Skip to main content

Principles of Vascular Physiology

  • Chapter
Pan Vascular Medicine

Abstract

The basis of modern cardiovascular hemodynamics was established in the 1960s and 1970s. Invasive measurements of aortic pressure and flow in mammals and humans demonstrated that the cardiac pulsation generates pressure and flow waves, traveling along the arterial tree. Arterial pressure and flow were studied as wave phenomena and it was realized that relevant, quantitative hemodynamic assessment of the cardiovascular system required measurement of both pressure and flow. The concept of arterial impedance was introduced. Wave reflection was found to be an important determinant of the pressure and flow wave contours, altering with age, in cardiovascular disease or in response to drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Milnor WR (1989) Hemodynamics. Williams and Wilkins, Baltimore, Maryland

    Google Scholar 

  2. Murgo JP, Westerhof N, Giolma JP, Altobelli SA (1980) Aortic input impedance in normal man: relationship to pressure wave forms. Circulation 62: 105–116

    Article  CAS  PubMed  Google Scholar 

  3. O’Rourke M (1990) Arterial stiffness, systolic blood pressure, and logical treatment of arterial hypertension. Hypertension 15: 339–347

    Article  PubMed  Google Scholar 

  4. Cameron JD, McGrath B, Dart A (1998) Use of radial artery applanation tonometry and a generalized transfer function to determine aortic pressure augmentation in subjects with treated hypertension. J Am Coll Cardiol 32: 1214–1220

    Article  CAS  PubMed  Google Scholar 

  5. Koh TW, Pepper JR, DeSouza AC, Parker KH (1998) Analysis of wave reflections in the arterial system using wave intensity: a novel method for predicting the timing and amplitude of reflected waves. Heart Vessels 13: 103–113

    Article  CAS  PubMed  Google Scholar 

  6. Westerbacka J, Wilkinson I, Cockcroft J, Utriainen T, Vehkavaara S, Yki-Jarvinen H (1999) Diminished wave reflection in the aorta. A novel physiological action of insulin on large blood vessels. Hypertension 33: 1118–1122

    Article  CAS  PubMed  Google Scholar 

  7. Frank O (1905) Der Puls in den Arterien. Z Biol 46: 441–553

    Google Scholar 

  8. O’Rourke MF (1967) Pressure and flow waves in the systemic arteries and the anatomical design of the arterial system. J Appl Physiol 23: 139–149

    PubMed  Google Scholar 

  9. Latham R, Westerhof N, Sipkema P, Rubal B, Reuderink P, Murgo J (1985) Regional wave travel and reflections along the human aorta: a study with six simultaneous micromanometric pressures. Circulation 72: 1257–1269

    Article  CAS  PubMed  Google Scholar 

  10. Karamanoglu M, Gallagher D, Avolio A, O’Rourke M (1994) Functional origin of reflected pressure waves in a multibranched model of the human arterial system. Am J Physiol 267: H1681-H1688

    Google Scholar 

  11. Segers P, Verdonck P (2000) Role of tapering in aortic wave reflection: hydraulic and mathematical model study. J Biomech 33: 299–306

    Article  CAS  PubMed  Google Scholar 

  12. Westerhof N, Sipkema P, van den Bos GC, Elzinga G et al (1972) Forward and backward waves in the arterial system. Cardiovasc Res 6: 648–656

    Article  CAS  PubMed  Google Scholar 

  13. Campbell K, Lee CL, Frasch HF, Noordergraaf A (1989) Pulse reflection sites and effective length of the arterial system. Am J Physiol 256: H1684–H1689

    Google Scholar 

  14. Berger D, Li J, Laskey W, Noordergraaf A (1993) Repeated reflection of waves in the systemic arterial system. Am J Physiol 264: H269–H281

    Google Scholar 

  15. Nichols WW, O’Rourke MF (1990) McDonald’s blood flow in arteries. Arnold, London

    Google Scholar 

  16. Womersley JR (1957) An elastic tube theory of pulse transmission and oscillatory flow in mammalian arteries. Wright-Patterson Air Force Base, Ohio, Wright Air Development Centre

    Google Scholar 

  17. Dujardin J, Stone D (1981) Characteristic impedance of the proximal aorta determined in the time and frequency domain: a comparison. Med Biol Eng Comp 19: 565–568

    Article  CAS  Google Scholar 

  18. Li J (1986) Time domain resolution of forward and reflected waves in the aorta. IEEE Trans Biomed Eng 33: 783–785

    Article  CAS  PubMed  Google Scholar 

  19. Avolio A (1980) Multi-branched model of the human arterial system. Med Biol Eng Comp 18: 709–718

    Article  CAS  Google Scholar 

  20. Stergiopulos N, Young DF, Rogge TR (1992) Computer simulation of arterial flow with applications to arterial and aortic stenoses. J Biomech 25: 1477–1488

    Article  CAS  PubMed  Google Scholar 

  21. Hales S (1733) Statical essays: containing haemostatics (reprint 1964). Hafner, New York

    Google Scholar 

  22. Frank O (1899) Die Grundform des arteriellen Pulses. Erste Abhandlung. Mathematische Analyse. Z Biol 37: 483–526

    Google Scholar 

  23. Stergiopulos N, Meister JJ, Westerhof N (1996) Determinants of stroke volume and systolic and diastolic pressure. Am J Physiol 270. H2050–H2059

    Google Scholar 

  24. Stergiopulos N, Meister JJ, Westerhof N (1994) Simple and accurate way for estimating total and segmental arterial compliance: the pulse pressure method. Ann Biomed Eng 22: 392–397

    Article  CAS  PubMed  Google Scholar 

  25. Elzinga G, Westerhof N (1973) Pressure and flow generated by the left ventricle against different impedances. Circ Res 32: 178–186

    Article  CAS  PubMed  Google Scholar 

  26. Westerhof N, Elzinga G, Sipkema P (1971) An artificial arterial system for pumping hearts. J Appl Physiol 31: 776–781

    CAS  PubMed  Google Scholar 

  27. Deswysen B, Charlier A, Gevers M (1980) Quantitative evaluation of the systemic arterial bed by parameter estimation of a simple model. Med Biol Eng Comp 18: 153–166

    Article  CAS  Google Scholar 

  28. Stergiopulos N, Meister JJ, Westerhof N (1995) Evaluation of methods for the estimation of total arterial compliance. Am J Physiol 268: H1540–H1548

    Google Scholar 

  29. Segers P, Brimioulle S, Stergiopulos N, Westerhof N, Naeije R, Maggiorini M, Verdonck P (1999) Pulmonary arterial compliance in dogs and pigs: the three-element Windkessel model revisited. Am J Physiol 277: H725–H731

    Google Scholar 

  30. Burattini R, Gnudi G (1982) Computer identification of models for the arterial tree input impedance: comparison between two new simple models and first experimental results. Med Biol Eng Comp 20: 134–144

    Article  CAS  Google Scholar 

  31. Stergiopulos N, Westerhof B, Westerhof N (1999) Total arterial inertance as the fourth element of the Windkessel model. Am J Physiol 276: H8i-H88

    Google Scholar 

  32. Grant BJ, Paradowski LJ (1987) Characterization of pulmonary arterial input impedance with lumped parameter models. Am J Physiol 252: H585–H593

    Google Scholar 

  33. Lambermont B, Gerard P, Detry O, Kolh P, Potty P, Defraigne JO, D’Orio V, Marcelle R (1997) Comparison between three- and four-element Windkessel models to characterize vascular properties of pulmonary circulation. Arch Physiol Biochem 150: 625–632

    Article  Google Scholar 

  34. Goldwyn R, Watt T (1967) Arterial pressure pulse contour analysis via a mathematical model for the clinical quantification of human vascular properties. IEEE Trans Biomed Eng 14: 11–17

    Article  Google Scholar 

  35. Cohn J, Finkelstein S (1992) Abnormalities of vascular compliance in hypertension, aging and heart failure. J Hypertens 10: S6i-S64

    Article  Google Scholar 

  36. McVeigh GE, Bratteli CW, Morgan DJ, Alinder CM, Glasser SP, Finkelstein SM, Cohn JN (1999) Age-related abnormalities in arterial compliance identified by pressure pulse contour analysis: aging and arterial compliance. Hypertension 33: 1392–1398

    Article  CAS  PubMed  Google Scholar 

  37. Fogliardi, R, Burattini R, Shroff SG, Campbell KB (1996) Fit to diastolic arterial pressure by third-order lumped model yields unreliable estimates of arterial compliance. Med Eng Phys 18: 225–233

    Article  CAS  PubMed  Google Scholar 

  38. Toy SM, Melbin J, Noordergraaf A (1985) Reduced models of arterial systems. IEEE Trans Biomed Eng 32: 174–176

    Article  CAS  PubMed  Google Scholar 

  39. Simon A, Safar L, London G, Levy B, Chau N (1979) An evaluation of large arteries compliance in man. Am J Physiol 237: H550–H554

    Google Scholar 

  40. Liu, Z, Brin K, Yin F (1986) Estimation of total arterial compliance: an improved method and evaluation of current methods. Am J Physiol 251: H588–H600

    Google Scholar 

  41. Randall OS, Westerhof N, van den Bos GC, Alexander B (1986) Reliability of stroke volume to pulse pressure ratio for estimating and detecting changes in arterial compliance. J Hypertens 4: S293–S296

    Google Scholar 

  42. Chemla D, Hébert J-L, Coirault C, Zamani K, Suard I, Colin P, Lecarpentier Y (1998) Total arterial compliance estimated by stroke volume-to-aortic pulse pressure ratio in humans. Am J Physiol 274: H500–H505

    Google Scholar 

  43. Segers P, Verdonck P, Deryck Y, Brimioulle S, Naeije R, Carlier S, Stergiopulos N (1999) Pulse pressure method and the area method for the estimation of total arterial compliance in dogs: sensitivity to wave reflection intensity. Ann Biomed Eng 27: 480–485

    Article  CAS  PubMed  Google Scholar 

  44. Quick CM, Berger DS, Noordergraaf A (1998) Apparent arterial compliance. Am J Physiol 274: H1393-H1403

    Google Scholar 

  45. Stergiopulos N, Segers P, Westerhof N (1999) Use of pulse pressure method for estimating total arterial compliance in vivo. Am J Physiol 276: H424–H428

    Google Scholar 

  46. Penaz J (1992) Criteria for set point estimation in the volume clamp method of blood pressure measurement. Physiol Res 41: 5–10

    CAS  PubMed  Google Scholar 

  47. Drzewiecki GM, Melbin J, Noordergraaf A (1983) Arterial tonometry: review and analysis. J Biomech 16: 141–152

    Article  CAS  PubMed  Google Scholar 

  48. Imholz BP, Wieling W, van Montfrans GA, Wesseling KH (1998) Fifteen years experience with finger arterial pressure monitoring: assessment of the technology. Cardiovasc Res 38: 605–616

    Article  CAS  PubMed  Google Scholar 

  49. Bos WJ, van den Meiracker AH, Wesseling KH, Schalekamp MA (1995) Effect of regional and systemic changes in vasomotor tone on finger pressure amplification. Hypertension 26: 315–320

    Article  CAS  PubMed  Google Scholar 

  50. Schmailz KJG, Ormerod O (eds) (1994) Ultrasound in cardiology. Blackwell Science, Boston

    Google Scholar 

  51. Tardy Y, Hayoz D, Mignot JP, Richard P, Brunner HR, Meister JJ (1992) Dynamic non-invasive measurements of arterial diameter and wall thickness. J Hypertens 10 [Suppl 6]: S105–S109

    Google Scholar 

  52. Reneman RS, Hoeks APG, Westerhof N (1996) Non-invasive assessment of artery wall properties in humans — methods and interpretation. J Vase Invest 2: 53–64

    Google Scholar 

  53. Resnick LM, Militianu D, Cunnings AJ, Pipe JG, Evelhoch JL, Soulen RL (1997) Direct magnetic resonance determination of aortic distensibility in essential hypertension: relation to age, abdominal visceral fat, and in situ intracellular free magnesium. Hypertension 30: 654–659

    Article  CAS  PubMed  Google Scholar 

  54. Hoeks AP, Willekes C, Boutouyrie P, Brands PJ, Willigers JM, Reneman RS (1997) Automated detection of local artery wall thickness based on M-line signal processing. Ultrasound Med Biol 23: 1017–1023

    Article  CAS  PubMed  Google Scholar 

  55. Kelly RP, Fitchett D (1992) Noninvasive determination of aortic input impedance and external left ventricular power output: a validation and repeatability study of a new technique. J Am Coll Cardiol 20: 952–963

    Article  CAS  PubMed  Google Scholar 

  56. Chen CH, Ting CT et al (1996) Validation of carotid artery tonometry as a means of estimating augmentation index of ascending aortic pressure. Circulation 27: 168–175

    CAS  Google Scholar 

  57. Karamanoglu M, O’Rourke M, Avolio A, Kelly R (1993) An analysis of the relationship between central aortic and peripheral upper limb pressure waves in man. Eur Heart J 14: 160–167

    Article  CAS  PubMed  Google Scholar 

  58. Chen C-H, Nevo E, Fetics B, Pak PH, Yin FCP, Maughan L, Kass DA (1997) Estimation of central aortic pressure waveform by mathematical transformation of radial tonometry pressure: validation of generalized transfer function. Circulation 95: 1827–1836

    Article  CAS  PubMed  Google Scholar 

  59. Karamanoglu M, Fenely M (1997) On-line synthesis of the human ascending aortic pressure pulse from the finger pulse. Hypertension 30: 1416–1424

    Article  CAS  PubMed  Google Scholar 

  60. Karamanoglu M, Feneley M (1996) Derivation of the ascending aorta-carotid pressure transfer function with an arterial model. Am J Physiol 271: H2399–H2404

    Google Scholar 

  61. Fetics B, Nevo E, Chen CH, Kass DA (1999) Parametric model derivation of transfer function for noninvasive estimation of aortic pressure by radial tonometry. IEEE Trans Biomed Eng 46: 698–706

    Article  CAS  PubMed  Google Scholar 

  62. Aakhus S, Torp H, Haugland T, Hatle L (1993) Non-invasive estimates of aortic root pressures: external subclavian arterial pulse tracing calibrated by oscillometrically determined brachial arterial pressures. Clin Physiol 13: 573–586

    Article  CAS  PubMed  Google Scholar 

  63. Colan SD, Borow KM, Neumann A (1985) Use of the calibrated carotid pulse tracing for calculation of left ventricular pressure and wall stress throughout ejection. Am Heart J 109: 1306–1310

    Article  CAS  PubMed  Google Scholar 

  64. O’Rourke MF, Mancia G (1999) Arterial stiffness. J Hypertens 17: 1–4

    Article  PubMed  Google Scholar 

  65. Brooks B, Molyneaux L, Yue DK (1999) Augmentation of central arterial pressure in type 1 diabetes. Diabetes Care 22: 1722–1727

    Article  CAS  PubMed  Google Scholar 

  66. Segers P, Carlier S, Pasquet A, Rabben SI, Hellevik LR, Remme E, De Backer T, De Sutter J, Thomas JD, Verdonck P (2000) Individualizing the aorto-radial pressure transfer function: feasibility of a model-based approach. Am J Physiol 279: H542–H549

    Google Scholar 

  67. Bramwell CJ, Hill A (1922) The velocity of the pulse wave in man. Proc R Soc Lond [Biol] 93: 298–306

    Article  Google Scholar 

  68. Avolio A, Chen S, Wang R, Zhang C, Li M, O’Rourke M (1983) Effects of aging on changing arterial compliance and left ventricular load in a northern Chinese urban community. Circulation 68: 50–58

    Article  CAS  PubMed  Google Scholar 

  69. Lehmann E, Gosling R, Fatemi-Langroudi B, Taylor M (1992) Noninvasive Doppler ultrasound technique for the in vivo assessment of aortic compliance. J Biomed Eng 14: 250–256

    Article  CAS  PubMed  Google Scholar 

  70. Blacher J, Asmar R, Djane S, London GM, Safar ME (1999) Aortic pulse wave velocity as a marker of cardiovascular risk in hypertensive patients. Hypertension 33: 1111–1117

    Article  CAS  PubMed  Google Scholar 

  71. Learoyd BM, Taylor MG (1966) Alterations with age in the vis-coelastic properties of human arterial walls. Circ Res 18: 278–292

    Article  CAS  PubMed  Google Scholar 

  72. Bergel HD (1972) The properties of blood vessels. In: Fung Y, Perrone N, Anliker M (eds) Biomechanics, its foundations and objectives. Prentice Hall, New Jersey, pp 105–139

    Google Scholar 

  73. Rhodin JAG (1980) Architecture of the vessel wall. In: Bohr D, Somlyo A, Sparks HJ (eds) Handbook of physiology, sect 2. The cardiovascular system. American Physiological Society, Bethesda, Maryland, pp 1–31

    Google Scholar 

  74. Bergel DH (1964) Arterial viscoelasticity. In: Attinger EO (ed) Pulsatile blood flow. McGraw-Hill, New York, pp 275–292

    Google Scholar 

  75. Langewouters G, Wesseling K, Goedhard W (1984) The static elastic properties of 45 human thoracic and 20 abdominal aortas in vitro and the parameters of a new model. J Biomech 17: 425–435

    Article  CAS  PubMed  Google Scholar 

  76. Langewouters GJ (1982) Visco-elasticity of the human aorta in vitro in relation to pressure and age. Vrije Universiteit, Amsterdam

    Google Scholar 

  77. Hayashi K (1993) Experimental approaches on measuring the mechanical properties and constitutive laws of arterial walls. J Biomech Eng 115: 481–488

    Article  CAS  PubMed  Google Scholar 

  78. Peterson LH, Jensen RE, Parnell J (1960) Mechanical properties of arteries in vivo. Circ Res 8: 622–639

    Article  Google Scholar 

  79. Langewouters G, Wesseling K, Goedhard W (1985) The pressure dependent dynamic elasticity of 35 thoracic and 16 abdominal human aortas in vitro described by a 5 component model. J Biomech 18: 613–620

    Article  CAS  PubMed  Google Scholar 

  80. Tardy Y, Meister JJ, Perret F, Brunner HR, Arditi M (1991) Noninvasive estimate of the mechanical properties of peripheral arteries from ultrasonic and photoplethysmographic measurements. Clin Phys Physiol Meas 12: 39–54

    Article  CAS  PubMed  Google Scholar 

  81. Bussy C, Boutouyrie P (2000) Intrinsic stiffness of the carotid arterial wall material in essential hypertensives. Hypertension 35: 1049–1054

    Article  CAS  PubMed  Google Scholar 

  82. Laurent S, Caviezel B (1994) Carotid artery distensibility and distending pressure in hypertensive humans. Hypertension 23: 878–883

    Article  CAS  PubMed  Google Scholar 

  83. Bortolotto LA, Hanon O, Franconi G, Boutouyrie P, Legrain S, Girerd X (1999) The aging process modifies the distensibility of elastic but not muscular arteries. Hypertension 34: 889–892

    Article  CAS  PubMed  Google Scholar 

  84. Weber R, Stergiopulos N, Brunner HR, Hayoz D (1996) Contributions of vascular tone and structure to elastic properties of a medium-sized artery. Hypertension 27: 816–822

    Article  CAS  PubMed  Google Scholar 

  85. Laurent S, Hayoz D, Trazzi S, Boutouyrie P, Waeber B, Omboni S, Brunner H, Mancia G, Safar M (1993) Isobaric compliance of the radial artery is increased in patients with essential hypertension. J Hypertens 11: 89–98

    Article  CAS  PubMed  Google Scholar 

  86. Segers P, Stergiopulos N, Westerhof N (2000) Quantification of the contribution of cardiac and arterial remodeling to hypertension. Hypertension 36: 760–765

    Article  CAS  PubMed  Google Scholar 

  87. Devereux RB, Roman MJ (1999) Left ventricular hypertrophy in hypertension: stimuli, patterns and consequences. Hypertens Res 22: 1–9

    Article  CAS  PubMed  Google Scholar 

  88. Grosman W, Jones D, McLaurin LP (1975) Wall stress and patterns of hypertrophy in the human left ventricle. J Clin Invest 56: 56–64

    Article  Google Scholar 

  89. Segers P, Stergiopulos N, Schreuder J J, Westerhof BE, Westerhof N (2000) Left ventricular wall stress normalization in chronic pressure overloaded heart: a mathematical model study. Am J Physiol 279: H1120–H1127

    Google Scholar 

  90. Ganau A, Devereux RB, Roman MJ, de Simone G, Pickering TG, Saba PS, Vargiu P, Simongini I, Laragh JH (1992) Patterns of left ventricular hypertrophy and geometric remodeling in essential hypertension. J Am Coll Cardiol 19: 1550–1558

    Article  CAS  PubMed  Google Scholar 

  91. Randall OS, van den Bos GC, Westerhof N (1984) Systemic compliance: does it play a role in the genesis of essential hypertension? Cardiovasc Res 18: 455–462

    Article  CAS  PubMed  Google Scholar 

  92. Kelly RP, Tunin R, Kass DA (1992) Effect of reduced aortic compliance on cardiac efficiency and contractile function of in situ canine left ventricle. Circ Res 71: 490–502

    Article  CAS  PubMed  Google Scholar 

  93. Kelly R, Ting C, Yang T, Liu C, Lowell W, Chang M, Kass D (1992) Effective arterial elastance as index of arterial vascular load in humans. Circulation 86: 513–521

    Article  CAS  PubMed  Google Scholar 

  94. Suga H, Sagawa K (1974) Instantaneous pressure-volume relationships and their ratio in the exercised, supported canine left ventricle. Circ Res 35: 117–126

    Article  CAS  PubMed  Google Scholar 

  95. Suga H, Sagawa K, Shoukas AA (1973) Load independence of the instantaneous pressure-volume ratio of the canine left ventricle and effects of epinephrine and heart rate on the ratio. Circ Res 32: 314–322

    Article  CAS  PubMed  Google Scholar 

  96. Burkhoff D, Sagawa K (1986) Ventricular efficiency predicted by an analytical model. Am J Physiol 250: R1021–R1027

    Google Scholar 

  97. Ishihara H, Yokota M, Sobue T, Saito H (1994) Relation between ventriculoatrial coupling and myocardial energetics in patients with idiopathic dilated cardiomyopathie. J Am Coll Cardiol 23: 406–416

    Article  CAS  PubMed  Google Scholar 

  98. Chen C-H, Nakayama M, Nevo E, Fetics BJ, Maughan WL, Kass DA (1998) Coupled systolic-ventricular and vascular stiffening with age. Implications for pressure regulation and cardiac reserve in the elderly. J Am Coll Cardiol 32: 1221–1227

    Article  CAS  PubMed  Google Scholar 

  99. Sasayama S, Asanoi H (1991) Coupling between the heart and arterial system in heart failure. Am J Med 90: 14S–18S

    Article  Google Scholar 

  100. Lambert CRJ, Nichols WW, Pepine CJ (1983) Indices of ventricular contractile state: comparative sensitivity and specificity. Am Heart J 106: 136–144

    Article  PubMed  Google Scholar 

  101. Wright G, Ping JS, Campbell CS, Tobias MA (1988) Computation of haemodynamic power and input impedance in the ascending aorta of patients undergoing open heart surgery. Cardiovasc Res 22: 179–184

    Article  CAS  PubMed  Google Scholar 

  102. Kass DA, Beyar R (1991) Evaluation of contractile state by maximal ventricular power divided by the square of end-diastolic volume. Circulation 84: 1698–1708

    Article  CAS  PubMed  Google Scholar 

  103. Sharir T, Feldman MD, Haber H, Feldman AM, Marmor A, Becker LC, Kass DA (1994) Ventricular systolic assessment in patients with dilated cardiomyopathy by preload-adjusted maximal power. Validation and noninvasive application. Circulation 89: 2045–2053

    Article  CAS  PubMed  Google Scholar 

  104. Westerhof N, Huisman RM (1987) Arterial haemodynamics of hypertension. Clin Sci 72: 391–398

    CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Segers, P., Verdonck, P. (2002). Principles of Vascular Physiology. In: Lanzer, P., Topol, E.J. (eds) Pan Vascular Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56225-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56225-9_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62565-7

  • Online ISBN: 978-3-642-56225-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics