Skip to main content

Ecological Relevance of Key Toxicants in Aquatic Systems

  • Chapter
  • First Online:
Effect-Directed Analysis of Complex Environmental Contamination

Abstract

The effect-directed analysis (EDA) methodology is an important component in site-specific risk assessment of contaminated aquatic systems, but improves its relevance in assessment strategies when confirmed on ecosystem level. Several approaches are available to confirm the ecological relevance of EDA results, but just a few studies exist, directly linking EDA processes with field studies in the aquatic environment. In this chapter, approaches on different assessment levels ranging from molecular responses to integrated community analysis are summarised in a multiple line of evidence approach to illustrate their potential use in EDA-confirmation procedures. Biomarkers were identified to have the potential to bridge bioassay-identified chemicals from EDA studies to effects in indigenous organisms on a mechanistic level. In situ bioassays use reference organisms to directly link exposure to EDA-identified chemicals to site-specific effects on organisms at realistic exposure conditions. For the sites of investigation, in-depth information on chemical concentrations and site-specific community data may be available from monitoring programs. These data can be used to confirm the relevance of EDA-identified chemicals by linking their concentrations to community-level effects. The SPEAR-index directly links changes in macroinvertebrate communities to site-specific contaminants. Multivariate statistical tools and prognostic modelling based on the TU-approach or on ms-PAF modelling may reveal correlations of EDA-identified chemicals and provide prognosis on potential impacts on the ecological status. Next to the principles and examples of the suggested approaches constraints and challenges are discussed, when aiming to link the methodology of EDA with ecological-based site assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brack W (2003) Effect-directed analysis: a promising tool for the identification of organic toxicants in complex mixtures? Anal Bioanal Chem 377(3):397–407

    Article  CAS  Google Scholar 

  2. Hecker M, Hollert H (2009) Effect-directed analysis (EDA) in aquatic ecotoxicology: state of the art and future challenges. Environ Sci Pollut Res 16(6):607–613

    Article  Google Scholar 

  3. Brack W, Schmitt-Jansen M, Machala M, Brix R, Barcelo D, Schymanski E, Streck G, Schulze T (2008) How to confirm identified toxicants in effect-directed analysis. Anal Bioanal Chem 390(8):1959–1973

    Article  CAS  Google Scholar 

  4. Liess M, von der Ohe PC (2005) Analyzing effects of pesticides on invertebrate communities in streams. Environ Toxicol Chem 24(4):954–965

    Article  CAS  Google Scholar 

  5. von der Ohe PC, Liess M (2004) Relative sensitivity distribution of aquatic invertebrates to organic and metal compounds. Environ Toxicol Chem 23(1):150–156

    Article  Google Scholar 

  6. de Zwart D, Posthuma L (2005) Complex mixture toxicity for single and multiple species: proposed methodologies. Environ Toxicol Chem 24(10):2665–2676

    Article  Google Scholar 

  7. Eggen RIL, Segner H (2003) The potential of mechanism-based bioanalytical tools in ecotoxicological exposure and effect assessment. Anal Bioanal Chem 377(3):386–396

    Article  CAS  Google Scholar 

  8. Gale RW, Long ER, Schwartz TR, Tillitt DE (2000) Evaluation of planar halogenated and polycyclic aromatic hydrocarbons in estuarine sediments using ethoxyresorufin-O-deethylase induction of H4IIE cells. Environ Toxicol Chem 19(5):1348–1359

    CAS  Google Scholar 

  9. Hahn ME (2002) Biomarkers and bioassays for detecting dioxin-like compounds in the marine environment. Sci Total Environ 289(1–3):49–69

    Article  CAS  Google Scholar 

  10. Tillitt DE, Giesy JP, Ankley GT (1991) Characterization of the H4Iie rat hepatoma-cell bioassay as a tool for assessing toxic potency of planar halogenated hydrocarbons in environmental-samples. Environ Sci Technol 25(1):87–92

    Article  CAS  Google Scholar 

  11. Behrens A, Segner H (2005) Cytochrome P4501A induction in brown trout exposed to small streams of an urbanised area: results of a five-year-study. Environ Pollut 136(2):231–242

    Article  CAS  Google Scholar 

  12. Haasch ML, Prince R, Wejksnora PJ, Cooper KR, Lech JJ (1993) Caged and wild fish – induction of hepatic cytochrome-P-450 (Cyp1A1) as an environmental biomonitor. Environ Toxicol Chem 12(5):885–895

    Article  CAS  Google Scholar 

  13. van der Oost R, Beyer J, Vermeulen NPE (2003) Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environ Toxicol Pharmacol 13(2):57–149

    Article  Google Scholar 

  14. Whyte JJ, Jung RE, Schmitt CJ, Tillitt DE (2000) Ethoxyresorufin-O-deethylase (EROD) activity in fish as a biomarker of chemical exposure. Crit Rev Toxicol 30(4):347–570

    Article  CAS  Google Scholar 

  15. Houtman CJ, Booij P, van der Valk KM, van Bodegom PM, van den Ende F, Gerritsen AAM, Lamoree MH, Legler J, Brouwer A (2007) Biomonitoring of estrogenic exposure and identification of responsible compounds in bream from Dutch surface waters. Environ Toxicol Chem 26(5):898–907

    Article  CAS  Google Scholar 

  16. Legler J, van den Brink CE, Brouwer A, Murk AJ, van der Saag PT, Vethaak AD, van der Burg P (1999) Development of a stably transfected estrogen receptor-mediated luciferase reporter gene assay in the human T47D breast cancer cell line. Toxicol Sci 48(1):55–66

    Article  CAS  Google Scholar 

  17. Villeneuve DL, Blankenship AL, Giesy JP (2000) Derivation and application of relative potency estimates based on in vitro bioassay results. Environ Toxicol Chem 19(11):2835–2843

    Article  CAS  Google Scholar 

  18. Whyte JJ, van den Heuvel MR, Clemons JH, Huestis SY, Servos MR, Dixon DG, Bols NC (1998) Mammalian and teleost cell line bioassay and chemically derived 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin equivalent concentrations in lake trout (Salvelinus namaycush) from Lake Superior and Lake Ontario, North America. Environ Toxicol Chem 17(11):2214–2226

    CAS  Google Scholar 

  19. Brack W, Segner H, Moder M, Schuurmann G (2000) Fixed-effect-level toxicity equivalents – a suitable parameter for assessing ethoxyresorufin-O-deethylase induction potency in complex environmental samples. Environ Toxicol Chem 19(10):2493–2501

    CAS  Google Scholar 

  20. Ankley GT, Hockett JR, Mount DI, Mount DR (2011) Early evolution of the toxicity identification evaluation process: contributions from the United States environmental protection agency effluent testing program. In: Brack W (ed) Effects directed analysis of complex environmental contamination. Springer, Heidelberg

    Google Scholar 

  21. Jobling S, Nolan M, Tyler CR, Brighty G, Sumpter JP (1998) Widespread sexual disruption in wild fish. Environ Sci Technol 32(17):2498–2506

    Article  CAS  Google Scholar 

  22. Desbrow C, Routledge EJ, Brighty GC, Sumpter JP, Waldock M (1998) Identification of estrogenic chemicals in STW effluent. 1. Chemical fractionation and in vitro biological screening. Environ Sci Technol 32(11):1549–1558

    Article  CAS  Google Scholar 

  23. Segner H (2011) Reproductive and developmental toxicology of fishes. In: Gupta, R (ed) Reproductive and developmental toxicology. Elsevier, Amsterdam (in press)

    Google Scholar 

  24. Routledge EJ, Sheahan D, Desbrow C, Brighty GC, Waldock M, Sumpter JP (1998) Identification of estrogenic chemicals in STW effluent. 2. In vivo responses in trout and roach. Environ Sci Technol 32(11):1559–1565

    Article  CAS  Google Scholar 

  25. Sole M, de Alda MJL, Castillo M, Porte C, Ladegaard-Pedersen K, Barcelo D (2000) Estrogenicity determination in sewage treatment plants and surface waters from the Catalonian area (NE Spain). Environ Sci Technol 34(24):5076–5083

    Article  CAS  Google Scholar 

  26. Schmitt CJ, Hinck JE, Blazer VS, Denslow ND, Dethloff GM, Bartish TM, Coyle JJ, Tillitt DE (2005) Environmental contaminants and biomarker responses in fish from the Rio Grande and its US tributaries: Spatial and temporal trends. Sci Total Environ 350(1–3):161–193

    CAS  Google Scholar 

  27. Crane M, Burton GA, Culp JM, Greenberg MS, Munkittrick KR, Ribeiro R, Salazar MH, St-Jean SD (2007) Review of aquatic in situ approaches for stressor and effect diagnosis. Integr Environ Assess Manage 3(2):234–245

    Article  Google Scholar 

  28. De Kock WC, Kramer KJM (1994) Active Biomonitoring (ABM) by translocation of bivalve molluscs. In: Kramer KJM (ed) Biomonitoring of coastal waters and estuaries. CRC Press, Boca Raton, FL, pp 51–84

    Google Scholar 

  29. Rotter S, Sans-Piche F, Streck G, Altenburger R, Schmitt-Jansen M (2011) Active bio-monitoring of contamination in aquatic systems – an in situ translocation experiment applying the PICT concept. Aquat Toxicol 101:228–236

    Article  CAS  Google Scholar 

  30. Hines A, Oladiran GS, Bignell JP, Stentiford GD, Viant MR (2007) Direct sampling of organisms from the field and knowledge of their phenotype: key recommendations for environmental metabolomics. Environ Sci Technol 41(9):3375–3381

    Article  CAS  Google Scholar 

  31. Brack W, Altenburger R, Ensenbach U, Moder M, Segner H, Schuurmann G (1999) Bioassay-directed identification of organic toxicants in river sediment in the industrial region of Bitterfeld (Germany) – a contribution to hazard assessment. Arch Environ Contam Toxicol 37(2):164–174

    Article  CAS  Google Scholar 

  32. Blanck H (2002) A critical review of procedures and approaches used for assessing pollution-induced community tolerance (PICT) in biotic communities. Hum Ecol Risk Assess 8(5):1003–1034

    Article  Google Scholar 

  33. Rotter S (2008) Einfluss von algentoxischen Verbindungen auf Biofilmgemeinschaften in Fließgewässern, Diploma-Thesis, University of Leipzig, Germany

    Google Scholar 

  34. Duft M, Schulte-Oehlmann U, Weltje L, Tillmann M, Oehlmann J (2003) Stimulated embryo production as a parameter of estrogenic exposure via sediments in the freshwater mudsnail Potamopyrgus antipodarum. Aquat Toxicol 64(4):437–449

    Article  CAS  Google Scholar 

  35. Oehlmann J, Schulte-Oehlmann U, Tillmann M, Markert B (2000) Effects of endocrine disruptors on prosobranch snails (Mollusca: Gastropoda) in the laboratory. Part I: Bisphenol A and octylphenol as xeno-estrogens. Ecotoxicology 9(6):383–397

    Article  CAS  Google Scholar 

  36. Schmitt C, Balaam J, Leonards P, Brix R, Streck G, Tuikka A, Bervoets L, Brack W, van Hattum B, Meire P, de Deckere E (2010) Characterizing field sediments from three European river basins with special emphasis on endocrine effects – a recommendation for Potamopyrgus antipodarum as test organism. Chemosphere 80(1):13–19

    Article  CAS  Google Scholar 

  37. Schmitt C, Vogt C, Van Ballaer B, Brix R, Suetens A, Schmitt-Jansen M, de Deckere E (2010) In situ cage experiments with Potamopyrgus antipodarum – a novel tool for real life exposure assessment in freshwater ecosystems. Ecotoxicol Environ Saf 73(7):1574–1579

    Article  CAS  Google Scholar 

  38. Alonso A, Castro-Diez P (2008) What explains the invading success of the aquatic mud snail Potamopyrgus antipodarum (Hydrobiidae, Mollusca)? Hydrobiologia 614(1):107–116

    Article  Google Scholar 

  39. Thomas KV, Balaam J, Hurst MR, Thain JE (2004) Identification of in vitro estrogen and androgen receptor agonists in North Sea offshore produced water discharges. Environ Toxicol Chem 23(5):1156–1163

    Article  CAS  Google Scholar 

  40. Schmitt C, Oetken M, Dittberner O, Wagner M, Oehlmann J (2008) Endocrine modulation and toxic effects of two commonly used UV screens on the aquatic invertebrates Potamopyrgus antipodarum and Lumbriculus variegatus. Environ Pollut 152(2):322–329

    Article  CAS  Google Scholar 

  41. Brack W, Klamer HJC, de Ada ML, Barcelo D (2007) Effect-directed analysis of key toxicants in European river basins – a review. Environ Sci Pollut Res 14(1):30–38

    Article  CAS  Google Scholar 

  42. Geiszinger A, Bonnineau C, Faggiano L, Guasch H, Lopez-Doval JC, Proia L, Ricart M, Ricciardi F, Romani A, Rotter S, Munoz I, Schmitt-Jansen M, Sabater S (2009) The relevance of the community approach linking chemical and biological analyses in pollution assessment. TrAC, Trends Anal Chem 28(5):619–626

    Article  CAS  Google Scholar 

  43. Ricart M, Guasch H, Barcelo D, Brix R, Conceicao MH, Geiszinger A, de Alda MJL, Lopez-Doval JC, Munoz I, Postigo C, Romani AM, Villagrasa M, Sabater S (2010) Primary and complex stressors in polluted mediterranean rivers: pesticide effects on biological communities. J Hydrol 383(1–2):52–61

    Article  CAS  Google Scholar 

  44. von der Ohe PC, de Deckere E, Pruess A, Munoz I, Wolfram G, Villagrasa M, Ginebreda A, Hein M, Brack W (2009) Toward an integrated assessment of the ecological and chemical status of European river basins. Integr Environ Assess Manage 5(1):50–61

    Article  Google Scholar 

  45. McClellan K, Altenburger R, Schmitt-Jansen M (2008) Pollution-induced community tolerance as a measure of species interaction in toxicity assessment. J Appl Ecol 45(5):1514–1522

    Article  CAS  Google Scholar 

  46. Preston BL (2002) Indirect effects in aquatic ecotoxicology: implications for ecological risk assessment. Environ Manage 29(3):311–323

    Article  Google Scholar 

  47. Sabater S, Admiral W (2005) Biofilms as biological indicators in managed aquatic ecosystems. In: Azim ME, Verdegem MCJ, Van Dam AA, Beveridge MC, Periphyton M (eds) Ecology, exploitation and management. Cabi Publishing, Wallingford, pp 159–177

    Google Scholar 

  48. Ricciardi F, Bonnineau C, Faggiano L, Geiszinger A, Guasch H, Lopez-Doval J, Munoz J, Proia L, Ricart M, Romani A, Sabater S (2009) Is chemical contamination linked to the diversity of biological communities in rivers? TrAC, Trends Anal Chem 28(5):592–602

    Article  CAS  Google Scholar 

  49. Schmitt-Jansen M, Altenburger R (2005) Predicting and observing responses of algal communities to photosystem II-herbicide exposure using pollution-induced community tolerance and species-sensitivity distributions. Environ Toxicol Chem 24(2):304–312

    Article  CAS  Google Scholar 

  50. CEMAGREF (1982) Etude des méthodes biologiques d'appréciation quantitative de la qualité des eaux. Rapport Q.E. Lyon-A.F. Bassin Rhône-Mediterrannée-Corse, 218

    Google Scholar 

  51. Kelly MG, Whitton BA (1995) Trophic diatom index – a new index for monitoring eutrophication in rivers. J Appl Phycol 7(4):433–444

    Article  Google Scholar 

  52. von der Ohe PC, Prub A, Schafer RB, Liess M, de Deckere E, Brack W (2007) Water quality indices across Europe – a comparison of the good ecological status of five river basins. J Environ Monit 9(9):970–978

    Article  Google Scholar 

  53. Schafer RB, Caquet T, Siimes K, Mueller R, Lagadic L, Liess M (2007) Effects of pesticides on community structure and ecosystem functions in agricultural streams of three biogeographical regions in Europe. Sci Total Environ 382(2–3):272–285

    Google Scholar 

  54. Chapman PM (1990) The sediment quality triad approach to determining pollution-induced degradation. Sci Total Environ 97–8:815–825

    Google Scholar 

  55. Terbraak CJF, Verdonschot PFM (1995) Canonical correspondence-analysis and related multivariate methods in aquatic ecology. Aquat Sci 57(3):255–289

    Article  Google Scholar 

  56. Fore LS, Grafe C (2002) Using diatoms to assess the biological condition of large rivers in Idaho (USA). Freshw Biol 47(10):2015–2037

    Article  Google Scholar 

  57. Munoz I, Lopez-Doval JC, Ricart M, Villagrasa M, Brix R, Geiszinger A, Ginebreda A, Guasch H, de Alda MJL, Romani AM, Sabater S, Barcelo D (2009) Bridging levels of pharmaceuticals in river water with biological community structure in the Llobregat river basin (Northeast Spain). Environ Toxicol Chem 28(12):2706–2714

    Article  CAS  Google Scholar 

  58. Plafkin JL, Barbour MT, Porter MT, Gross JK, Hughes RM (1989) Rapid bioassessment protocols for use in streams and rivers: benthic macroinvertebrates and fish. Report number EPA 440/4–89/001. US-EPA, Washington, DC

    Google Scholar 

  59. Brack W, Burgess RM (2011) Considerations for incorporating bioavailability in effect-directed analysis and toxicity identification evaluation. In: Brack W (ed) Effect-directed analysis of complex environmental contamination. Springer, Heidelberg

    Google Scholar 

  60. Ditoro DM, Zarba CS, Hansen DJ, Berry WJ, Swartz RC, Cowan CE, Pavlou SP, Allen HE, Thomas NA, Paquin PR (1991) Technical basis for establishing sediment quality criteria for nonionic organic-chemicals using equilibrium partitioning. Environ Toxicol Chem 10(12):1541–1583

    Article  CAS  Google Scholar 

  61. Liu WP, Gan JJ, Lee S, Kabashima JN (2004) Phase distribution of synthetic pyrethroids in runoff and stream water. Environ Toxicol Chem 23(1):7–11

    Article  Google Scholar 

  62. de Zwart D (2002) Observed regularities in species sensitivity distributions for aquatic species. In: Posthuma L, Suter GWI, Traas TP (eds) Species-sensitivity distributions in ecotoxicology. Lewis Publishers, Boca Raton, FL, pp 133–154

    Google Scholar 

  63. Posthuma L, Traas TP, de Zwart D, Suter GWI (2002) Conceptual and technical outlook on species sensitivity distributions. In: Posthuma L, Suter GWI, Traas TP (eds) Species-sensitivity distributions in ecotoxicology. Lewis Publishers, Boca Raton, FL, pp 475–510

    Google Scholar 

  64. de Zwart D, Warne A, Forbes VE, Peijnenburg WJGM, Van de Meent D (2008) Matrix and media extrapolation. In: Solomon KR, Brock TCM, Dyer SD, Posthuma L, Richards SM, Sanderson H, Sibley PK, Van der Brink PJ, de Zwart D (eds) Extrapolation practice for ecological effect characterization of chemicals (EXPECT). SETAC Press, Pensacola, FL

    Google Scholar 

  65. Sprague JB (1970) Measurement of pollutant toxicity to fish. 2. Utilizing and applying bioassay results. Water Res 4(1):3–32

    Article  CAS  Google Scholar 

  66. Liess M, Schafer RB, Schriever CA (2008) The footprint of pesticide stress in communities – species traits reveal community effects of toxicants. Sci Total Environ 406(3):484–490

    Article  CAS  Google Scholar 

  67. Clarke JU (1998) Evaluation of censored data methods to allow statistical comparisons among very small samples with below detection limit observations. Environ Sci Technol 32(1):177–183

    Article  CAS  Google Scholar 

  68. Paulsson M, Mansson V, Blanck H (2002) Effects of zinc on the phosphorus availability to periphyton communities from the river Gota Alv. Aquat Toxicol 56(2):103–113

    Article  CAS  Google Scholar 

  69. Grasman KA, Scanlon PF, Fox GA (1998) Reproductive and physiological effects of environmental contaminants in fish-eating birds of the Great Lakes: a review of historical trends. Environ Monit Assess 53(1):117–145

    Article  CAS  Google Scholar 

  70. Oaks JL, Gilbert M, Virani MZ, Watson RT, Meteyer CU, Rideout BA, Shivaprasad HL, Ahmed S, Chaudhry MJI, Arshad M, Mahmood S, Ali A, Khan AA (2004) Diclofenac residues as the cause of vulture population decline in Pakistan. Nature 427(6975):630–633

    Article  CAS  Google Scholar 

  71. Blasco C, Pico Y (2009) Prospects for combining chemical and biological methods for integrated environmental assessment. TrAC, Trends Anal Chem 28(6):745–757

    Article  CAS  Google Scholar 

  72. Vermeirssen ELM, Burki R, Joris C, Peter A, Segner H, Suter MJF, Burkhardt-Holm P (2005) Characterization of the estrogenicity of swiss midland rivers using a recombinant yeast bioassay and plasma vitellogenin concentrations in feral male brown trout. Environ Toxicol Chem 24(9):2226–2233

    Article  CAS  Google Scholar 

  73. Burki R, Vermeirssen ELM, Korner O, Joris C, Burkhardt-Holm P, Segner H (2006) Assessment of estrogenic exposure in brown trout (Salmo trutta) in a Swiss midland river: Integrated analysis of passive samplers, wild and caged fish, and vitellogenin mRNA and protein. Environ Toxicol Chem 25(8):2077–2086

    Article  CAS  Google Scholar 

  74. Burki R, Wahli T, Segner H, Burkhardt-Holm P, Rexroad CE, Afanasyev S, Antikainen M, Krasnow A (2010) Pathogenic infection attenuates the response of the estrogenic biomarker, vitellogenin, in rainbow trout. Comp Biochem Physiol 157A:S23

    Google Scholar 

  75. Linkov I, Loney D, Cormier S, Satterstrom FK, Bridges T (2009) Weight-of-evidence evaluation in environmental assessment: review of qualitative and quantitative approaches. Sci Total Environ 407(19):5199–5205

    Article  CAS  Google Scholar 

  76. Chapman PM (1996) A test of sediment effects concentrations: DDT and PCB in the Southern California Bight. Environ Toxicol Chem 15(7):1197–1198

    CAS  Google Scholar 

  77. Chapman PM, Hollert H (2006) Should the Sediment Quality Triad Become a Tetrad, a Pentad, or Possibly even a Hexad? J Soils & Sediments 6(1):4–8

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mechthild Schmitt-Jansen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schmitt-Jansen, M. et al. (2011). Ecological Relevance of Key Toxicants in Aquatic Systems. In: Brack, W. (eds) Effect-Directed Analysis of Complex Environmental Contamination. The Handbook of Environmental Chemistry(), vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18384-3_13

Download citation

Publish with us

Policies and ethics