 

  • Toyama K, Matsunami K, Ohno T, Tokashiki S (1974) An intracellular study of neuronalorganization in the visual cortex. Exp Brain Res 21:45–66

    Article  PubMed  CAS  Google Scholar 

  • Toyama K, Maekawa K, Takeda T (1977a) Convergence of retinal inputs onto visual cortical cells. I. A study of the cells monosynaptically excited from the lateral geniculate body. Brain Res 137:207–220

    Article  PubMed  CAS  Google Scholar 

  • Toyama K, Kimura M, Shida T, Takeda T (1977b) Convergence of retinal inputs onto visual cortical cells. II. A study of the cells disynaptically excited from the lateral geniculte body. Brain Res 137:221–231

    Article  PubMed  CAS  Google Scholar 

  • Toyama K, Kimura M, Tanaka K (1981) Cross-correlation analysis of interneuronalconnectivity in cat visual cortex. J Neurophysiol 46:191–201

    PubMed  CAS  Google Scholar 

  • Ts’o DY, Gilbert CD, Wiesel TN (1986) Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis. J Neurosci 6:1160–1170

    PubMed  Google Scholar 

  • Tsumoto T, Eckart W, Creutzfeldt OD (1979) Modification of orientation sensitivity of catvisual cortex neurons by removal of GABA-mediated inhibition. Exp Brain Res 34:351–363

    Article  PubMed  CAS  Google Scholar 

  • Tsumoto T, Masui H, Sato H (1986) Excitatory amino acid transmitters in neuronal circuitsof the cat visual cortex. J Neurophysiol 55:469–483

    PubMed  CAS  Google Scholar 

  • Ungerstedt U (1971) Stereotaxic mapping of the monoamine pathways in the rat brain. Acta Physiol Scand S67:l-48

    Google Scholar 

  • Van der Kooy D, Kuypers HGJM (1979) Fluorescent retrograde double labeling: axonalbranching in the ascending raphe and nigral projections. Science 204:873–875

    Article  PubMed  Google Scholar 

  • Van Dongen PAM (1981) The central noradrenergic transmission and the locus coeruleus: a review of the data and their implications for neurotransmission and neuromodulation. Prog Neurobiol 16:117–143

    Article  PubMed  Google Scholar 

  • Vincent SR, Hdkfelt T (1983) Hypothalamic y-aminobutyric acid neurons project to theneocortex. Science 220:1309–1311

    Article  PubMed  CAS  Google Scholar 

  • Vincent SR, Reiner PB (1987) The immunohistochemical localization of choline acetyltrans-ferase in the cat brain. Brain Res Bull 18:371–415

    Article  PubMed  CAS  Google Scholar 

  • Vincent SR, Satoh K, Armstrong DM, Fibiger HC (1983) Substance P in the ascendingcholinergic reticular system. Nature 306:688–691

    Article  PubMed  CAS  Google Scholar 

  • Vizi ES (1980) Modulation of cortical release of acetylcholine by noradrenaline released fromnerves arising from the rat locus coerulus. Neuroscience 5:2139–2144

    Article  PubMed  CAS  Google Scholar 

  • Wainer BH, Bolam JP, Freund TF, Henderson Z, Totterdell S, Smith AD (1984) Cholinergic synapses in the rat brain: a correlated light and electron microscopic immunohistochemical study employing a monoclonal antibody against choline acetyltransferase. Brain Res 308:69–76

    Article  PubMed  CAS  Google Scholar 

  • Walker LC, Kitt CA, Delong MR, Price DL (1985) Noncollateral projections to frontal andparietal neocortex in primates. Brain Res Bull 15:307–314

    Article  PubMed  CAS  Google Scholar 

  • Wamsley JK, Zarbin Ma, Birdsall JM, Kuhar MJ (1980) Muscarinic cholinergic receptors: autoradiographic localization of high and low affinity agonist binding sites. Brain Res 200:1–12

    Article  PubMed  CAS  Google Scholar 

  • Watanabe T, Taguchi Y, Hayashi H, Tanaka J, Tohyama M, Kubota H, Terano Y, Wada H (1983)Evidence for the presence of a histaminergic neuron system in the rat brain: an immunohistochemical analysis. Neurosci Lett 39:249–254

    Article  PubMed  CAS  Google Scholar 

  • Watanabe T, Taguchi Y, Shiosaka S, Tanaka J, Kubota H, Terano Y, Tohyama M, Wada H (1984)Distribution of the histaminergic neuron system in the central nervous system of rats; a fluorescent immunohistochemical analysis with histidine decarboxylase as a marker. Brain Res 295:13–25

    Article  PubMed  CAS  Google Scholar 

  • Waterhouse BD, Woodward DJ (1980) Interaction of norepinephrine with cerebrocortical activity evoked by stimulation of somatosensory afferent pathways in the rat. Exp Neurol 67:30–49

    Article  Google Scholar 

  • Waterhouse BD, Moisés HC, Woodward DJ (1979) Alpha, beta pharmacological characterization of noradrenergic modulatory actions in rat somatosensory cortex. Soc Neurosci Abstr 5:356

    Google Scholar 

  • Waterhouse BD, Moisés HC, Woodward DJ (1980) Noradrenergic modulation of somatosensory cortical neuronal responses to iontophoretically applied putative neurotransmitters. Exp Neurol 69:30–49

    Article  PubMed  CAS  Google Scholar 

  • Watkins JC, Olverman HJ (1987) Agonists and antagonists for excitatory amino acidreceptors. Trends Neurosci 10:265–272

    Article  CAS  Google Scholar 

  • Weber AJ, Kalil RE (1983) The percentage of interneurons in the dorsal lateral geniculate nucleus of the cat and observations on several variables that affect the sensitivity of horseradish peroxidase as a retrograde marker. J Comp Neurol 220:336–346

    Article  PubMed  CAS  Google Scholar 

  • Webster MJ, Rowe MH (1984) Morphology of identified relay cells and interneurons in thedorsal lateral geniculate nucleus of the rat. Exp Brain Res 56:468–474

    PubMed  CAS  Google Scholar 

  • White EL, Hersch SM (1982) A quantitative study of thalamocortical and other synapses involving the apical dendrites of corticothalamic projection cells in mouse SmI cortex. J Neurocytol 11:137–157

    Article  PubMed  CAS  Google Scholar 

  • Williams M, Robinson JL (1984) Binding of the nicotinic cholinergic antagonist, dihydro-ß-erythroidine, to rat brain issue. J Neurosci 4:2906–2911

    PubMed  CAS  Google Scholar 

  • Wilson JR, Hendrickson AE (1985) Electron microscopic analysis of serotonergic axons in themonkey’s lateral geniculate nucleus. ARVO 26:164, A5

    Google Scholar 

  • Wilson PD, Rowe MH, Stone J (1976) Properties of relay cells in the cat’s lateral geniculatenucleus: a comparison of W-cells with X- and Y-cells. J Neurophysiol 39:193–1209

    Google Scholar 

  • Woody CD, Gruen E (1986) Responses of morphologically identified cortical neurons tointracellularly injected cyclic AMP. Exp Neurol 91:596–612

    Article  PubMed  CAS  Google Scholar 

  • Woody CD, Swartz BE, Gruen E (1978) Effects of acetylcholine and cyclic GMP on inputresistance of cortical neurons in awake cats. Brain Res 158:373–395

    Article  PubMed  CAS  Google Scholar 

  • Woody CD, Gruen E, Sakai H, Sakai M, Swartz B (1986) Responses of morphologically identified cortical neurons to intracellularly injected cyclic GMP. Exp Neurol 91:580–596

    Article  PubMed  CAS  Google Scholar 

  • Woolf NJ, Butcher LL (1986) Cholinergic systems in the rat brain. III. Projections from the pontomesencephalic tegmentum to the thalamus, tectum, basal ganglia, and the basal forebrain. Brain Res Bull 16:603–607

    Article  PubMed  CAS  Google Scholar 

  • Wurtz RH, Möhler CW (1976) Enhancement of visual response in monkey striate cortex andfrontal eye fields. J Neurophysiol 39:766–772

    PubMed  CAS  Google Scholar 

  • Wurtz RH, Richmond BJ, Newsome WT (1984) Modulation of cortical processing by attention, perception and movements. In: Edelman GM, Gall WE, Cowan WM (eds) Dynamic aspects of neocortical function. Wiley-Interscience, New York, pp 195–217

    Google Scholar 

  • Yamamoto C (1974) Electrical activity recorded from thin sections of the lateral geniculatebody, and the effects of 5-hydroxytryptamine. Exp Brain Res 19:271–281

    Article  PubMed  CAS  Google Scholar 

  • Yamamura HT, Vickroy TW, Gehlert DR, Wamsley JK, Roeske WR (1985) Autoradiographic localization of muscarine agonist binding sites in the rat central nervous system with (+)-eis-(3H)methyldioxolane. Brain Res 325:340–344

    Article  PubMed  CAS  Google Scholar 

  • Yen CT, Conley M, Hendry SHC, Jones EG (1985) The morphology of physiologically identified GABAergic neurons in the somatic sensory part of the thalamic reticular nucleus in the cat. J Neurosci 5:2254–2268

    PubMed  CAS  Google Scholar 

  • Zieglgänsberger W, Puil EA (1973) Actions of glutamic acid on spinal neurones. Exp Brain Res 17:35–49

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Steriade, M., Paré, D., Hu, B., Deschênes, M. (1990). References. In: The Visual Thalamocortical System and Its Modulation by the Brain Stem Core. Progress in Sensory Physiology, vol 10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74901-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74901-8_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74903-2

  • Online ISBN: 978-3-642-74901-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics