Skip to main content

Two Steps Forward in Bedside Monitoring of Lung Mechanics: Transpulmonary Pressure and Lung Volume

  • Chapter
Annual Update in Intensive Care and Emergency Medicine 2013

Part of the book series: Annual Update in Intensive Care and Emergency Medicine ((AUICEM))

  • 2713 Accesses

Abstract

For many decades, pressure-based respiratory mechanics have served to aid the judgment of clinicians when monitoring mechanical ventilation and making important decisions in respiratory care. However, measurements based on airway pressure (PAW) alone have limited ability to generate individualized insights for a diverse patient population with varied pathologic conditions. While the passive lungs are the primary target of attention, PAW-based interpretations may be influenced by differences in breathing pattern, alterations in chest wall activity (including diaphragmatic function), changes in lung volume, asymmetry of lung disease, abdominal distension, etc. All of these factors may complicate the interpretation of respiratory mechanics and make fixed criteria for safe ventilation difficult to apply.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Milic-Emili J, Mead J, Turner JM, Glauser EM (1964) Improve technique for estimating pleural pressure from esophageal balloons. J Appl Physiol 19:207–211

    PubMed  CAS  Google Scholar 

  2. Mead J, Gaensler EA (1959) Esophageal and pleural pressures in man, upright and supine. J Appl Physiol 14:81–83

    PubMed  CAS  Google Scholar 

  3. Pelosi P, Goldner M, McKibben A et al (2001) Recruitment and derecruitment during acute respiratory failure: an experimental study. Am J Respir Crit Care Med 164:122–30

    Article  PubMed  CAS  Google Scholar 

  4. American Thoracic Society/European Respiratory Society (2002) ATS/ERS Statement on Respiratory Muscle Testing. Am J Respir Crit Care Med 166:518–624

    Article  Google Scholar 

  5. Baydur A, Behrakis PK, Zin WA, Jaeger M, Milic-Emili J (1982) A simple method for assessing the validity of the esophageal balloon technique. Am Rev Respir Dis 126:788–791

    PubMed  CAS  Google Scholar 

  6. Talmor D, Sarge T, Malhotra A et al (2008) Mechanical ventilation guided by esophageal pressure in acute lung injury. N Engl J Med 359:2095–2104

    Article  PubMed  CAS  Google Scholar 

  7. Agostoni E, Miserocchi G (1970) Vertical gradient of transpulmonary pressure with active and artificial lung expansion. J Appl Physiol 29:705–712

    PubMed  CAS  Google Scholar 

  8. Agostoni E, D’Angelo E, Bonanni MV (1970) Topography of pleural surface pressure above resting volume in relaxed animals. J Appl Physiol 29:297–306

    PubMed  CAS  Google Scholar 

  9. Agostoni E, D’Angelo E, Bonanni MV (1970) The effect of the abdomen on the vertical gradient of pleural surface pressure. Respir Physiol 8:332–346

    Article  PubMed  CAS  Google Scholar 

  10. Knowles JH, Hong SK, Rahn H (1959) Possible errors using esophageal balloon in determination of pressure-volume characteristics of the lung and thoracic cage. J Appl Physiol 14:525–530

    Google Scholar 

  11. Graf J, Formenti P, Santos A et al (2011) Pleural effusion complicates monitoring of respiratory mechanics. Crit Care Med 39:2294–2299

    Article  PubMed  Google Scholar 

  12. Owens RL, Campana LM, Hess L, Eckert DJ, Loring SH, Malhotra A (2012) Sitting and supine esophageal pressures in overweight and obese subjects. Obesity (Silver Spring) 20:2354–2360

    Google Scholar 

  13. Loring SH, O’Donnell CR, Behazin N et al (2010) Esophageal pressures in acute lung injury: do they represent artifact or useful information about transpulmonary pressure, chest wall mechanics, and lung stress? J Appl Physiol 108:515–522

    Article  PubMed  Google Scholar 

  14. Talmor DS, Fessler HE (2010) Are esophageal pressure measurements important in clinical decision-making in mechanically ventilated patients? Respir Care 55:162–172

    PubMed  Google Scholar 

  15. The Acute Respiratory Distress Syndrome Network (2000) Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 342:1301–1308

    Article  Google Scholar 

  16. Grasso S, Terragni P, Birocco A et al (2012) ECMO criteria for influenza A (H1N1)-associated ARDS: role of transpulmonary pressure. Intensive Care Med 38:395–403

    Article  PubMed  CAS  Google Scholar 

  17. Richard JC, Marini JJ (2012) Transpulmonary pressure as a surrogate of plateau pressure for lung protective strategy: not perfect but more physiologic. Intensive Care Med 38:339–341

    Article  PubMed  Google Scholar 

  18. Rimensberger PC, Bryan AC (1999) Measurement of functional residual capacity in the critically ill. Relevance for the assessment of respiratory mechanics during mechanical ventilation. Intensive Care Med 25:540–542

    Article  PubMed  CAS  Google Scholar 

  19. Pierson DJ (1990) Measuring and monitoring lung volumes outside the pulmonary function laboratory. Respir Care 35:660–668

    Google Scholar 

  20. Graf J, Santos A, Dries D, Adams AB, Marini JJ (2010) Agreement between functional residual capacity estimated via automated gas dilution versus via computed tomography in a pleural effusion model. Respir Care 55:1464–1468

    PubMed  Google Scholar 

  21. Yernault JC, Pride N, Laszlo G (2000) How the measurement of residual volume developed after Davy (1800). Eur Respir J 16:561–564

    Article  PubMed  CAS  Google Scholar 

  22. Suter PM, Schlobohm RM (1974) Determination of functional residual capacity during mechanical ventilation. Anesthesiology 41:605–607

    Article  PubMed  CAS  Google Scholar 

  23. Durig A (1903) Über die Größe der Residualluft (About the size of the residual air). Zentralblatt Physiol 17:258–267

    Google Scholar 

  24. Darling RC, Cournand A, Richards DW (1940) Studies on the intrapulmonary mixture of gases. An open circuit method for measuring residual air. J Clin Invest 19:609–618

    Article  PubMed  CAS  Google Scholar 

  25. Fretschner R, Deusch H, Weitnauer A, Brunner JX (1993) A simple method to estimate functional residual capacity in mechanically ventilated patients. Intensive Care Med 19:372–376

    Article  PubMed  CAS  Google Scholar 

  26. Chiumello D, Cressoni M, Chierichetti M et al (2008) Nitrogen washout/washin, helium dilution and computed tomography in the assessment of end expiratory lung volume. Crit Care 12:R150

    Article  PubMed  Google Scholar 

  27. Brewer LM, Orr JA, Sherman MR, Fulcher EH, Markewitz BA (2011) Measurement of functional residual capacity by modified multiple breath nitrogen washout for spontaneously breathing and mechanically ventilated patients. Br J Anaesth 107:796–805

    Article  PubMed  CAS  Google Scholar 

  28. Heinze H, Eichler W (2009) Measurements of functional residual capacity during intensive care treatment: the technical aspects and its possible clinical applications. Acta Anaesthesiol Scand 53:1121–1130

    Article  PubMed  CAS  Google Scholar 

  29. Hedenstierna G (1993) The recording of FRC – is it of importance and can it be made simple? Intensive Care Med 19:365–366

    Article  PubMed  CAS  Google Scholar 

  30. Bikker IG, van Bommel J, Miranda DR, Bakker J, Gommers D (2008) End-expiratory lung volume during mechanical ventilation: a comparison with reference values and the effect of positive end-expiratory pressure in intensive care unit patients with different lung conditions. Crit Care 12:R145

    Article  PubMed  Google Scholar 

  31. Patroniti N, Saini M, Zanella A et al (2008) Measurement of end-expiratory lung volume by oxygen washin–washout in controlled and assisted mechanically ventilated patients. Intensive Care Med 34:2235–2240

    Article  PubMed  CAS  Google Scholar 

  32. Bikker IG, Scohy TV, Bogers A, Bakker J, Gommers D (2009) Measurement of end-expiratory lung volume in intubated children without interruption of mechanical ventilation. Intensive Care Med 35:1749–1753

    Article  PubMed  Google Scholar 

  33. Suter PM, Fairley HB, Isenberg MD (1978) Effect of tidal volume and positive end-expiratory pressure on compliance during mechanical ventilation. Chest 73:158–162

    Article  PubMed  CAS  Google Scholar 

  34. Lambermont B, Ghuysen A, Janssen N (2008) Comparison of functional residual capacity and static compliance of the respiratory system during a positive end-expiratory pressure (PEEP) ramp procedure in an experimental model of acute respiratory distress syndrome. Crit Care 12:R91

    Article  PubMed  Google Scholar 

  35. Maisch S, Reissmann H, Fuellekrug B (2008) Compliance and dead space fraction indicate an optimal level of positive end-expiratory pressure after recruitment in anesthetized patients. Anesth Analg 106:175–181

    Article  PubMed  Google Scholar 

  36. Heinze H, Sedemund-Adib B, Heringlake M, Meier T, Eichler W (2010) Relationship between functional residual capacity, respiratory compliance, and oxygenation in patients ventilated after cardiac surgery. Respir Care 55:589–594

    PubMed  Google Scholar 

  37. Rylander C, Hogman M, Perchiazzi G, Magnusson A, Hedenstierna G (2004) Functional residual capacity and respiratory mechanics as indicators of aeration and collapse in experimental lung injury. Anesth Analg 98:782–789

    Article  PubMed  Google Scholar 

  38. Marini JJ, Capps JS, Culver BH (1985) The inspiratory work of breathing during assisted mechanical ventilation. Chest 87:612–618

    Article  PubMed  CAS  Google Scholar 

  39. Marini JJ, Tyler ML, Hudson LD, Davis BS, Huseby JS (1984) Influence of head-dependent positions on lung volume and oxygen saturation in chronic air-flow obstruction. Am Rev Respir Dis 129:101–105

    PubMed  CAS  Google Scholar 

  40. Rodriguez-Nieto MJ, Peces-Barba G, Gonzalez Mangado N, Paiva M, Verbanck S (2002) Similar ventilation distribution in normal subjects prone and supine during tidal breathing. J Appl Physiol 92:622–666

    PubMed  CAS  Google Scholar 

  41. Behrakis PK, Baydur A, Jaeger MJ, Milic-Emili J (1983) Lung mechanics in sitting and horizontal body positions. Chest 83:643–646

    Article  PubMed  CAS  Google Scholar 

  42. Agustí A, Barnes PJ (2012) Update in chronic obstructive pulmonary disease 2011. Am J Respir Crit Care Med 185:1171–1176

    Article  PubMed  Google Scholar 

  43. Gattinoni L, Pesenti A (2005) The concept of “baby lung”. Intensive Care Med 31:776–784

    Article  PubMed  Google Scholar 

  44. Chiumello D, Carlesso E, Cadringher P et al (2008) Lung stress and strain during mechanical ventilation for acute respiratory distress syndrome. Am J Respir Crit Care Med 178:346–355

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. J. Marini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg and BioMed Central Ltd.

About this chapter

Cite this chapter

Cortes, G.A., Marini, J.J. (2013). Two Steps Forward in Bedside Monitoring of Lung Mechanics: Transpulmonary Pressure and Lung Volume. In: Vincent, JL. (eds) Annual Update in Intensive Care and Emergency Medicine 2013. Annual Update in Intensive Care and Emergency Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35109-9_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35109-9_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35108-2

  • Online ISBN: 978-3-642-35109-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics