Skip to main content

Status and Causal Pathway Assessments Supporting River Basin Management

  • Chapter
  • First Online:
Risk-Informed Management of European River Basins

Abstract

The European Water Framework Directive (WFD) requires a status assessment of all water bodies. If that status is deteriorated, the WFD urges the identification of its potential causes in order to be able to suggest appropriate management measures. The instrument of investigative monitoring allows for such identification, provided that appropriate tools are available to link the observed effects to causative stressors, while unravelling confounding factors. In this chapter, the state of the art of status and causal pathway assessment is described for the major stressors responsible for the deterioration of European water bodies, i.e. toxicity, acidification, salinisation, eutrophication and oxygen depletion, parasites and pathogens, invasive alien species, hydromorphological degradation, changing water levels as well as sediments and suspended matter. For each stressor, an extensive description of the potential effects on the ecological status is given. Secondly, stressor-specific abiotic and biotic indicators are described that allow for a first indication of probable causes, based on the assessment of available monitoring data. Subsequently, more advanced tools for site-specific confirmation of stressors at hand are discussed. Finally, the local status assessments are put into the perspective of the risk for downstream stretches in order to be able to prioritise stressors and to be able to select appropriate measures for mitigation of the risks resulting from these stressors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See: www.systemecology.eu/SPEAR/Start.html

  2. 2.

    See: www.fliessgewaesserbewertung.de

  3. 3.

    See: http://www.epa.gov/waterscience/models/aquatox/

  4. 4.

    See: http://www.eea.europa.eu/

  5. 5.

    See: http://www.emissieregistratie.nl/

  6. 6.

    See: www.fliessgewaesserbewertung.de

  7. 7.

    See: http://www.reabic.net/

  8. 8.

    See: http://www.reabic.net/journals/

  9. 9.

    See: http://www.alarmproject.net

  10. 10.

    See: http://www.envirogrids.net

  11. 11.

    See: www.fliessgewaesserbewertung.de

  12. 12.

    See: http://www.reformrivers.eu/

  13. 13.

    Detailed instructions on how to use these tools are downloadable at http://toolbox.watersketch.net/

  14. 14.

    See: http://ec.europa.eu/environment/soil

  15. 15.

    See: www.sednet.org

References

  1. MEA (2005) Ecosystems and human well-being: Synthesis. Washington, DC. p. 137

    Google Scholar 

  2. Brils J, Barceló D, Blum W, Brack W, Harris B, Müller-Grabherr D, Négrel P, Ragnarsdottir V, Salomons W, Slob A, Track T, Vegter J, Vermaat JE (2014) Introduction: the need for risk-informed river basin management. In: Brils J, Brack W, Müller-Grabherr D, Négrel P, Vermaat JE (eds) Risk-informed management of European river basins. Springer, Heidelberg

    Google Scholar 

  3. Communities, C.o.t.E. (2000) Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Commission of the European Communities. p 77

    Google Scholar 

  4. Négrel P, Merly C, Gourcy L, Cerdan O, Petelet-Giraud E, Kralik M, Klaver G, van Wirdum G, Vegter J (2014) Soil–sediment–river connections: catchment processes delivering pressures to river catchments. In: Brils J, Brack W, Müller-Grabherr D, Négrel P, Vermaat JE (eds) Risk-informed management of European river basins. Springer, Heidelberg

    Google Scholar 

  5. von der Ohe PC, de Zwart D, Semenzin E, Apitz SE, Gottardo S, Harris B, Hein M, Marcomini A, Posthuma L, Schäfer RB, Segner H, Brack W (2014) Monitoring programs, multiple stress analysis and decision support for river basin management. In: Brils J, Brack W, Müller-Grabherr D, Négrel P, Vermaat JE (eds) Risk-informed management of European river basins. Springer, Heidelberg

    Google Scholar 

  6. Négrel P, et al. (eds) (2014) Soil–sediment–river connections: catchment processes delivering pressures to river catchments. 43.

    Google Scholar 

  7. Cormier SM, Suter GW (2008) A framework for fully integrating environmental assessment. Environ Manage 42(4):543–556

    Article  Google Scholar 

  8. Portner HO, Knust R (2007) Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science 315(5808):95–97

    Article  CAS  Google Scholar 

  9. Jeppesen E et al (2010) Impacts of climate warming on lake fish community structure and potential effects on ecosystem function. Hydrobiologia 646(1):73–90

    Article  CAS  Google Scholar 

  10. Jeppesen E et al (2009) Climate change effects on runoff, catchment phosphorus loading and lake ecological state, and potential adaptations. J Environ Qual 38(5):1930–1941

    Article  CAS  Google Scholar 

  11. Tops S, Lockwood W, Okamura B (2006) Temperature-driven proliferation of Tetracapsuloides bryosalmonae in bryozoan hosts portends salmonid declines. Dis Aquat Organ 70(3):227–236

    Article  CAS  Google Scholar 

  12. Rahel FJ, Olden JD (2008) Assessing the effects of climate change on aquatic invasive species. Conserv Biol 22(3):521–533

    Article  Google Scholar 

  13. Litchman E (2010) Invisible invaders: non-pathogenic invasive microbes in aquatic and terrestrial ecosystems. Ecol Lett 13(12):1560–1572

    Article  Google Scholar 

  14. Schiedek D et al (2007) Interactions between climate change and contaminants. Mar Pollut Bull 54(12):1845–1856

    Article  CAS  Google Scholar 

  15. Ng CA, Gray KA (2011) Forecasting the effects of global change scenarios on bioaccumulation patterns in great lakes species. Glob Chang Biol 17(2):720–733

    Article  Google Scholar 

  16. Patra RW et al (2007) The effects of three organic chemicals on the upper thermal tolerances of four freshwater fishes. Environ Toxicol Chem 26(7):1454–1459

    Article  CAS  Google Scholar 

  17. Camus L et al (2004) Temperature-dependent physiological response of Carcinus maenas exposed to copper. Mar Environ Res 58(2–5):781–785

    Article  CAS  Google Scholar 

  18. Rohr JR, Sesterhenn TM, Stieha C (2011) Will climate change reduce the effects of a pesticide on amphibians?: partitioning effects on exposure and susceptibility to contaminants. Global Change Biol 17(2):657–666

    Article  Google Scholar 

  19. von der Ohe PC et al (2009) Towards an integrated assessment of the ecological and chemical status of European River Basins. Integr Environ Assess Manag 5:50–61

    Article  Google Scholar 

  20. Schäfer RB et al (2007) Effects of pesticides on community structure and ecosystem functions in agricultural streams of three biogeographical regions in Europe. Sci Total Environ 382(2–3):272–285

    Article  CAS  Google Scholar 

  21. Munoz I et al (2009) Bridging levels of pharmaceuticals in river water with biological community structure in the Llobregat river basin (NE Spain). Environ Toxicol Chem 28:2706–14

    Article  CAS  Google Scholar 

  22. Schmitt-Jansen M et al (2008) An ecological perspective in aquatic ecotoxicology: approaches and challenges. Basic Appl Ecol 9:337–345

    Article  CAS  Google Scholar 

  23. de Zwart D et al (2009) Diagnosis of ecosystem impairment in a multiple stress context—how to formulate effective river basin management plans. Integr Environ Assess Manag 5:38–49

    Article  Google Scholar 

  24. Posthuma L, de Zwart D (2006) Predicted effects of toxicant mixtures are confirmed by changes in fish species assemblages in Ohio, USA, Rivers. Environ Toxicol Chem 25(4):1094–1105

    Article  CAS  Google Scholar 

  25. Schäfer RB, von der Ohe PC, Kühne R, Schüürmann G, Liess M (2011) Occurrence and toxicity of 331 organic pollutants in large rivers of North Germany over a decade (1994 to 2004). Environ Sci Technol 45(14):6167–6174

    Article  CAS  Google Scholar 

  26. von der Ohe PC, Dulio V, Slobodnik J, de Deckere E, Kühne R, Ebert RU, Ginebreda A, De Cooman W, Schüürmann G, Brack W (2011) A new risk assessment approach for the prioritization of 500 classical and emerging organic microcontaminants as potential river basin specific pollutants under the European Water Framework Directive. Sci Total Environ 409(11):2064–2077

    Article  CAS  Google Scholar 

  27. Posthuma L et al (2008) Ecological effects of diffuse mixed pollution are site-specific and require higher-tier risk assessment to improve site management decisions: a discussion paper. Sci Total Environ 406(3):503–517

    Article  CAS  Google Scholar 

  28. Clements WH, Rohr JR (2009) Community responses to contaminants: using basic ecological principles to predict ecotoxicological effects. Environ Toxicol Chem 28(9):1789–1800

    Article  CAS  Google Scholar 

  29. Fleeger JW, Carman KR, Nisbet RM (2003) Indirect effects of contaminants in aquatic ecosystems. Sci Total Environ 317(1–3):207–233

    Article  CAS  Google Scholar 

  30. Rohr JR et al (2008) Agrochemicals increase trematode infections in a declining amphibian species. Nature 455(7217):1235–U50

    Article  CAS  Google Scholar 

  31. Liess M (2002) Population response to toxicants is altered by intraspecific interaction. Environ Toxicol Chem 21(1):138–142

    Article  CAS  Google Scholar 

  32. Beketov MA, Liess M (2005) Acute contamination with esfenvalerate and food limitation: chronic effects on the mayfly, Cloeon dipterum. Environ Toxicol Chem 24(5):1281–1286

    Article  CAS  Google Scholar 

  33. Beketov MA, Liess M (2006) The influence of predation on the chronic response of Artemia sp populations to a toxicant. J Appl Ecol 43(6):1069–1074

    Article  CAS  Google Scholar 

  34. Segner H (2011) Moving beyond a descriptive aquatic toxicology: the value of biological process and trait information. Aquat Toxicol 105:50–5

    Article  CAS  Google Scholar 

  35. CAS (2009) 50 Millionth unique chemical substance recorded in CAS REGISTRY. 2009 12.12.2009]; Available from: http://www.cas.org/.

  36. Müller-Grabherr D, Valentin Florin M, Harris B, Crilly D, Gugic G, Vegter J, Slob A, Borowski I, Brils J (2014) Integrated river basin management and risk governance. In: Brils J, Brack W, Müller-Grabherr D, Négrel P, Vermaat JE (eds) Risk-informed management of European river basins. Springer, Heidelberg

    Google Scholar 

  37. Chapman PM (1990) The sediment quality triad approach to determining pollution-induced degradation. Sci Total Environ 97–98:815–825

    Article  Google Scholar 

  38. Chapman PM, Hollert H (2006) Should the sediment quality triad become a tetrad, a pentad, or possibly even a hexad? Environ Sci Pollut Res 6:4–8

    Google Scholar 

  39. Posthuma L, Suter GW II, Traas TP (eds) (2002) Species sensitivity distributions in ecotoxicology. Lewis, Boca Raton, FL, p 587

    Google Scholar 

  40. Schäfer RB et al (2011) Occurrence and toxicity of 331 organic pollutants in large rivers of North Germany over a decade (1994 to 2004). Environ Sci Technol 45:6167–6174

    Article  CAS  Google Scholar 

  41. Sprague JB (1970) Measurement of pollutant toxicity to fish. II. Utilizing and applying bioassay results. Water Res 4:3–32

    Article  CAS  Google Scholar 

  42. Lepper P (2005) Manual on the methodological framework to derive environmental quality standards for priority substances in accordance with Article 16 of the Water Framework Directive (2000/60/EC), F.-I.M.B.a.A. Ecology, Editor. 2005: Schmallenberg, Germany

    Google Scholar 

  43. Kühne R, Ebert R-U, von der Ohe PC, Ulrich N, Brack W, Schüürmann G (2013) Read-across prediction of the acute toxicity of organic compounds toward the water flea Daphnia magna. Mol Inf 32(1):108–120

    Article  CAS  Google Scholar 

  44. Schüürmann G, Ebert R-U, Kühne R (2011) Quantitative read-across for predicting the acute fish toxicity of organic compounds. Environ Sci Technol 45(10):4616–4622

    Article  CAS  Google Scholar 

  45. von der Ohe PC et al (2005) Structural alerts—A new classification model to discriminate excess toxicity from narcotic effect levels of organic compounds in the acute daphnid assay. Chem Res Toxicol 18(3):536–555

    Article  CAS  Google Scholar 

  46. Liess M, von der Ohe PC (2005) Analyzing effects of pesticides on invertebrate communities in streams. Environ Toxicol Chem 24(4):954–965

    Article  CAS  Google Scholar 

  47. Liess M, Schafer RB, Schriever CA (2008) The footprint of pesticide stress in communities-Species traits reveal community effects of toxicants. Sci Total Environ 406(3):484–490

    Article  CAS  Google Scholar 

  48. von der Ohe PC et al (2007) Water quality indices across Europe—a comparison of the good ecological status of five river basins. J Environ Monit 9:970–978

    Article  CAS  Google Scholar 

  49. Lenat DR (1988) Water quality assessment of streams using a qualitative collection method for benthic macroinvertebrates. J N Am Benthol Soc 7:222–233

    Article  Google Scholar 

  50. Schäfer RB, von der Ohe PC, Rasmussen J, Kefford BJ, Beketov M, Schulz R, Liess M (2012) Thresholds for the effects of pesticides on invertebrate communities and leaf breakdown in stream ecosystems. Environ Sci Technol 46(9):5134–5142

    Article  CAS  Google Scholar 

  51. von der Ohe PC, Liess M (2004) Relative sensitivity distribution of aquatic invertebrates to organic and metal compounds. Environ Toxicol Chem 23(1):150–156

    Article  Google Scholar 

  52. Beketov MA, Liess M (2008) An indicator for effects of organic toxicants on lotic invertebrate communities: Independence of confounding environmental factors over an extensive river continuum. Environ Pollut 156(3):980–7

    Article  CAS  Google Scholar 

  53. Schäfer RB et al (2011) Effects of pesticides monitored with three sampling methods in 24 sites on macroinvertebrates and microorganisms. Environ Sci Technol 45:1665–72

    Article  CAS  Google Scholar 

  54. Ankley GT et al (1993) Development and evaluation of test methods for Benthic invertebrates and sediments—effects of flow-rate and feeding on water-quality and exposure conditions. Arch Environ Contam Toxicol 25(1):12–19

    Article  CAS  Google Scholar 

  55. Traunspurger W et al (1997) Ecotoxicological assessment of aquatic sediments with Caenorhabditis elegans (Nematoda)—a method for testing liquid medium and whole-sediment samples. Environ Toxicol Chem 16:245–250

    CAS  Google Scholar 

  56. United States Environmental Protection, A (2007) Sediment toxicity identification evaluation (TIE). Phases I, II, and III Guidance Document. EPA/600/R-07/080

    Google Scholar 

  57. Ankley GT, Schubauer-Berigan MK (1994) Comparison of techniques for the isolation of sediment pore water for toxicity testing. Arch Environ Contam Toxicol 27:507–512

    Article  CAS  Google Scholar 

  58. Wang F (1999) Porewater toxicity testing: does it make sense? SETAC-Europe News 10:6–7

    Google Scholar 

  59. Brack W et al (2009) Bioavailability in effect-directed analysis of organic toxicants in sediments. TRAC-Trends Anal Chem 28(5):543–549

    Article  CAS  Google Scholar 

  60. Heinis LJ, Highland TL, Mount DR (2004) Method for testing the aquatic toxicity of sediment extracts for use in identifying organic toxicants in sediments. Environ Sci Technol 38:6256–6262

    Article  CAS  Google Scholar 

  61. Bandow N et al (2009) Partitioning-based dosing: an approach to include bioavailability in the effect-directed analysis of contaminated sediment samples. Environ Sci Technol 43(10):3891–3896

    Article  CAS  Google Scholar 

  62. Lozano SJ et al (1992) Effect of esfenvalerate on aquatic organisms in littoral enclosures. Environ Toxicol Chem 11:35–47

    Article  CAS  Google Scholar 

  63. Beketov MA, Liess M (2008) Potential of 11 pesticides to initiate downstream drift of stream macroinvertebrates. Arch Environ Contam Toxicol 55(2):247–253

    Article  CAS  Google Scholar 

  64. Beketov MA et al (2008) Long-term stream invertebrate community alterations induced by the insecticide thiacloprid: effect concentrations and recovery dynamics. Sci Total Environ 405:96–108

    Article  CAS  Google Scholar 

  65. Brent RN, Herricks EE (1998) Postexposure effects of brief cadmium, zinc, and phenol exposures on freshwater organisms. Environ Toxicol Chem 17(10):2091–2099

    Article  CAS  Google Scholar 

  66. Beketov MA, Liess M (2008) Acute and delayed effects of the neonicotinoid insecticide thiacloprid on seven freshwater arthropods. Environ Toxicol Chem 27(2):461–470

    Article  CAS  Google Scholar 

  67. Schmitt-Jansen M, von der Ohe PC, Franz S, Rotter S, Sabater S, de Zwart D, Segner H (2011) Ecological relevance of key toxicants in aquatic systems. In: Brack W (ed) Effect-directed analysis of complex environmental contamination. Handbook of environmental chemistry, series 15. Springer, Berlin, pp 315–340

    Chapter  Google Scholar 

  68. Hutchinson TH et al (2006) Screening and testing for endocrine disruption in fish—Biomarkers as “signposts,” not “traffic lights,” in risk assessment. Environ Health Perspect 114:106–114

    Article  Google Scholar 

  69. Reifferscheid G et al (1991) A microplate version of the SOS/umu-test for rapid detection of genotoxins and genotoxic potentials of environmental samples. Mutation Research/Environmental Mutagenesis and Related Subjects 253(3):215–222

    Article  CAS  Google Scholar 

  70. Reifferscheid G, Heil J (1996) Validation of the SOS/umu test using test results of 486 chemicals and comparison with the Ames test and carcinogenicity data. Mutat Res/Genet Toxicol 369(3–4):129–145

    Article  CAS  Google Scholar 

  71. Flückiger-Isler S et al (2004) Assessment of the performance of the Ames II TM assay: a collaborative study with 19 coded compounds. Mutat Res 558:181–197

    Article  CAS  Google Scholar 

  72. Hilscherova K et al (2000) Cell bioassays for detection of aryl hydrocarbon (AhR) and estrogen receptor (ER) mediated activity in environmental samples. Environ Sci Pollut Res 7:159–171

    Article  CAS  Google Scholar 

  73. Sonneveld E et al (2005) Development of androgen- and estrogen-responsive bioassays, members of a panel of human cell line-based highly selective steroid-responsive bioassays. Toxicol Sci 83(1):136–148

    Article  CAS  Google Scholar 

  74. van der Linden SC et al (2008) Detection of multiple hormonal activities wastewater effluents and surface water, using a panel of steroid receptor CALUX bioassays. Environ Sci Technol 42:5814–5820

    Article  CAS  Google Scholar 

  75. Sohoni P, Sumpter JP (1998) Several environmental oestrogens are also anti-androgens. J Endocrinol 158(3):327–339

    Article  CAS  Google Scholar 

  76. Thomas KV et al (2002) An assessment of in vitro androgenic activity and the identification of environmental androgens in United Kingdom estuaries. Environ Toxicol Chem 21:1456–1461

    Article  CAS  Google Scholar 

  77. Behnisch PA, Hosoe K, Sakai S (2001) Bioanalytical screening methods for dioxins and dioxin-like compounds—a review of bioassay/biomarker technology. Environ Int 27:413–439

    Article  CAS  Google Scholar 

  78. Blaha L et al (2002) Inhibition of gap-junctional intercellular communication by environmentally occurring polycyclic aromatic hydrocarbons. Toxicol Sci 65:43–51

    Article  CAS  Google Scholar 

  79. Machala M et al (2003) Inhibition of gap junctional intercellular communication by noncoplanar polychlorinated biphenyls: inhibitory potencies and screening for potential modes(s) of action. Toxicol Sci 76:102–111

    Article  CAS  Google Scholar 

  80. Hamers T et al (2006) In vitro profiling of the endocrine-disrupting potency of brominated flame retardants. Toxicol Sci 92(1):157–173

    Article  CAS  Google Scholar 

  81. Lans MC et al (1993) Structure-dependent, competitive interaction of hydroxy-polychlorobiphenyls, hydroxy-dibenzo-P-dioxins and hydroxy-dibenzofurans with human transthyretin. Chem Biol Interact 88(1):7–21

    Article  CAS  Google Scholar 

  82. Weiss JM et al (2009) Competitive binding of poly- and perfluorinated compounds to the thyroid hormone transport protein transthyretin. Toxicol Sci 109(2):206–16

    Article  CAS  Google Scholar 

  83. Smith AJ, Balaam JL, Ward A (2007) The development of a rapid screening technique to measure antibiotic activity in effluents and surface water samples. Mar Pollut Bull 54(12):1940–1946

    Article  CAS  Google Scholar 

  84. Hamadeh HK et al (2001) Discovery in toxicology: mediation by gene expression array technology. J Biochem Mol Toxicol 15(5):231–242

    Article  CAS  Google Scholar 

  85. Roh JY et al (2009) Ecotoxicity of silver nanoparticles on the soil nematode Caenorhabditis elegans using functional ecotoxicogenomics. Environ Sci Technol 43(10):3933–3940

    Article  CAS  Google Scholar 

  86. Nesatyy VJ, Suter MJF (2008) Analysis of environmental stress response on the proteome level. Mass Spectrom Rev 27(6):556–574

    Article  CAS  Google Scholar 

  87. Viant MR (2007) Metabolomics of aquatic organisms: the new ‘omics’ on the block. Mar Ecol Prog Ser 332:301–306

    Article  CAS  Google Scholar 

  88. Kluender C et al (2009) A metabolomics approach to assessing phytotoxic effects on the green alga Scenedesmus vacuolatus. Metabolomics 5(1):59–71

    Article  CAS  Google Scholar 

  89. Peakall DB (1994) The role of biomarkers in environmental assessment (1). Introduction. Ecotoxicology 3:157–160

    Article  Google Scholar 

  90. Hinton DE et al (2005) Resolving mechanisms of toxicity while pursuing ecotoxicological relevance? Mar Pollut Bull 51(8–12):635–648

    Article  CAS  Google Scholar 

  91. Forbes VE, Palmqvist A, Bach L (2006) The use and misuse of biomarkers in ecotoxicology. Environ Toxicol Chem 25(1):272–280

    Article  CAS  Google Scholar 

  92. Blanck H (2002) A critical review of procedures and approaches used for assessing pollution-induced community tolerance (PICT) in biotic communities. Hum Ecol Risk Assess 8(5):1003–1034

    Article  Google Scholar 

  93. McClellan K, Altenburger R, Schmitt-Jansen M (2008) Pollution-induced community tolerance as a measure of species interaction in toxicity assessment. J Appl Ecol 45(5):1514–1522

    Article  CAS  Google Scholar 

  94. Knopper LD, Siciliano SD (2002) A hypothetical application, of the pollution-induced community tolerance concept in megafaunal communities found at contaminated sites. Hum Ecol Risk Assess 8(5):1057–1066

    Article  Google Scholar 

  95. Brack W et al (2008) Polychlorinated naphthalenes and other dioxin-like compounds in Elbe River sediments. Environ Toxicol Chem 27(3):519–528

    Article  CAS  Google Scholar 

  96. Blanck H, Wangberg SA (1991) Pattern of cotolerance in marine periphyton communities established under arsenate stress. Aquat Toxicol 21(1–2):1–14

    Article  CAS  Google Scholar 

  97. Courtney LA, Clements WH (2000) Sensitivity to acidic pH in benthic invertebrate assemblages with different histories of exposure to metals. J N Am Benthol Soc 19(1):112–127

    Article  Google Scholar 

  98. Kashian DR et al (2007) The cost of tolerance: sensitivity of stream benthic communities to UV-B and metals. Ecol Appl 17(2):365–375

    Article  Google Scholar 

  99. Clements WH (1999) Metal tolerance and predator–prey interactions in benthic macroinvertebrate stream communities. Ecol Appl 9(3):1073–1084

    Google Scholar 

  100. Norberg-King TJ et al (1991) Methods for aquatic toxicity identification evaluations. Phase I Toxicity characterization procedures. United States Environmental Protection Agency, Washington, DC, EPA/600/6-91/003

    Google Scholar 

  101. Mount DI, Anderson-Carnahan L (1989) Methods for aquatic toxicity identification evaluations Phase II Toxicity identification procedures. United States Environmental Protection Agency, Washington, DC, EPA/600/3-88/035

    Google Scholar 

  102. Mount DI et al (1993) Methods for aquatic toxicity identification evaluations. Phase III Toxicity Confirmation procedures for samples exhibiting acute and chronic toxicity. Environmental Research Laboratory, Office of Research and Development, US Environmental Protection Agency, Duluth, US

    Google Scholar 

  103. Brack W (2003) Effect-directed analysis: a promising tool for the identification of organic toxicants in complex mixtures. Anal Bioanal Chem 377:397–407

    Article  CAS  Google Scholar 

  104. Brack W et al (1999) Bioassay-directed identification of organic toxicants in river sediment in the industrial region of Bitterfeld (Germany)—A contribution to hazard assessment. Arch Environ Contam Toxicol 37:164–174

    Article  CAS  Google Scholar 

  105. Shiozawa T et al (2000) Isolation and identification of a new 2-phenylbenzotriazole-type mutagen (PBTA-3) in the Nikko River in Aichi, Japan. Chem Res Toxicol 13:535–540

    Article  CAS  Google Scholar 

  106. Brack W, Schirmer K (2003) Effect-directed identification of oxygen and sulphur heterocycles as major polycyclic aromatic cytochrome P4501A-inducers in a contaminated sediment. Environ Sci Technol 37:3062–3070

    Article  CAS  Google Scholar 

  107. Hewitt LM et al (1998) Identification of the lampricide 3-trifluoromethyl-4-nitrophenol as an agonist for the rainbow trout estrogen receptor. Environ Toxicol Chem 17:425–432

    Article  CAS  Google Scholar 

  108. Thomas KV et al (2004) Identification of in vitro estrogen and androgen receptor agonists in North Sea offshore produced water discharges. Environ Toxicol Chem 23:1156–1163

    Article  CAS  Google Scholar 

  109. Hewitt LM, Marvin CH (2005) Analytical methods in environmental effects-directed investigations of effluents. Mutat Res-Rev Mutat Res 589(3):208–232

    Article  CAS  Google Scholar 

  110. Brack W et al (2005) MODELKEY Models for assessing and forecasting the impact of environmental key pollutants on freshwater and marine ecosystems and biodiversity. Environ Sci Pollut Res 12:252–256

    Article  CAS  Google Scholar 

  111. Lübcke-von Varel U, Streck G, Brack W (2008) Automated fractionation procedure for polycyclic aromatic compounds in sediment extracts on three coupled normal-phase high-performance liquid chromatography columns. J Chromatogr A 1185(1):31–42

    Article  CAS  Google Scholar 

  112. Streck HG, Schulze T, Brack W (2008) Accelerated membrane-assisted clean-up as a tool for the clean-up of extracts from biological tissues. J Chromatogr A 1196–1197:33–40

    Google Scholar 

  113. Schymanski E, Meringer M, Brack W (2009) Matching structures to mass spectra using fragmentation patterns: Are the results as good as they look? Anal Chem 81:3608–3617

    Article  CAS  Google Scholar 

  114. Schymanski EL et al (2008) The use of MS classifiers and structure generation to assist in the identification of unknowns in effect-directed analysis. Anal Chim Acta 615(2):136–147

    Article  CAS  Google Scholar 

  115. Brix R et al (2009) Identification of disinfection by-products of selected triazines in drinking water by LC-Q-ToF-MS/MS and evaluation of their toxicity. J Mass Spectrom 44(3):330–337

    Article  CAS  Google Scholar 

  116. Schwab K, Brack W (2007) Large volume TENAX© extraction of the bioaccessible fraction of sediment-associated organic compounds for a subsequent effect-directed analysis. J Soil Sediments 7(3):178–186

    Article  CAS  Google Scholar 

  117. Schwab K et al (2009) Effect-directed analysis of sediment-associated algal toxicants at selected hot spots in the river Elbe basin with a special focus on bioaccessibility. Environ Toxicol Chem 28(7):1506–1517

    Article  CAS  Google Scholar 

  118. Bandow N et al (2009) Effect-directed analysis of contaminated sediments with partition-based dosing using green algae cell multiplication inhibition. Environ Sci Technol 43:7343–9

    Article  CAS  Google Scholar 

  119. Weiss JM et al (2009) Masking effect of anti-androgens on androgenic activity in European river sediment unveiled by effect-directed analysis. Anal Bioanal Chem 394:1385–1397. doi:10.1007/s00216-009-2807-8

    Article  CAS  Google Scholar 

  120. Neff JM, Stout SA, Gunster DG (2005) Ecological risk assessment of polycyclic aromatic hydrocarbons in sediments: identifying sources and ecological hazards. Integr Environ Assess Manag 1:22–33

    Article  CAS  Google Scholar 

  121. Burns WA et al (1997) A principal-component and least-squares method for allocating polycyclic aromatic hydrocarbons in sediment to multiple sources. Environ Toxicol Chem 16:1119–1131

    Article  CAS  Google Scholar 

  122. Gaspare L et al (2009) Polycyclic aromatic hydrocarbon (PAH) contamination of surface sediments and oysters from the inter-tidal areas of Dar es Salaam, Tanzania. Environ Pollut 157(1):24–34

    Article  CAS  Google Scholar 

  123. Menzie CA et al (2002) Urban and suburban storm water runoff as a source of polycyclic aromatic hydrocarbons (PAHs) to Massachusetts estuarine and coastal environments. Estuaries 25(2):165–176

    Article  CAS  Google Scholar 

  124. Mahler BJ et al (2005) Parking lot sealcoat: an unrecognized source of urban polycyclic aromatic hydrocarbons. Environ Sci Technol 39(15):5560–5566

    Article  CAS  Google Scholar 

  125. Deepthike HU et al (2009) Unlike PAHs from Exxon Valdez Crude Oil, PAHs from Gulf of Alaska Coals are not readily bioavailable. Environ Sci Technol 43(15):5864–5870

    Article  CAS  Google Scholar 

  126. Götz R et al (1998) Dioxin (PCDD/F) in the river Elbe—investigations of their origin by multivariate statistical methods. Chemosphere 37:1987–2002

    Article  Google Scholar 

  127. Götz R et al (2007) Vertical profile of PCDD/Fs, dioxin-like PCBs, other PCBs, PAHs, chlorobenzenes, DDX, HCHs, organotin compounds and chlorinated ethers in dated sediment/soil cores from flood-plains of the River Elbe, Germany. Chemosphere 67(3):592–603

    Article  CAS  Google Scholar 

  128. Gourlay C et al (2005) How accurately do semi-permeable membrane devices measure the bioavailability of polycyclic aromatic hydrocarbons. Chemosphere 61:1734–1739

    Article  CAS  Google Scholar 

  129. Iso/Dis, 17402 (2006) Soil quality. Guidance for the selection and application of methods for the assessment of bioavailability of contaminants in soil and soil materials. ISO, Geneva, Switzerland

    Google Scholar 

  130. Harmsen J (2007) Measuring bioavailability: from a scientific approach to standard methods. J Environ Qual 36:1420–1428

    Article  CAS  Google Scholar 

  131. Cornelissen G et al (2001) A simple Tenax extraction method to determine the availability of sediment-sorbed organic compounds. Environ Toxicol Chem 20:706–711

    Article  CAS  Google Scholar 

  132. Hawthorne SB et al (2002) Comparing PAH availability from manufactured gas plant soils and sediments with chemical and biological tests 1 PAH release during water desorption and supercritical carbon dioxide extraction. Environ Sci Technol 36(22):4795–4803

    Article  CAS  Google Scholar 

  133. Reid BJ et al (2000) Nonexhaustive cyclodextrin-based extraction technique for the evaluation of PAH bioavailability. Environ Sci Technol 34:3174–3179

    Article  CAS  Google Scholar 

  134. Jonker MTO, Hawthorne SB, Koelmans AA (2005) Extremely slowly desorbing polycyclic aromatic hydrocarbons from soot and soot-like materials: Evidence by supercritical fluid extraction. Environ Sci Technol 39:7889–7895

    Article  CAS  Google Scholar 

  135. Reichenberg F, Mayer P (2006) Two complementary sides of bioavailability: accessibility and chemical activity of organic contaminants in sediments and soils. Environ Toxicol Chem 25:1239–1245

    Article  CAS  Google Scholar 

  136. Huckins JN, Tubergen MW, Manuweera GK (1990) Semipermeable membrane devices containing model lipid: a new approach to monitoring the bioavailability of lipophilic contaminants and estimating their bioconcentration potential. Chemosphere 20:533–552

    Article  CAS  Google Scholar 

  137. Leppänen MT, Kukkonen JVK (2006) Evaluating the role of desorption in bioavailability of sediment-associated contaminants using oligochaetes, semipermeable membrane devices and Tenax extraction. Environ Pollut 140(1):150–163

    Article  CAS  Google Scholar 

  138. Vinturella AE et al (2004) Use of passive samplers to mimic uptake of polycyclic aromatic hydrocarbons by benthic polychaetes. Environ Sci Technol 38(4):1154–1160

    Article  CAS  Google Scholar 

  139. Kingston JK et al (2000) Development of a novel passive sampling system for the time-averaged measurement of a range of organic pollutants in aquatic environments. J Environ Monit 2(5):487–495

    Article  CAS  Google Scholar 

  140. Yates K et al (2007) Passive sampling: partition coefficients for a silicone rubber reference phase. J Environ Monit 9(10):1116–1121

    Article  CAS  Google Scholar 

  141. Mayer P, Vaes WHJ, Hermens JLM (2000) Absorption of hydrophobic compounds into the poly(dimethylsiloxane) coating of solid-phase microextraction fibers: High partition coefficients and fluorescence microscopy images. Anal Chem 72(3):459–464

    Article  CAS  Google Scholar 

  142. Van der Wal L et al (2004) Solid-phase microextraction to predict bioavailability and accumulation of organic micropollutants in terrestrial organisms after exposure to a field-contaminated soil. Environ Sci Technol 38(18):4842–4848

    Article  CAS  Google Scholar 

  143. Sormunen AJ, Leppanen MT, Kukkonen JVK (2008) Influence of sediment ingestion and exposure concentration on the bioavailable fraction of sediment-associated tetrachlorobiphenyl in oligochaetes. Environ Toxicol Chem 27(4):854–863

    Article  CAS  Google Scholar 

  144. Escher BI, Hermens J (2004) Internal exposure: linking bioavailability to effects. Environ Sci Technol 38:455A–462A

    Article  CAS  Google Scholar 

  145. Huggett RJ et al (2006) Biomarkers of PAH exposure in an intertidal fish species from Prince William Sound, Alaska: 2004–2005. Environ Sci Technol 40(20):6513–6517

    Article  CAS  Google Scholar 

  146. Houtman CJ et al (2004) Identification of estrogenic compounds in fish bile using bioassay-directed fractionation. Environ Sci Technol 38:6415–6423

    Article  CAS  Google Scholar 

  147. Preziosi DV, Pastorok RA (2008) Ecological food web analysis for chemical risk assessment. Sci Total Environ 406(3):491–502

    Article  CAS  Google Scholar 

  148. Thomann RV, Connolly JP, Parkerton TF (1992) An equilibrium-model of organic-chemical accumulation in aquatic food webs with sediment interaction. Environ Toxicol Chem 11(5):615–629

    Article  CAS  Google Scholar 

  149. Traas TP et al (2004) A freshwater food web model for the combined effects of nutrients and insecticide stress and subsequent recovery. Environ Toxicol Chem 23(2):521–529

    Article  CAS  Google Scholar 

  150. Murata M, Masunaga S, Nakanishi J (2003) Population-level ecological risk assessment of planar polychlorinated aromatic hydrocarbons in great cormorant (Phalacrocorax carbo) around Tokyo Bay, Japan. Environ Toxicol Chem 22(10):2508–2518

    Article  CAS  Google Scholar 

  151. Emlen JM, Springman KR (2009) Developing methods to assess and predict the population level effects of environmental contaminants. Integr Environ Assess Manag 3:157–165

    Article  Google Scholar 

  152. Emlen JM et al (2003) Fitting population models from field data. Ecol Model 162(1–2):119–143

    Article  Google Scholar 

  153. Kooi BW et al (2008) Sublethal toxic effects in a simple aquatic food chain. Ecol Model 212(3–4):304–318

    Article  Google Scholar 

  154. Westrich B, Förstner U (eds) (2007) Sediment dynamics and pollutant mobility in rivers – an interdisciplinary approach. Springer, Heidelberg, Germany, p 430

    Google Scholar 

  155. Sundblad K, Tonderski A, Rulweski J (1994) Nitrogen and phosphorus in the Vistula river, Poland changes from source to mouth. Water Sci Technol 30:177–186

    CAS  Google Scholar 

  156. Kroiss H (2005) Nutrient management in the Danube Basin and its impact on the Black Sea. Final Report, Section 6. EU Project daNUbs EVK1-CT-2000-00051: Vienna, Austria

    Google Scholar 

  157. Reddy KR et al (1999) Phosphorus retention in streams and wetlands, a review. Crit Rev Environ Sci Technol 29(1):83–146

    Article  CAS  Google Scholar 

  158. Vollenweider RA (1975) Input–output models with special reference to the phosphorus loading concept in limnology. Schweiz Z Hydrol 37:5383

    Google Scholar 

  159. Thomann RV, Müller JA (1987) Principles of water quality modelling and control. Harper & Row, New York, USA, p 644

    Google Scholar 

  160. Chapra SC (1997) Surface water quality modelling. McGraw-Hill, New York, USA

    Google Scholar 

  161. Feijtel T et al (1997) Development of a geography referenced regional exposure assessment tool for European rivers—GREAT-ER. Chemosphere 34(11):2351–2373

    Article  CAS  Google Scholar 

  162. EPA (2007) BASINS (Better Assessment Science Integrating point & Non-point Sources). Available from: http://www.epa.gov/waterscience/basins/

  163. IER (2007) WATSON—Water and soil model. 12.12.2009; Available from: http://watson.ier.uni-stuttgart.de/watson_home.php.

  164. Van Gils J, et al. (2009) Exposure modelling on a river basin scale in support to risk assessment for chemicals in European river basins. In: MODELKEY Final Conference. Deltares’ “knowledge on-line” portal Leipzig.

    Google Scholar 

  165. Van Gils J, Van Hattum B, Westrich B (2009) Exposure modeling on a river basin scale in support of risk assessment for chemicals in European River Basins. Integr Environ Assess Manag 5(1):80–85

    Article  Google Scholar 

  166. Van Gils J (2008) Prognosis of WFD chemical status in the coastal waters of The Netherlands Part 1: Update and validation of the Scremotox model. Delft, The Netherlands, Deltares

    Google Scholar 

  167. Apitz SE, et al. (2006) Approaches and frameworks for managing contaminated sediments—A European Perspective. In: Reible DD, Lanczos T (eds) Assessment and remediation of contaminated sediments, NATO Science Series IV, Earth and Environmental Sciences Vol. 73. Springer, Dordrecht, Netherlands. p. 5–82.

    Google Scholar 

  168. Heise S et al (2004) Inventory of historical contaminated sediment in Rhine Basin and its tributaries. Hamburg, Germany

    Google Scholar 

  169. ICPDR (2005) Danube Basin Analysis (WFD Roof Report 2004), Part A—Basin-wide overview. Vienna, Austria

    Google Scholar 

  170. Dannevig A (1959) Influence of precipitation on river acidity and fish populations. Jæger og fisker 3:116–118

    Google Scholar 

  171. Akselsson C et al (2007) Nutrient and carbon budgets in forest soils as decision support in sustainable forest management. Forest Ecol Manage 238:167–174

    Article  Google Scholar 

  172. Stokes PM, Howell ET, Krantzberg G (1989) Effects of acidic precipitation on the biota of freshwater lakes. In: Adriano DC, Johnson AH (eds) Acidic precipitation, biological and ecological effects, vol 2. Springer, New York, pp 273–304

    Chapter  Google Scholar 

  173. Coring E (1996) Use of diatoms for monitoring acidification in small mountain rivers in Germany with special emphasis on diatom assemblages type analysis (DATA). In: Whitton BA, Rott E, Friedrich G (eds) Use of algae for monitoring rivers. Institut für Botanik Universität in Innsbruck, Innsbruck, Germany, pp 7–16

    Google Scholar 

  174. Kahlert M, Andrén C (2005) Benthic diatoms as valuable indicators of acidity. Verh Internat Verein Limnol 29:635–639

    CAS  Google Scholar 

  175. Townsend CR, Hildrew AG, Francis J (1983) Community structure in some southern English streams: the influence of physicochemical factors. Freshwat Biol 13:521–544

    Article  Google Scholar 

  176. Økland J, Økland KA (1986) The effects of acid deposition on benthic animals in lakes and streams. Experientia 42:471–486

    Article  Google Scholar 

  177. Hindar A et al (1994) Acid water and fish death. Nature 372:327–328

    Article  CAS  Google Scholar 

  178. Barlaup BT, Åtland Å (1996) Episodic mortality of brown trout (Salmo trutta L.) caused by sea-salt-induced acidification in western Norway: effects on different life stages within three populations. Can J Fish Aquat Sci 53:1835–1843

    Article  Google Scholar 

  179. Rosseland BO, Eldhuset TD, Staurnes M (1990) Environmental effects of aluminium. Environ Geochem 12:17–27

    Article  CAS  Google Scholar 

  180. Mackay RJ, Kersey KE (1985) A preliminary study of aquatic insect communities and leaf decomposition in acid streams near Dorset, Ontario. Hydrobiologia 122:3–11

    Article  Google Scholar 

  181. Henrikson L, Olofsson JB, Oscarson HG (1982) The impact of acidification on Chironomidae (Diptera) as indicated by subfossil stratification. Hydrobiologia 86:223–229

    Article  Google Scholar 

  182. Olsson H, Pettersson A (1993) Oligotrophication of acidified lakes—a review of hypotheses. Ambio 22:312–317

    Google Scholar 

  183. Schindler DW et al (1985) Long-term ecosystem stress: the effects of years of experimental acidification on a small lake. Science 228:1395–1401

    Article  CAS  Google Scholar 

  184. Schindler DW et al (1996) Consequences of climate warming and lake acidification for UV-b penetration in North American boreal lakes. Nature 379:705–708

    Article  CAS  Google Scholar 

  185. Cory N, Andrén CM, Bishop K (2007) Modelling inorganic aluminium with WHAM in environmental monitoring. Appl Geochem 22:1196–1201

    Article  CAS  Google Scholar 

  186. Henriksen A et al (1992) Critical loads of acidity: Nordic surface waters. Ambio 21:356–363

    Google Scholar 

  187. Laudon H et al (2004) Episodic acidification in northern Sweden: a regional assessment of the anthropogenic component. J Hydrol 297:162–173

    Article  CAS  Google Scholar 

  188. Henriksson L, Medin M (1986) Biological assessment of acidification impact on the Lake Lelången’s tributaries and shallow areas. In: Aquaekologerna

    Google Scholar 

  189. Raddum G, Fjellheim A, Hesthagen T (1988) Monitoring of acidity by the use of aquatic organisms. Verh Internat Verein Limnol 23:2291–2297

    CAS  Google Scholar 

  190. Davy-Bowker J et al (2005) The development and testing of a macroinvertebrate biotic index for detecting the impact of acidity on streams. Archiv für Hydrobiologie 163:383–403

    Article  CAS  Google Scholar 

  191. Van Dam H, Mertens A, Sinkeldam J (1994) A coded checklist and ecological indicator values of freshwater diatoms from the Netherlands. Netherlands J Aquat Ecol 28:117–133

    Article  Google Scholar 

  192. Braukmann U (1997) Zoozönologische und saprobiologische Beiträge zu einer allgemeinen regionalen Bachtypologie. Adv Limnol 26:355

    Google Scholar 

  193. Skjelkvåle BL et al (2003) Recovery from acidification in European surface waters: a review to the future. Ambio 32:170–175

    Google Scholar 

  194. Stendera S, Johnson RK (2008) Tracking recovery trends of boreal lakes: use of multiple indicators and habitats. J N Am Benthol Soc 27:529–540

    Article  Google Scholar 

  195. Norberg M, Birgler C, Renberg I (2008) Monitoring compared with paleolimnology: implications for the definition of reference condition in limed lakes in Sweden. Environ Monit Assess 146:295–308

    Article  CAS  Google Scholar 

  196. Cosby BJ et al (1985) Time scales of catchment acidification: a quantitative model for estimating freshwater acidification. Environ Sci Technol 19:1144–1149

    Article  CAS  Google Scholar 

  197. Williams WD, Sherwood JE (1994) Definition and measurement of salinity in salt lakes. Int J Salt Lake Res 3:53–63

    Article  Google Scholar 

  198. Williams WD (1993) Conservation of salt lakes. Hydrobiologia 267:291–306

    Article  Google Scholar 

  199. Sim L, et al. (2007) Understanding thresholds in the transition from saline to hypersaline aquatic ecosystems: south-west Western Australia. In: Lovett S, Price P, Edgar B, (Eds.) Salt, nutrient, sediment and interactions: findings from the National River Contaminants Program. Land & Water Canberra, Australia. p. 29–40.

    Google Scholar 

  200. Williams WD (1993) The worldwide occurrence and limnological significance of falling water-levels in large, permanent saline lakes. Verh Internat Limnol 25:980–983

    Google Scholar 

  201. Cañedo Argüelles M, Kefford BJ, Piscart C, Prat N, Schäfer RB, Schulz C-J (2013) Salinisation of rivers: an urgent ecological issue. Environ Pollut 173:157–167

    Article  CAS  Google Scholar 

  202. Schuls C-J (1998) Desalinization of running waters. I. Effects of desalinization on the bacterio- and viroplankton on the running waters of a creek in Northern Thuringia (Germany). Limnologica 28:367–376

    Google Scholar 

  203. Piscart C et al (2005) Biodiversity patterns along a salinity gradient: the case of net-spinning caddisflies. Biodivers Conserv 14:2235–2249

    Article  Google Scholar 

  204. McNeil VH, Cox ME (2007) Defining the climate signal in stream salinity trends using the interdecadal Pacific oscillation and its rate of change. Hydrol Earth Syst Sci 11:1295–1307

    Article  Google Scholar 

  205. Berezina NA (2003) Tolerance of freshwater invertebrates to changes in water salinity. Russ J Ecol 34(4):261–266

    Article  Google Scholar 

  206. Kefford BJ, Papas PJ, Nugegoda D (2003) Relative salinity tolerance of macroinvertebrates from the Barwon River, Victoria, Australia. Mar Freshw Res 54:755–765

    Article  CAS  Google Scholar 

  207. Kefford BJ, Palmer CG, Nugegoda D (2005) Relative salinity tolerance of freshwater macroinvertebrates, from the south-east of the Eastern Cape, South Africa compared to the Barwon Catchment, Victoria, Australia. Mar Freshwat 56:163–171

    Article  CAS  Google Scholar 

  208. Kefford BJ et al (2006) Validating species sensitivity distributions using salinity tolerance of riverine macroinvertebrates in the southern Murray-Darling Basin (Victoria, Australia). Can J Fish Aquat Sci 63:1865–1877

    Article  CAS  Google Scholar 

  209. Kefford BJ et al (2007) The salinity tolerance of riverine microinvertebrates from the southern Murray Darling Basin. Mar Freshw Res 58:1019–1031

    Article  Google Scholar 

  210. Kefford BJ, Piscart C, Hickey HL, Gasith A, Ben-David E, Dunlop JE, Palmer CG, Allan K, Choy SC (2012) Global scale variation in the salinity sensitivity of riverine macroinvertebrates: eastern Australia, France, Israel and South Africa. PLoS ONE 7(5):e35224. doi:10.1371/journal.pone.0035224

    Article  CAS  Google Scholar 

  211. Dunlop JE et al (2008) Effect of spatial variation on macroinvertebrate salinity tolerance in Eastern Australia: implications for derivation of ecosystem protection trigger values. Environ Pollut 151:621–630

    Article  CAS  Google Scholar 

  212. Hart BT et al (1991) A review of salt sensitivity of Australian freshwater biota. Hydrobiologia 210:105–144

    Article  Google Scholar 

  213. Chotipuntu P (2003) Salinity sensitivity in the early life stages of an Australian Freshwater Fish, Murray cod (Maccullochella peellii peelii, Mitchell 1838), in School of resources & environmental sciences, Cooperative Research Centre for Freshwater Ecology. University of Canberra: Canberra. p. 196

    Google Scholar 

  214. James KR, Cant B, Ryan T (2003) Responses of freshwater biota to rising salinity levels and implications for saline water managements: a review. Aust J Bot 51(6):703–713

    Article  CAS  Google Scholar 

  215. Whiterod NR, Walker KF (2006) Will rising salinity in the Murray-Darling Basin affect common carp (Cyprinus carpio L.)? Mar Freshw Res 57(8):817–823

    Article  CAS  Google Scholar 

  216. Kefford BJ et al (2004) The salinity tolerance of eggs and hatchlings of selected aquatic macroinvertebrates in south-east Australia and South Africa. Hydrobiologia 517:179–192

    Article  Google Scholar 

  217. Kefford BJ et al (2007) The salinity tolerance of freshwater macroinvertebrate eggs and hatchlings in comparison to their older life-stages. Aquat Ecol 41:335–348

    Article  CAS  Google Scholar 

  218. Hassell KL, Kefford BJ, Nugegoda D (2006) Sub-lethal and chronic lethal salinity tolerance of three freshwater insects: Cloeon sp. and Centroptilum sp. (Ephemeroptera: Baetidae) and Chironomus sp. (Diptera: Chironomidae). J Exp Biol 209:4024–4032

    Article  Google Scholar 

  219. Kefford B, et al. (2007) Understanding salinity thresholds in freshwater biodiversity: freshwater to saline transition. In: Lovett S, Price P, Edgar B (eds) Salt, nutrient, sediment and interactions: findings from the National River Contaminants Program, Land & Water: Canberra, Australia. p. 9–28.

    Google Scholar 

  220. Marchant R et al (1997) Classification and prediction of macroinvertebrate assemblages from running water in Victoria, Australia. J N Am Benthol Soc 16(3):664–681

    Article  Google Scholar 

  221. Marchant R et al (1999) Classification of macroinvertebrate communities across drainage basins in Victoria, Australia: consequences of sampling on a broad spatial scale for predictive modelling. Freshwat Biol 41:253–268

    Article  Google Scholar 

  222. Piscart C, Moreteau J-C, Beisel J-N (2005) Biodiversity and structure of macroinvertebrate communities along a small permanent salinity gradient, Meurthe River, France. Hydrobiologia 551:227–236

    Article  Google Scholar 

  223. Piscart C, Moreteau J-C, Beisel J-N (2006) Salinization consequences in running waters: use of a sentinel substrate as a bioassessment method. J N Am Benthol Soc 25:477–486

    Article  Google Scholar 

  224. Piscart C, Moreteau J-C, Beisel J-N (2006) Monitoring changes in freshwater macroinvertebrate communities along a salinity gradient using artificial substrates. Environ Monit Assess 116:529–542

    Article  Google Scholar 

  225. Horrigan N et al (2005) Response of stream macroinvertebrates to changes in salinity and the development of a salinity index. Mar Freshw Res 56:825–833

    Article  CAS  Google Scholar 

  226. Kefford BJ et al (2011) The definition of species richness used by species sensitivity distributions approximates observed effects of salinity on stream macroinvertebrates. Environ Pollut 159(1):302–310

    Article  CAS  Google Scholar 

  227. Schäfer RB, Kefford B, Metzeling L, Liess M, Burgert S, Marchant R, Pettigrove V, Goonan P, Nugegoda D (2011) A trait database of stream invertebrates for the ecological risk assessment of single and combined effects of salinity and pesticides in South-East Australia. Sci Total Environ 409(11):2055–2063

    Article  CAS  Google Scholar 

  228. Kalff J (2002) Limnology of inland water ecosystems. Prentice Hall, Upper Saddle River, USA

    Google Scholar 

  229. Dunlop JE, et al. (2009) A review of sediment and salinity as stressors in tropical rivers of Queensland Australia. Australas J Ecotoxicol

    Google Scholar 

  230. Horrigan N et al (2007) Acute toxicity largely reflects the salinity sensitivity of stream macroinvertebrates derived using field distributions. Mar Freshw Res 58:178–186

    Article  CAS  Google Scholar 

  231. Hickey GL et al (2008) Making species salinity sensitivity distributions reflective of naturally occurring communities: using rapid testing and Bayesian statistics. Environ Toxicol Chem 27(11):2403–2411

    Article  CAS  Google Scholar 

  232. Mount DR et al (1997) Statistical models to predict the toxicity of major ions to Ceriodaphnia dubia, Daphnia magna and Pimephales promelas (flathead minnows). Environ Toxicol Chem 16(10):2009–2019

    CAS  Google Scholar 

  233. Zalizniak L, Kefford BJ, Nugegoda D (2006) Is all salinity the same? I. The effect of ionic compositions on the salinity tolerance of five species of freshwater invertebrates. Mar Freshw Res 57:75–82

    Article  CAS  Google Scholar 

  234. Zalizniak L, Kefford BJ, Nugegoda D (2009) Effects of different ionic compositions on survival and growth of Physa acuta. Aquatic Ecol 43(1):145–156

    Article  CAS  Google Scholar 

  235. Marshall NA, Bailey PCE (2004) Impact of secondary salinisation on freshwater ecosystems: effects of contrasting, experimental, short-term releases of saline wastewater on macroinvertebrates in a lowland stream. Mar Freshw Res 55:509–523

    Article  CAS  Google Scholar 

  236. Nielsen DL et al (2008) From fresh to saline: a comparison of zooplankton and plant communities developing under a gradient of salinity with communities developing under constant salinity levels. Mar Freshw Res 59(7):549–559

    Article  Google Scholar 

  237. Busse A, Jahn R, Schulz C-J (1999) Desalinization of running waters. II benthic diatom communities: a comparative field study on responses to decreasing salinities. Limnologica 29:465–474

    Article  CAS  Google Scholar 

  238. Lymbery AJ, Doupé RG, Pettit NE (2003) Effects of salinisation on riparian plant communities in experimental catchments on the Collie River, Western Australia. Aust J Bot 51(6):667–672

    Article  Google Scholar 

  239. Piscart C, Kefford BJ, Beisel JN (2011) Are salinity tolerances of non-native macroinvertebrates in France an indicator of potential for their translocation in a new area? Limnologica 41(2):107–112

    Article  Google Scholar 

  240. Hall LWJ, Anderson RD (1995) The influence of salinity on the toxicity of various classes of chemicals to aquatic biota. Crit Rev Toxicol 25(4):281–346

    Article  CAS  Google Scholar 

  241. James KR et al (2009) Impact of secondary salinisation on freshwater ecosystems: effect of experimental increased salinity on an intermittent floodplain wetland. Mar Freshw Res 60:246–258

    Article  CAS  Google Scholar 

  242. Zalizniak L, Kefford BJ, Nugegoda D (2009) Effects of pH on salinity tolerance of selected freshwater invertebrates. Aquat Ecol 43(1):135–144

    Article  CAS  Google Scholar 

  243. Grace MR et al (1997) Effect of saline groundwater on the aggregation and settling of suspended particles in a turbid Australian river. Colloids and surfaces. Physicochem Eng Aspect 120:123–141

    Article  CAS  Google Scholar 

  244. Donnelly TH, Grace MR, Hart BT (1997) Algal blooms in the Darling-Barwon river, Australia. Water Air Soil Pollut 99:487–496

    CAS  Google Scholar 

  245. Dodds WK (2006) Eutrophication and trophic state in rivers. Limnol Oceanogr 51:671–680

    Article  CAS  Google Scholar 

  246. Borchardt D, et al. (2005) Die Wasserrahmenrichtlinie—Ergebnisse der Bestandsaufnahme 2004 in Deutschland. N.u.R.B.B.f. Umwelt, Editor, Bonifatius: Paderborn, Germany. p. Erschienen in deutscher und englischer Sprache.

    Google Scholar 

  247. EEA (2003) Europes water: an indicator based assessment. Copenhagen. p. 124

    Google Scholar 

  248. Ingendahl D et al (2009) Vertical hydraulic exchange and the contribution of hyporheic community respiration to whole ecosystem respiration in the River Lahn (Germany). Aquat Sci 71:399–410

    Article  CAS  Google Scholar 

  249. Dodds WK, Gudder DA (1992) The ecology of Cladophora. J Phycol 28:415–427

    Article  Google Scholar 

  250. Ibisch RB, Borchardt D, Seydell I (2009) Influence of periphyton biomass dynamics on biological colmation processes in the hyporheic zone of a gravel bed river (River Lahn, Germany). Adv Limnol 61:87–104

    CAS  Google Scholar 

  251. Wetzel RA (2001) Limnology, 3rd edn. Academic, San Diego, CA

    Google Scholar 

  252. Hynes HBN (1960) The biology of polluted waters. Liverpool Univ. Press, Liverpool, UK

    Google Scholar 

  253. Chambers PA, DeWreede RE et al (1999) Management issues in aquatic macrophyte ecology: a Canadian perspective. Can J Bot 77:471–487

    Google Scholar 

  254. Vannote RL et al (1980) The river continuum concept. Can J Fish Aquat Sci 37:130–137

    Article  Google Scholar 

  255. CIS (2002) Guidance on the analysis of pressures and impacts

    Google Scholar 

  256. Kolkwitz R, Marsson M (1909) Ökologie der tierischen Saprobien. Beiträge zur Lehre von der biologischen Gewässerbeurteilung. Internationale Revue der gesamten Hydrobiologie und Hydrographie 2:126–152

    Article  Google Scholar 

  257. Friedrich G, Herbst V (2004) Eine erneute Revision des Saprobiensystems—weshalb und wozu? Acta hydrochimica et hydrobiologica 32(1):61–74

    Article  CAS  Google Scholar 

  258. Hering D et al (2006) Assessment of European rivers with diatoms, macrophytes, invertebrates and fish: a comparative metric-based analysis of organism response to stress. Freshwat Biol 51:1757–1785

    Article  Google Scholar 

  259. Stevenson J, Pan Y (1999) Assessing environmental conditions in rivers and streams with diatoms. In: Stoermer EF, Smol JP (eds) The diatoms: applications for the environmental and earth sciences. Cambridge University Press, Cambridge

    Google Scholar 

  260. Kelly MG (2002) Role of benthic diatoms in the implementation of the urban wastewater treatment directive in the River Wear, north-east England. J Appl Phycol 14:9–18

    Article  Google Scholar 

  261. Hübner D, Borchardt D, Fischer J (2009) Cascading effects of eutrophication on intragravel life stages of European Grayling (Thymallus thymallus L.). Adv Limnol 61:205–224

    Google Scholar 

  262. Uehlinger U, Buhrer H, Reichert P (1996) Periphyton dynamics in a floodprone prealpine river: Evaluation of significant processes by modelling. Freshwat Biol 36(2):249–263

    Article  Google Scholar 

  263. Biggs BJF (2000) Eutrophication of streams and rivers: dissolved nutrient-chlorophyll relationships for benthic algae. J N Am Benthol Soc 19(1):17–31

    Article  Google Scholar 

  264. Borchardt D, Pusch M (2009) The ecology of the hyporheic zone of running waters: ecological patterns, processes and bottleneck functions. Adv Limnol 61:224

    Google Scholar 

  265. Odum HT (1956) Primary production in flowing waters. Limnol Oceanogr 1(2):102–117

    Article  Google Scholar 

  266. Hauer RF, Lamberti AG (1996) Methods in stream ecology, 3rd edn. Academic, San Diego, CA

    Google Scholar 

  267. Reichert P (2001) River Water Quality Model no. 1 (RWQM1): Case study II. Oxygen and nitrogen conversion processes in the River Glatt (Switzerland). Water Sci Technol 43(5):51–60

    CAS  Google Scholar 

  268. Schuwirth N et al (2009) A mechanistic model of benthos community dynamics in the River Sihl. Switzerland. Freshwat Biol 53:1372–1392

    Article  Google Scholar 

  269. Rinke K et al (2009) Lake-wide distributions of temperature, phytoplankton, zooplankton and fish in the pelagic zone of a large lake. Limnol Oceanogr 54:1306–1322

    Article  Google Scholar 

  270. Behrendt H, Opitz D (2006) Retention of nutrients in river systems: dependence on specific runoff and hydraulic load. Hydrobiologia 410:111–122

    Article  Google Scholar 

  271. Vollenweider RA (1968) Scientific fundamentals of the eutrophication of lakes and flowing waters with particular reference to nitrogen and phosphorus as a factor in eutophication. OECD Paris, France

    Google Scholar 

  272. OECD (1982) Eutrophication of waters; monitoring, assessment and control. OECD Publication, Paris, France, p 164

    Google Scholar 

  273. Benndorf J (1979) A contribution to the phosphorus loading concept. Hydrobiologia 64:177–188

    CAS  Google Scholar 

  274. Pearl HW, Huisman J (2008) Climate: blooms like it hot. Science 320:57–58

    Article  Google Scholar 

  275. EEA (2007) Climate change and water adaptation issues. In: EEA Technical report 2007: Copenhagen, Denmark

    Google Scholar 

  276. Sheldon BC, Verhulst S (1996) Ecological immunology: costly parasite defenses and trade-offs in evolutionary ecology. Trends Ecol Evol 11:317–321

    Article  CAS  Google Scholar 

  277. Svensson E et al (1998) Energetic stress, immunosuppression and the costs of an antibody response. Funct Ecol 12:912–919

    Article  Google Scholar 

  278. Hanssen SA et al (2004) Costs of immunity: immune responsiveness reduces survival in a vertebrate. Proc R Soc Lond B 271:925–930

    Article  Google Scholar 

  279. McCallum H, Dobson A (1995) Detecting disease and parasite threats to endangered species and ecosystems. Trends Ecol Evol 10:190–194

    Article  CAS  Google Scholar 

  280. Bergersen EP, Anderson DE (1997) The distribution and spread of Myxobolus cerebralis in the United States. Fisheries 22:6–7

    Article  Google Scholar 

  281. Sures B, Knopf K (2004) Parasites as threat to freshwater eels? Science 304:208–211

    Article  Google Scholar 

  282. Burkhardt-Holm P et al (2005) Where have all the fish gone? Environ Sci Technol 39:441A–447A

    Article  CAS  Google Scholar 

  283. Wahli T et al (2008) Role of altitude and water temperature as regulating factors for the geographical distribution of Tetracapsuloides bryosalmonae-infected fishes in Switzerland. J Fish Biol 73:2184–2197

    Article  Google Scholar 

  284. Lafferty KD, Kuris AM (1999) How environmental stress affects the impacts of parasites. Limnol Oceanogr 44:925–931

    Article  Google Scholar 

  285. Harding KC, Härkönen T, Caswell H (2002) The 2002 European seal plague: epidemiology and population consequences. Ecol Lett 5(6):727–732

    Article  Google Scholar 

  286. Springman KR et al (2005) Contaminants as viral cofactors: assessing indirect population effects. Aquat Toxicol 71:13–23

    Article  CAS  Google Scholar 

  287. Sures B (2008) Host-parasite interactzions in polluted environments. J Fish Biol 73:2133–2142

    Article  Google Scholar 

  288. Khan RA, Thulin J (1991) Influence of pollution on parasites of aquatic animals. Adv Parasitol 30:201–238

    Article  CAS  Google Scholar 

  289. Poulin R (2007) Evolutionary ecology of parasites. Princeton University Press, Princeton, USA

    Google Scholar 

  290. McDowell JEV et al (1999) The effects of lipophilic organic contaminants on reproductive physiology and disease processes in marine bivalve molluscs. Limnol Oceanogr 44:903–909

    Article  CAS  Google Scholar 

  291. Coors A, de Meester L (2008) Synergistic, antagonistic, and additive effects of multiple stressorss: predation threat, parasitism and pesticide exposure in Daphnia magna. J Appl Ecol 45:1820–1828

    Article  Google Scholar 

  292. Lafferty KD (1997) Environmental parasitology: what can parasites tell us about human impacts on the environment? Parasitol Today 13:251–255

    Article  CAS  Google Scholar 

  293. Sidall R, Koskivaara M, Valtonen ET (1997) Dactylogyrus (Monogenea) nfections on the gills of roach (Rutilus rutilus) experimentally exposed o pulp and paper mill effluents. Parasitology 114:439–446

    Article  Google Scholar 

  294. Carlson EA, Li Y, Zelikoff JT (2002) Exposure of Japanese medaka, Oryzias latipes, to benzo(a)pyrene suppresses immune function and host resistance against bacterial challenge. Aquat Toxicol 56:289–301

    Article  CAS  Google Scholar 

  295. Ekman E et al (2004) Impact of PCB on resistance to Flavobacterium psychophrilum after experimental infection of rainbow trout, Oncorhynchus mykiss, eggs by nanoinjection. Dis Aquat Organ 60:31–39

    Article  CAS  Google Scholar 

  296. Clifford MA et al (2005) Synergistic effects of esfenvalerate and infectious hematopoietic necrosis virus on juvenile Chinook salmon mortality. Environ Toxicol Chem 24:1766–1772

    Article  CAS  Google Scholar 

  297. Nakayama A, Segner H, Kawai S (2009) Immunotoxic effects of organotin compounds in teleost fish. In: Arai T, Harino M, Langston WJ (eds) Ecotoxicology of antifouling biocides. Springer, Tokyo, Japan, pp 207–218

    Chapter  Google Scholar 

  298. Kiesecker JM (2002) Synergism between trematode infection and pesticide exposure: a link to amphibian limb deformities in nature? Proc Natl Acad Sci 99:9900–9904

    Article  CAS  Google Scholar 

  299. Christin MS et al (2003) Effects of agricultural pesticides on the immune system of Rana pipiens, and on its resistance to parasitic infection. Environ Toxicol Chem 22:1127–1133

    CAS  Google Scholar 

  300. Johnson PTJ et al (2007) Aquatic eutrophication promotes pathogenic infection in amphibians. Proc Natl Acad Sci 104:15781–15786

    Article  CAS  Google Scholar 

  301. Segner H, Eppler E, Reinecke M (2006) The impact of environmental hormonally active substances on the endocrine and immune systems of fish. In: Reinecke M, Zaccone G, Kapoor BG (eds) Fish endocrinology. Science Publishers, Enfield, USA

    Google Scholar 

  302. Burnett KG (2005) Impacts of environmental toxicants and natural variables on the immune system of fishes. In: Mommsen TP, Moon TW (eds) Biochemistry and molecular biology of fishes. Elsevier, New York, pp 231–253

    Google Scholar 

  303. Kooijman SALM, Bedaux JJM (1995) The analysis of aquatic toxicity data. VU University Press, Amsterdam, The Netherlands

    Google Scholar 

  304. McKenzie DE (1995)

    Google Scholar 

  305. Dusek L, Gelnar M, Sebelova S (1998) Biodiversity of parasites in a freshwater environmnet with respect to pollution: metazoan parasites of chub (Leuciscus cephalus L.) as a model for statistcial evaluation. Int J Parasitol 28:1555–1571

    Article  CAS  Google Scholar 

  306. Schmidt V et al (2003) Parasites of flounder (Platichthys flesus) fom the German Bight, North Sea, and their potential use in biological effects monitoring. Helgoland Mar Res 57:262–271

    Article  Google Scholar 

  307. Blanar C et al (2009) Pollution and parasitism in aquatic animals: a meta-analysis of effect size. Aquat Toxicol 93:18–28

    Article  CAS  Google Scholar 

  308. USEPA (2000) Stressor identification guidance document. United States Environmental Protection Agency, Office of Research and Development, Washington, DC

    Google Scholar 

  309. Menzie CA, MacDonnell MM, Mumtaz M (2005) A phased approach for assessing combined effects from multiple stressors. Environ Health Perspect 115:807–816

    Article  CAS  Google Scholar 

  310. Wenger M et al (2010) Association of measures of chemical exposure, parasite infection and population status of chub (Leuciscus cephalus) in the Bílina River, Czech Republic: a fish health-directed assessment. Environ Toxicol Chem 29(2):453–466

    Article  CAS  Google Scholar 

  311. Arkoosh MR et al (1998) Effect of pollution on fish diseases: potential impacts on salmonid populations. J Aquat Anim Health 10:192–190

    Article  Google Scholar 

  312. Peeler EJ, et al. (2006) Risk assessment and predictive modelling—a review of their application in aquatic animal health. European Network DIPNER

    Google Scholar 

  313. Bettge K et al (2009) Proliferative kidney disease in rainbow trout: time- and temperature-related renal pathology and parasite distribution. Dis Aquat Organ 83:67–76

    Article  Google Scholar 

  314. Jokela J et al (2005) Virulence of parasites in hosts under environmental stress: experiments with anoxia and starvation. Oikos 108:156–164

    Article  Google Scholar 

  315. CBD (2002) The 6th Conference of the Parties of the convention on biological diversity Decision VI/23. The Hague, 7–19 April 2002. 2002 28 August 2009. http://www.cbd.int/decision/cop/?id=7197

  316. Elliott M (2003) Biological pollutants and biological pollution–an increasing cause for concern. Mar Pollut Bull 46:275–280

    Article  CAS  Google Scholar 

  317. Panov VE et al (2009) Assessing the risks of aquatic species invasions via European inland waterways: from concepts to environmental indicators. Integr Environ Assess Manage 5(1):110–126

    Article  CAS  Google Scholar 

  318. Arbačiauskas K et al (2008) Assessment of biocontamination of benthic macroinvertebrate communities in European inland waterways. Aquat Invas 3(2):211–230

    Article  Google Scholar 

  319. EEA (2009) Progress towards the European 2010 biodiversity target—indicator fact sheets. In: EEA Technical report 2009. European Environment Agency, Copenhagen, Denmark, p 78

    Google Scholar 

  320. Gherardi F, et al. (2009) Alien invertebrates and fish in European inland waters. In: DAISIE (ed) The handbook of alien species in Europe. Springer, p 81–92

    Google Scholar 

  321. Ricciardi A, Whoriskey FG, Rasmussen JB (1997) The role of the zebra mussel (Dreissena polymorpha) in structuring macroinvertebrate communities on hard substrata. Can J Fish Aquat Sci 54(11):2596–2608

    Google Scholar 

  322. Burlakova LE, Karatayev AY, Padilla DK (2000) The impact of Dreissena polymorpha (PALLAS) invasion on unionid bivalves. Int Rev Hydrobiol 85(5–6):529–541

    Article  Google Scholar 

  323. Mörtl M, Rothhaupt KO (2003) Effects of adult Dreissena polymorpha on settling juveniles and associated macroinvertebrates. Int Rev Hydrobiol 88(6):561–569

    Article  Google Scholar 

  324. Dick JTA, Platvoet D, Kelly DW (2002) Predatory impact of the freshwater invader Dikerogammarus villosus (Crustacea: Amphipoda). Can J Fish Aquat Sci 59(6):1078–1084

    Article  Google Scholar 

  325. Kinzler W, Maier G (2003) Asymmetry in mutual predation: possible reason for the replacement of native gammarids by invasives. Archiv für Hydrobiologie 157(4):473–481

    Article  Google Scholar 

  326. Gumuliauskaitė S, Arbačiauskas K (2008) The impact of the invasive Ponto-Caspian amphipod Pontogammarus robustoides on littoral communities in Lithuanian lakes. Hydrobiologia 599:127–134

    Article  Google Scholar 

  327. Alderman DJ, Polglase JL (1988) Pathogens, parasites and commensals. In: Holdich DM, Lowery RS (eds) Freshwater crayfish: biology, management and exploitation. Croom Helm (Chapman and Hall), London, UK, pp 167–212

    Google Scholar 

  328. Devin S et al (2005) Patterns of biological invasions in French freshwater systems by non-indigenous macroinvertebrates. Hydrobiologia 551:137–146

    Article  Google Scholar 

  329. Gherardi F (2007) Understanding the impact of invasive crayfish. In: Gherardi F (ed) Biological invaders in inland waters: profiles, distribution, and threats. Springer, Dordrecht, The Netherlands, pp 507–542

    Chapter  Google Scholar 

  330. Cox G (2004) Alien species and evolution. Island Press, Washington, DC

    Google Scholar 

  331. SEC (2008) Impact Assessment. Annex to the Communication from the Commission to the Council, the European Parliament, the European Economic and Social Committee and the Committee of the Regions “Towards an EU Strategy on Invasive Species”, in Commission Staff Working Document 2008, SEC, pp 67.

    Google Scholar 

  332. Orendt C et al (2009) Include or exclude? A review on the role and suitability of aquatic invertebrate neozoa as indicators in biological assessment with special respect to fresh and brackish European waters. Biol Invasions 12:265–283

    Article  Google Scholar 

  333. Strayer DL (2006) Alien species in the Hudson river. In: Levinton JS, Waldman JR (eds) The Hudson River estuary. Cambridge University Press, New York, pp 296–312

    Chapter  Google Scholar 

  334. CBD (2007) Invasive alien species. Convention on Biological Diversity Programme of Work, Marine and Coastal Biodiversity. 29 Aug 2009. http://www.cbd.int/marine/IAS.shtml

  335. Ewel JJ et al (1999) Deliberate introductions of species: research needs. Bioscience 49:619–630

    Article  Google Scholar 

  336. SEC (2006) EU action plan to 2010 and beyond. Annex 1 to the Communication from the Commission “Halting the loss of biodiversity by 2010—and beyond. Sustaining ecosystem services for human well-being.” In: Commission staff working document. SEC, Brussels, Belgium. p 14

    Google Scholar 

  337. CEC (2007) Commission staff working document. Accompanying document to the communication forum from the commission to the European Parliament and the council: “Towards sustainable water management in the European Union.” First stage in the implementation of the Water Framework Directive 2000/60/EC. COM. p 128

    Google Scholar 

  338. Brack W et al (2009) Toward a holistic and risk-based management of European river basins. Integr Environ Assess Manag 5:5–10

    Article  CAS  Google Scholar 

  339. UKTAG (2004) UK Technical Advisory Group on the Water Framework Directive Guidance on the assessment of alien species pressures. 29 August 2009. http://www.wfduk.org/tag_guidance/Article_05/Folder.2004-02-16.5332/view

  340. Cardoso AC, Free G (2008) Incorporating invasive alien species into ecological assessment in the context of the Water Framework Directive. Aquatic Invasion 3:361–366

    Article  Google Scholar 

  341. MacNeil C et al (2010) An appraisal of a biocontamination assessment method for freshwater macroinvertebrate assemblages; a practical way to measure a significant biological pressure? Hydrobiologia 638(1):151–159

    Article  Google Scholar 

  342. Arbačiauskas K, Višinskienė G, Smilgevičienė S (2011) Non-indigenous macroinvertebrate species 1 in Lithuanian fresh waters, Part 2: Macroinvertebrate assemblage deviation from naturalness in lotic systems and the consequent potential impacts on ecological quality assessment. Knowl Manag Aquat Ecosyst 402:13

    Article  Google Scholar 

  343. Leuven RSEW et al (2009) The river Rhine: a global highway for dispersal of aquatic invasive species. Biol Invasions 11:1989–2008

    Article  Google Scholar 

  344. MacNeil V, Briffa M (2009) Replacement of a native freshwater macroinvertebrate species by an invader: implications for biological water quality monitoring. Hydrobiologia 635:321–327

    Article  CAS  Google Scholar 

  345. Moss D et al (1987) The prediction of the macro-invertebrate fauna of unpolluted running-water sites in Great Britain using environmental data. Freshwat Biol 17:41–52

    Article  Google Scholar 

  346. Olenin S, Minchin D, Daunys D (2007) Assessment of biopollution in aquatic ecosystems. Mar Pollut Bull 55:379–394

    Article  CAS  Google Scholar 

  347. Ojaveer H et al (2002) Ecological impacts of alien species in the Baltic Sea and in the Great Lakes: an inter-ecosystem comparison. In: Leppäkoski E, Olenin S, Gollasch S (eds) Invasive aquatic species of Europe: distributions, impacts, and management. Kluwer Scientific Publishers, Dordrecht, The Netherlands, pp 412–425

    Chapter  Google Scholar 

  348. Arbačiauskas K et al (2011) Non-indigenous macroinvertebrate species in Lithuanian fresh waters, Part 1: Distributions, dispersal and future. Knowl Manage Aquat Ecosyst 402:12

    Article  Google Scholar 

  349. Galil BS, Nehring S, Panov VE (2007) Waterways as invasion highways—Impact of climate change and globalization. In: Nentwig W (ed) Biological invasions. Springer, Berlin, Germany, pp 59–74

    Chapter  Google Scholar 

  350. Walther GR et al (2009) Alien species in a warmer world—risks and opportunities. Trends Ecol Evol 25:686–693

    Article  Google Scholar 

  351. van der Velde G et al (2002) Invasions by alien species in inland freshwater bodies in western Europe: the Rhine delta. In: Leppäkoski E, Gollasch S, Olenin S (eds) Invasive aquatic species of Europe distribution, impacts and management. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 360–372

    Chapter  Google Scholar 

  352. Lockwood JL, Hoopes MF, Marchetti MP (2007) Invasion ecology. Blackwell, Oxford, UK, p 312

    Google Scholar 

  353. Ricciardi A (2003) Predicting the impacts of an introduced species from its invasion history: an empirical approach applied to zebra mussel invasions. Freshwat Biol 48(6):972–981

    Article  Google Scholar 

  354. Raven PJ et al (2002) Towards a harmonized approach for hydromorphological assessment of rivers in Europe: a qualitative comparison of three survey methods. Aquat Conservat: Mar Freshwat Ecosyst 12:405–424

    Article  Google Scholar 

  355. Dynesius M, Nilsson C (1994) Fragmentation and flow regulation of river systems in the northern third of the World. Science 266:753–762

    Article  CAS  Google Scholar 

  356. Communities C.o.t.E. (1995) Wise use and conservation of wetlands.

    Google Scholar 

  357. Pedroli B et al (2002) Setting targets in strategies for river restoration. Landsc Ecol 17:5–18

    Article  Google Scholar 

  358. LAWA (2000) Gewässerstrukturgütekartierung in der Bundesrepublik Deutschland - Verfahren für kleine und mittelgroße Fließgewässer. LAWA Publikationen ‘Oberirdische Gewässer und Küstengewässer’. Schwerin: Länderarbeitsgemeinschaft Wasser.

    Google Scholar 

  359. LAWA (2002) Gewässergüteatlas der Bundesrepublik Deutschland—Gewässerstruktur in der Bundesrepublik Deutschland 2002, Länderarbeitsgemeinschaft Wasser.

    Google Scholar 

  360. Hessisches Ministerium für Umwelt, L.u.F. (2000) Gewässerstrukturgüte in Hessen 1999. Hessisches Ministerium für Umwelt, Landwirtschaft und Forsten: Wiesbaden, Germany, pp 52

    Google Scholar 

  361. Lorenz A et al (2004) A new method for assessing the impact of hydromorphological degradation on the macroinvertebrate fauna of five German stream types. Hydrobiologia 516:107–127

    Article  Google Scholar 

  362. Verdonschot PFM, Nijboer RC (2002) A decision support system for stream restoration in the Netherlands. An overview of restoration projects and future needs. Hydrobiologia 478:131–148

    Article  Google Scholar 

  363. Brookes A (1987) The distribution and management of channelized streams in Denmark. Regul Rivers: Res Manage 1:3–16

    Article  Google Scholar 

  364. Pardo I et al (2002) El hábitat de los ríos mediterráneos. Diseño de un índice de diversidad de hábitat. Limnetica 21(3–4):115–133

    Google Scholar 

  365. von der Ohe PC, Goedkoop W (2013) Distinguishing the effects of habitat degradation and pesticide stress on benthic invertebrates using stressor-specific metrics. Sci Total Environ 444:480–490

    Article  CAS  Google Scholar 

  366. Hering D, Johnson RK, Buffagni A (2006) Linking organism groups—major results and conclusions from the STAR project. Hydrobiologia 566:109–113

    Article  Google Scholar 

  367. Schmutz S et al (2007) Fish-based methods for assessing European running waters: a synthesis. Fish Manag Ecol 14(6):369–380

    Article  Google Scholar 

  368. Karr JR (1981) Assessment of biotic integrity using fish communities. Fisheries 6:21–27

    Article  Google Scholar 

  369. Angermeier PL, Smogor RA, Stauffer JR (2000) Regional frameworks and candidate metrics for assessing biotic integrity in mid-Atlantic highland streams. Trans Am Fish Soc 129:962–981

    Article  Google Scholar 

  370. Noble RAA, Cowx IG, Goffaux D (2007) Assessing the health of European rivers using functional ecological guilds of fish communities: standardising species classification and approaches to metric selection. Fish Manag Ecol 14(6):381–392

    Article  Google Scholar 

  371. Barbour MT et al (1999) Rapid bioassessment protocols for use in streams and wadeable rivers: Periphyton, benthic macroinvertebrates and fish, 2nd edn. EPA 841-B-99-002. US Environmental Protection Agency Office of Water, Washington, DC, p 339

    Google Scholar 

  372. Hering D et al (2004) Assessing streams in Germany with benthic invertebrates: selection of candidate metrics. Limnologica 34:398–415

    Article  Google Scholar 

  373. Smith MJ et al (1999) AusRivAS: using macroinvertebrates to assess ecological condition of rivers in Western Australia. Freshwat Biol 41:269–282

    Article  Google Scholar 

  374. Statzner B et al (2005) Invertebrate traits for the biomonitoring of large European rivers: an initial assessment of trait patterns in least impacted river reaches. Freshwat Biol 50:2136–2161

    Article  Google Scholar 

  375. Wright JF, Furse MT, Armitage PD (1993) RIVPACS—a technique for evaluating the biological quality of rivers in the UK. Water Res 3:15–25

    Google Scholar 

  376. Buffagni A et al (2004) The AQEM multimetric system for the southern Italian Apennines: assessing the impact of water quality and habitat degradation on pool macroinvertebrates in Mediterranean rivers. Hydrobiologia 516:313–329

    Article  Google Scholar 

  377. Griffith MB et al (2001) Analysis of macroinvertebrate assemblages in relation to environmental gradients in Rocky Mountain streams. Ecol Appl 11:489–505

    Article  Google Scholar 

  378. Snyder CD et al (2003) Influences of up and and riparian land use patterns on stream biotic integrity. Landsc Ecol 18:647–664

    Article  Google Scholar 

  379. Townsend CR et al (2003) The influence of scale and geography on relationships between stream community composition and landscape variables: description and prediction. Freshwat Biol 48:768–785

    Article  Google Scholar 

  380. Schaumburg J et al (2004) Ecological classification of macrophytes and phytobenthos for rivers in Germany according to the Water Framework Directive. Limnologica 34(4):283–301

    Article  Google Scholar 

  381. O’Hare MT et al (2006) Macrophyte communities of European streams with altered physical habitat. Hydrobiologia 566:197–210

    Article  Google Scholar 

  382. Davy-Bowker J, Furse MT (2004) Hydromorphology—major results and conclusions from the STAR project. Hydrobiologia 566:263–265

    Article  Google Scholar 

  383. Palmer MA, Menninger HL, Bernhardt E (2009) River restoration, habitat heterogeneity and biodiversity: a failure of theory or practice? Freshwat Biol 55:205–222

    Article  Google Scholar 

  384. Frissell CA et al (1986) A hierarchical framework for stream habitat classification: viewing streams in a watershed context. Environ Manage 10:199–214

    Article  Google Scholar 

  385. Sponseller RA, Benfield EF, Valett HM (2001) Relationships between land use, spatial scale and stream macroinvertebrate communities. Freshwat Biol 46:1409–1424

    Article  Google Scholar 

  386. Weigel BM et al (2003) Relative influence of variables at multiple spatial scales on stream macroinvertebrates in the Northern Lakes and Forest ecoregion, USA. Freshwat Biol 48:1440–1461

    Article  Google Scholar 

  387. Feld CK, Hering D (2007) Community structure or function? Effects of environmental stress on benthic macroinvertebrates at different spatial scales. Freshwat Biol 52:1380–1399

    Article  Google Scholar 

  388. Jähnig SC et al (2009) Effects of re-braiding measures on hydromorphology, floodplain vegetation, ground beetles and benthic invertebrates in mountain rivers. J Appl Ecol 46:406–416

    Article  Google Scholar 

  389. Maastik A et al (2000) Environmental dictionary. Finnish Environment Institute, Helsinki, Finnland, p 702

    Google Scholar 

  390. Tallaksen LM, van Lanen HAJ (2004) Hydrological drought—processes and estimation methods for streamflow and groundwater. In: Developments in water sciences, Vol 48. Elsevier BV, The Netherlands, p 580

    Google Scholar 

  391. Keto A et al (2008) Use of the water-level fluctuation analysis tool (Regcel) in hydrological status assessment of Finnish lakes. Hydrobiologia 613:133–142

    Article  Google Scholar 

  392. Richter BD et al (1996) A method for assessing hydrologic alteration within ecosystems. Conserv Biol 10:1163–1174

    Article  Google Scholar 

  393. Hellsten S (1997) Environmental factors related to water level regulation—a comparative study in northern Finland. Boreal Environ Res 2:345–367

    Google Scholar 

  394. Lake PS (2003) Ecological effects of perturbation by drought in flowing waters. Freshwat Biol 48:1161–1172

    Article  Google Scholar 

  395. Miller SW, Wooster D, Li JL (2009) Does species trait composition influence macroinvertebrate responses to irrigation water withdrawals: Evidence from the Intermountain West, USA. River Res Appl 26:1261–1280

    Article  Google Scholar 

  396. Biggs BJF, Nikora VI, Snelder TH (2005) Linking scales of flow variability to lotic ecosystem structure and function. River Res Appl 21:283–298

    Article  Google Scholar 

  397. Rose P, Metzeling L, Catzikiris S (2008) Can macroinvertebrate rapid bioassessment methods be used to assess river health during drought in south eastern Australian streams? Freshwat Biol 53:2626–2638

    Article  CAS  Google Scholar 

  398. Lake PS (2000) Disturbance, patchiness, and diversity in streams. J N Am Benthol Soc 19:573–592

    Article  Google Scholar 

  399. Holomuzki JR, Biggs BJF (1999) Distributional responses to flow disturbance by a stream-dwelling snail. Oikos 87:36–47

    Article  Google Scholar 

  400. Holomuzki JR, Biggs BJF (2000) Taxon-speafic responses to high-flow disturbance in streams: replications for population persistence. J N Am Benthol Soc 19:670–679

    Article  Google Scholar 

  401. Cobb DG, Galloway TD, Flannagan JF (1992) Effects of discharge and substrate stability on density and species composition of stream insects. Can J Fish Aquat Sci 49:1788–1795

    Article  Google Scholar 

  402. Biggs BJF et al (2001) The importance of bed stability to benthic ecosystems. In: Mosley MP (ed) Gravel-bed rivers V. New Zealand Hydrological Society, Christchurch, pp 423–449

    Google Scholar 

  403. Gjerlov C, Hildrew AG, Jones JI (2003) Mobility of stream invertebrates in relation to disturbance and refugia: a test of habitat templet theory. J N Am Benthol Soc 22:207–223

    Article  Google Scholar 

  404. Wallace JB (1990) Recovery of lotic macroinvertebrate communities from disturbance. Environ Manage 14:605–620

    Article  Google Scholar 

  405. Townsend CR, Doledec S, Scarsbrook MR (1997) Species traits in relation to temporal and spatial heterogeneity in streams: a test of habitat templet theory. Freshwat Biol 37:367–387

    Article  Google Scholar 

  406. Scrimgeour GJ, Winterbourn MJ (1989) Effects of floods on epilithon and benthic macroinvertebrate populations in an unstable New Zealand river. Hydrobiologia 171:33–44

    Article  Google Scholar 

  407. Matthaei CD, Arbuckle CJ, Townsend CR (2000) Stable surface stones as refugia for invertebrates during disturbance in a New Zealand stream. J N Am Benthol Soc 19:82–93

    Article  Google Scholar 

  408. Scarsbrook M (2002) Persistence and stability of lotic invertebrate communities in New Zealand. Freshwat Biol 47:417–431

    Article  Google Scholar 

  409. Spence DHN (1982) The zonation of plants in freshwater lakes. Adv Ecol Res 12:37–125

    Article  Google Scholar 

  410. Coops H, Van der Velde G (1995) Seed dispersal, germination, and seedling growth of six helophyte species in relation to water-level zonation. Freshwat Biol 34:13–20

    Article  Google Scholar 

  411. Aroviita J, Hämäläinen H (2008) The impact of water-level regulation on littoral macroinvertebrate assemblages in boreal lakes. Hydrobiologia 613:45–56

    Article  Google Scholar 

  412. Castella E et al (1995) The effects of water abstractions on invertebrate communities in UK streams. Hydrobiologia 308:167–182

    Article  Google Scholar 

  413. Stubbington R, Wood PJ, Boulton AJ (2009) Low flow controls on benthic and hyporheic macroinvertebrate assemblages during supra-seasonal drought. Hydrolog Process 23:2252–2263

    Article  Google Scholar 

  414. Koop JHE, Bergfeld T, Keller M (2007) Einfluss von extremen Niedrigwasser-Ereignissen und gleichzeitigen “Hitzeperioden” auf die Ökologie von Bundeswasserstraßen. Hydrologie und Wasserbewirtschaftung 51:202–209

    Google Scholar 

  415. Extence CA (1981) The effect of drought on benthic invertebrate communities in a lowland river. Hydrobiologia 83:217–224

    Article  Google Scholar 

  416. Sangiorgio F, Fonnesu A, Mancinelli G (2007) Effect of drought frequency and other reach characteristics on invertebrate communities and litter breakdown in the intermittent Mediterranean River Pula (Sardinia, Italy). Int Rev Hydrobiol 92:156–172

    Article  Google Scholar 

  417. Boulton AJ, Lake PS (1990) The ecology of two intermittent streams in Victoria, Australia. I. Multivariate analyses of physicochemical features. Freshwat Biol 24:123–141

    Article  CAS  Google Scholar 

  418. Wood PJ, Petts GE (1994) Low flows and recovery of macroinvertebrates in a small regulated chalk stream. Regul Rivers: Res Manage 9:303–316

    Article  Google Scholar 

  419. Wood PJ, Petts GE (1999) The influence of drought on chalk stream macroinvertebrates. Hydrol Processes 13:387–399

    Article  Google Scholar 

  420. Morrison BRS (1990) Recolonisation of four small streams in central Scotland following drought conditions in 1984. Hydrobiologia 208:261–267

    Article  Google Scholar 

  421. Stanley EH, Fisher SG, Grimm NB (1997) Ecosystem expansion and contraction in streams. Bioscience 47:427–435

    Article  Google Scholar 

  422. Brasher AMD (2003) Impacts of human disturbances on biotic communities in Hawaiian streams. Bioscience 53:1052–1060

    Article  Google Scholar 

  423. Gawnel B, Lake PS (1996) The effects of disturbance on a herbivore-epilithon interaction in an upland stream. Hydrobiologia 331:153–160

    Article  Google Scholar 

  424. Rempel LL, Richardson JS, Healey MC (1999) Flow Refugia for Benthic Macroinvertebrates during flooding of a Large River. J N Am Benthol Soc 18:34–48

    Article  Google Scholar 

  425. Wantzen KM et al (2008) Ecological effects of water-level fluctuations in lakes: an urgent issue. Hydrobiologia 613:1–4

    Article  Google Scholar 

  426. Dienst M, Schmieder K, Ostendorp W (2004) Effects of water level variations on the dynamics of the reed belts of Lake Constance. Limnologica 34:29–36

    Article  Google Scholar 

  427. Marttunen M et al (2006) Heavily regulated lakes and the European Water Framework Directive—Comparisons from Finland, Norway, Sweden, Scotland and Austria. E-WAter 5:1–22

    Google Scholar 

  428. Hellsten S, Mjelde M (2009) Macrophyte responses to water level fluctuation In Fennoscandinavian lakes—applying a Common Index. Verh Internat Verein Limnol 30:765–769

    Google Scholar 

  429. Junk WJ, Bayley PB, Sparks RE (1989) The flood pulse concept in river-floodplain systems. Special Publication of the Can J Fish Aquat Sci 106:110–127

    Google Scholar 

  430. Chessman BC, Robinson DP (1987) Some effects of the 1982–83 drought on water quality and macro invertebrate fauna in the lower Latrobe River, Victoria. Aust J Freshwater Resource 38:289–299

    Article  CAS  Google Scholar 

  431. Sprague LA (2005) Drought effects on water quality in the South Platte River basin, Colorado. J Am Water Resour Assoc 41:11–25

    Article  CAS  Google Scholar 

  432. Bonada N et al (2006) Benthic macroinvertebrate assemblages and macrohabitat connectivity in Mediterranean-climate streams of northern California. J N Am Benthol Soc 25:32–43

    Article  Google Scholar 

  433. Hellsten S (2001) Effects of lake water level regulation on aquatic macrophytes stands and options to predict these impacts under different conditions. Acta Botanica Fennica 171:47

    Google Scholar 

  434. Rørslett B (1989) An integrated approach to hydropower impact assesment. II. Submerged macrophytes in some Norwegian hydro-electric lakes. Hydrobiologia 175:65–82

    Article  Google Scholar 

  435. Sutela T, Huusko A (1995) Impacts of water level regulation on the early life of vendace (Coregonus albula L.). Arch Hydrobiol Spec Issues Adv Limnol 46:465–472

    Google Scholar 

  436. Werner S et al (2005) Strong impact of wintering waterbirds on zebra mussel (Dreissena polymorpha) populations at Lake Constance, Germany. Freshwat Biol 50:1412–1426

    Article  Google Scholar 

  437. Wantzen KM, Junk JW, Rothhaupt KO (2008) An extension of the floodpulse concept (FPC) for lakes. Hydrobiologia 613:151–170

    Article  Google Scholar 

  438. Dinka M et al (2004) Influence of water level fluctuation on the spatial dynamic of the water chemistry at lake Ferto/Neusiedler See. Limnologica 334:48–56

    Article  Google Scholar 

  439. Kampa E, Hansen W (2004) Heavily modified water bodies synthesis of 34 case studies in Europe. Springer, Berlin, Germany, p 321

    Book  Google Scholar 

  440. Black AR, et al. (2000) Anthropogenic impacts upon the hydrology of rivers and lochs: phase I a user manual introducing the Dundee Hydrological Regime Assessment Method. SNIFFER, p. 32

    Google Scholar 

  441. Hellsten S et al (1996) Towards an ecologically-based regulation practice in Finnish hydroelectric lakes. Regul Rivers: Res Manage 12:535–545

    Article  Google Scholar 

  442. King J, Brown C, Hossein S (2003) A scenario-based holistic approach to environmental flow assessments for rivers. River Res Appl 19:619–639

    Article  Google Scholar 

  443. Meijer KS (2007) Human well-being values of environmental flows enhancing social equity in integrated water resources management, in Civil Engineering and Geosciences. Technische Universiteit Delft, Delft. p 143

    Google Scholar 

  444. Brauman KA, van der Meulen S, Brils J (2014) Ecosystem services and river basin management. In: Brils J, Brack W, Müller-Grabherr D, Négrel P, Vermaat JE (eds) Risk-informed management of European river basins. Springer, Heidelberg

    Google Scholar 

  445. Brils JM (2003) The SedNet strategy paper: The opinion of SedNet on environmentally, socially and economically viable sediment management. http://www.sednet.org/materiale/SedNet_SP.pdf

  446. Levin SA (1992) The problem of pattern and scale in ecology. Ecology 73:1943–1967

    Article  Google Scholar 

  447. Mikhailova MV (2006) Sediment balance at river mouths and the formation of deltas at rising or falling sea level. Water Resour 33(5):523–534

    Article  CAS  Google Scholar 

  448. Worm B et al (2006) Impacts of biodiversity loss on ocean ecosystem services. Science 314:787–790

    Article  CAS  Google Scholar 

  449. Wall DH, (ed) (2004) Sustaining biodiversity and ecosystem services in soils and sediments. The Scientific Committee on Problems of the Environment (SCOPE). Vol. Scope 64. 2004, Island Press: Washington DC, p 275

    Google Scholar 

  450. Kefford BJ et al (2010) How are macroinvertebrates of slow flowing lotic systems directly affected by suspended and deposited sediments? Environ Pollut 158:543–550

    Article  CAS  Google Scholar 

  451. Waters TF (1995) Sediments in streams, sources, biological effects and control, in American Fisheries Society Monograph 7. American Fisheries Society, Bethesda, USA

    Google Scholar 

  452. De Jonge VN, De Jong DJ (2002) ‘Global Change’ impact of inter-annual variation in water discharge as a driving factor to dredging and spoil disposal in the river Rhine system and of turbidity in the Wadden sea. Estuar Coast Shelf Sci 55:969–991

    Article  Google Scholar 

  453. Apitz SE (2011) Conceptualizing the role of sediment in sustaining ecosystem services: sediment-ecosystem regional assessment (SEcoRA). Sci Total Environ 415:9–30

    Article  CAS  Google Scholar 

  454. USEPA (1999) Protocol for developing sediment TMDLs, 1st Edn. United States Environmental Protection Agency, Office of Water, Washington, DC, p 143

    Google Scholar 

  455. EEA (2008) Catalogue of forward-looking indicators from selected sources. A contribution to the forward-looking component of a shared environmental information system (SEIS/Forward). in EEA Technical report 2008, European Environmental Agency: Copenhagen, p. 201

    Google Scholar 

  456. Extence CA, Chadd RP, England J, Dunbar MJ, Wood PJ, Taylor ED (2013) The assessment of fine sediment accumulation in rivers using macro-invertebrate community response. River Res Appl 29(1):17–55

    Article  Google Scholar 

  457. Wright JF, Furse MT, Moss D (1998) River classification using invertebrates: RIVPACS applications. Aquatic Conser6 Mar Freshw Ecosyst 8:617–631

    Article  Google Scholar 

  458. MAG-ACQUE-Thetis (2006) Stato dell’ecosistema lagunare veneziano—DPSIR 2005. Summary report. Venice Water Authority and Thetis SpA, Venice, Italy

    Google Scholar 

  459. Reiser DW (1998) Sediment in gravel-bed rivers: ecological and biological considerations, in Gravel-bed rivers in the Environment, P.C.K.a. others, Editor. Water Resource Publications: Colorado. p 199–228

    Google Scholar 

  460. APEM (2007) Review of the UKTAG proposed standard for suspended solids. Draft Report. APEM Scientific Report 410242. WWF-UK, Surrey, UK, p 20

    Google Scholar 

  461. Walling D, Webb B, Shanahan J (2008) Investigations into the use of critical sediment yields for assessing and managing fine sediment inputs into freshwater ecosystems. Natural England Research Information Note RIN007. Natural England: http://www.naturalengland.org.uk/. p 3

  462. Atkinson PW, et al. (2001) The success of creation and restoration schemes in producing intertidal habitat suitable for waterbirds. English Nature Research Reports Number 425. English Nature. p 42.

    Google Scholar 

  463. Apitz SE (2012) Conceptualising the role of sediment in sustaining ecosystem services: Sediment-Ecosystem Regional Assessment (SEcoRA). Sci Total Environ 415:9–30

    Article  CAS  Google Scholar 

  464. CEC (2006) Directive 2006/44/EC of the European Parliament and of the Council of 6 Septemebr 2006 on the quality of fresh waters needing protection or improvement in order to support fish life. p 31

    Google Scholar 

  465. Walling D, Webb B, Shannon J (2007) Investigations into the use of critical sediment yields for assessing and managing fine sediment inputs into aquatic ecosystems. Natural England Research Reports, Number 007

    Google Scholar 

  466. Cooper D, et al. (2008) Development of guideline sediment targets to support management of sediment inputs into aquatic systems. Natural England Research Report NERR008. Natural England: Sheffield, UK, http://www.naturalengland.org.uk/. p 96

  467. Apitz SE, White S (2003) A conceptual framework for river-basin-scale sediment management. J Soils Sediment 3(3):132–138

    Article  Google Scholar 

  468. SedNet (2004) Contaminated sediments in European River Basins. European Sediment Research Network. EVKI-CT-2001-2002, key-action 1.4.1 Abatement of water pollution from contaminated land, landfills and sediments (co-ordinator: Jos Brils, TNO). Salomons W, Brils J (eds): Den Helder, The Netherlands. p 80

    Google Scholar 

  469. Apitz SE et al (2006) European environmental management: moving to an ecosystem approach. Integr Environ Assess Manag 2:80–86

    Article  Google Scholar 

  470. Apitz SE, Oen A, White SM (2006) Managing sediment risk at the basin scale: European frameworks in support of complex decisions. In: Linkov I (ed) Environmental Security and Environmental Decision-Making. Springer

    Google Scholar 

  471. Bridges T et al (2006) Risk-based decision-making to manage contaminated sediments. Integr Environ Assess Manag 2:51–58

    Article  Google Scholar 

  472. Magar VS et al (2006) Parsing ecological impacts in watersheds. J Environ Eng 132(1):1–3

    Article  CAS  Google Scholar 

  473. White SM, et al. (2006) Desk based study of the sediment inputs to the Broads catchment, with the identification of key inputs and recommendations for further targeted research and management to minimise inputs. Final Report to the Broads Authority, Phases I and II. Silsoe, UK.

    Google Scholar 

  474. Apitz SE et al (2007) Strategic frameworks for managing sediment risk at the basin and site-specific scale. In: Heise S (ed) Sediment risk management and communication. Elsevier, Amsterdam, The Netherlands

    Google Scholar 

  475. Babut M et al (2007) Prioritisation at catchment scale, risk ranking at local scale: suggested approaches. In: Heise S (ed) Sediment risk management and communication. Elsevier, Amsterdam, The Netherlands, pp 107–152

    Chapter  Google Scholar 

  476. Heise S, Apitz SE (2007) The role of risk management and communication in sustainable sediment management. In: Heise S (ed) Sediment risk management and communication. Elsevier, Amsterdam, The Netherlands, pp 1–8

    Chapter  Google Scholar 

  477. SedNet (2007) Report on the SedNet Round Table Discussion; sediment management—an essential element of River Basin Management Plans; Venice, 22–23 November 2006

    Google Scholar 

  478. Apitz SE, Casper S, White SM (2010) The development of a spatially explicit sediment risk model for the management of sediments at the River Basin Scale—conceptual approach. IEAM—to be submitted

    Google Scholar 

  479. Apitz SE, et al. (2010) The sediment relative risk model (SC080018)—A user’s guide. In: Report to the Environment Agency. SEA Environmental Decisions Ltd and Cranfield University: Cranfield, UK.

    Google Scholar 

  480. Apitz SE, White SM, Casper S (2009) A regional risk model for managing sediment at a river basin scale: overview. In: Workshop: Developing a Sediment Risk Ranking Model and Management Framework for River Basin Planning in the UK. Cranfield University, UK

    Google Scholar 

  481. UNEP (2006) Marine and coastal ecosystems and human wellbeing: a synthesis report based on the findings of the Millennium Ecosystem Assessment. United Nations Environment Programme, Nairobi, Kenya, p 76

    Google Scholar 

  482. Bortone G et al (2004) Sediment and dredged material treatment synthesis of the SedNet Work Package 4 Outcomes. J Soil Sediments 4(4):225–232

    Article  Google Scholar 

  483. Heise S et al (2004) Sediment risk management and communication. Synthesis of the SedNet Working Group 5 Outcomes. J Soil Sediments 4(4):233–235

    Article  Google Scholar 

  484. Salomons W, Foerstner U, Brils J (2007) European Sediments: SedNet Network Recommendations for European Research Poltenial and European Added Value

    Google Scholar 

  485. White S, Casper S, Apitz SE (2009) Developing a sediment management framework for WFD River Basin Planning in the UK. In: 6th International SedNet Conference. Hamburg, Germany

    Google Scholar 

  486. Ankley GT et al (2010) Adverse outcome pathways: a conceptual framework to support ecotoxicology research and risk assessment. Environ Toxicol Chem 29(3):730–41

    Article  CAS  Google Scholar 

  487. Watanabe KH et al (2011) Defining and modeling known adverse outcome pathways: Domoic acid and neuronal signaling as a case study. Environ Toxicol Chem 30(1):9–21

    Article  CAS  Google Scholar 

  488. Williams TD et al (2011) Towards a system level understanding of non-model organisms sampled from the environment: a network biology approach. PLoS Comput Biol 7(8):e1002126

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter C. von der Ohe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

von der Ohe, P.C. et al. (2014). Status and Causal Pathway Assessments Supporting River Basin Management. In: Brils, J., Brack, W., Müller-Grabherr, D., Négrel, P., Vermaat, J. (eds) Risk-Informed Management of European River Basins. The Handbook of Environmental Chemistry, vol 29. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38598-8_3

Download citation

Publish with us

Policies and ethics