Skip to main content

Ventriculo-arterial Decoupling in Acutely Altered Hemodynamic States

  • Chapter
Annual Update in Intensive Care and Emergency Medicine 2013

Abstract

The dynamic interaction between the heart and the systemic circulation allows the cardiovascular system to be efficient in providing adequate cardiac output and arterial pressures necessary for sufficient organ perfusion [1]. The cardiovascular system provides adequate pressure and flow to the peripheral organs in different physiological (rest and exercise) and pathological conditions because of the continuous modulation of the arterial system compliance, stiffness and resistance with respect to left ventricular (LV) systolic performance [2]. Cardiac output is the final result of this dynamic modulation. Because LV stroke volume depends on myocardial contractility and loading conditions (preload and afterload), both cardiac and arterial dysfunction can lead to acute hemodynamic decompensation and shock.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pinsky MR (2000) Both perfusion pressure and flow are essential for adequate resuscitation. Sepsis 4:143–146

    Article  Google Scholar 

  2. Chantler PD, Lakatta EG (2012) Arterial-ventricular coupling with aging and disease. Front Physio 3:90

    Article  Google Scholar 

  3. Antonelli M, Levy M, Andrews PJ et al (2007) Hemodynamic monitoring in shock and implications for management. International Consensus Conference. Intensive Care Med 33:575–590

    Article  PubMed  Google Scholar 

  4. Dellinger RP, Levy MM, Carlet JM et al (2008) Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock. Intensive Care Med 34:17–60

    Article  PubMed  Google Scholar 

  5. Binkley PF, Van Fossen DB, Nunziala E, Unverferth DV, Leier CV (1990) Influence of positive inotropic therapy on pulsatile hydraulic load and ventricular-vascular coupling in congestive heart failure. J Am Coll Cardiol 15:1127–1135

    Article  PubMed  CAS  Google Scholar 

  6. Elzinga G, Westerhof N (1991) Matching between ventricle and arterial load. Circ Res 68:1495–1500

    Article  PubMed  CAS  Google Scholar 

  7. Kass DA, Kelly RP (1992) Ventriculo-arterial coupling: concepts, assumptions, and applications. Ann Biomed Eng 20:41–62

    Article  PubMed  CAS  Google Scholar 

  8. Starling MR (1993) Left ventricular–arterial coupling relations in the normal human heart. Am Heart J 125:1659–1666

    Article  PubMed  CAS  Google Scholar 

  9. Sunagawa K, Maughan WL, Burkhoff D, Sagawa K (1983) Left ventricular interaction with arterial load studied in isolated canine ventricle. Am J Physiol 245:H773–H780

    PubMed  CAS  Google Scholar 

  10. Kelly RP, Ting CT, Yang TM et al (1992) Effective arterial elastance as index of arterial vascular load in humans. Circulation 86:513–521

    Article  PubMed  CAS  Google Scholar 

  11. Suga H (1969) Time course of left ventricular pressure-volume relationship under various end-diastolic volume. Jap Heart J 10:509–515

    Article  PubMed  CAS  Google Scholar 

  12. Guarracino F, Cariello C, Danella A et al (2007) Effect of levosimendan on ventriculo-arterial coupling in patients with ischemic cardiomyopathy. Acta Anaesthesiol Scand 51:1217–1224

    Article  PubMed  CAS  Google Scholar 

  13. Sunagawa K, Maughan WL, Sagawa K (1985) Optimal arterial resistance for the maximal stroke work studied in isolated canine left ventricle. Circ Res 56:586–595

    Article  PubMed  CAS  Google Scholar 

  14. Burkhoff D, Sagawa K (1986) Ventricular efficiency predicted by an analytical model. Am J Physiol 250:1021–1027

    Google Scholar 

  15. Hayash K, Shigemi K, Shishido T, Sugimachr M, Sunagawa K (2000) Single-beat Estimation of Ventricular End-systolic Elastance-effective Arterial Elastance as an Index of Ventricular Mechanoenergetic Performance. Anesthesiology 92:1769–1776

    Article  Google Scholar 

  16. Blaudszun G, Morel DR (2011) Relevance of the volume-axis intercept, V0, compared with the slope of end-systolic pressure–volume relationship in response to large variations in inotropy and afterload in rats. Exp Physiol 96:1179–1195

    Article  PubMed  CAS  Google Scholar 

  17. Sagawa K, Suga H, Shoukas AA, Bakalar KM (1977) End-systolic pressure/volume ratio: a new index of ventricular contractility. Am J Cardiol 40:748–753

    Article  PubMed  CAS  Google Scholar 

  18. Borlaug BA, Kass DA (2008) Ventricular-vascular interaction in heart failure. Heart Fail Clin 4:23–36

    Article  PubMed  Google Scholar 

  19. Kass DA (2002) Age-related changes in ventricular-arterial coupling: pathophysiologic implications. Heart Fail Rev 7:51–62

    Article  PubMed  Google Scholar 

  20. Grossman W, Braunwald E, Mann T, McLaurin LP, Green LH (1977) Contractile state of the left ventricle in man as evaluated from end-systolic pressure-volume relations. Circulation 56:845–852

    Article  PubMed  CAS  Google Scholar 

  21. Sagawa K (1981) The end-systolic pressure-volume relation of the ventricle: definition modifications and clinical use. Circulation 63:1223–1227

    Article  PubMed  CAS  Google Scholar 

  22. Senzaki H, Chen CH, Kass DA (1996) Single-beat estimation of end-systolic pressure-volume relation in humans: a new method with the potential for noninvasive application. Circulation 94:2497–2506

    Article  PubMed  CAS  Google Scholar 

  23. Chen CH, Fetics B, Nevo E, et al (2001) Noninvasive single-beat determination of left ventricular end-systolic elastance in humans. J Am Coll Cardiol 38:2028–2034

    Article  PubMed  CAS  Google Scholar 

  24. Shishido T, Hayashi K, Shigemi K, Sato T, Sugimachi M, Sunagawa K (2000) Single-beat estimation of end-systolic elastance using bilinearly approximated time-varying elastance curve. Circulation 102:1983–1989

    Article  PubMed  CAS  Google Scholar 

  25. Zanon F, Aggio S, Baracca E et al (2009) Ventricular-arterial coupling in patients with heart failure treated with cardiac resynchronization therapy: may we predict the long-term clinical response? Eur J Echocardiogr 10:106–111

    Article  PubMed  Google Scholar 

  26. Najjar SS, Schulman SP, Gerstenblith G et al (2004) Age and gender affect ventricular-vascular coupling during aerobic exercise. J Am Coll Cardiol 44:611–617

    Article  PubMed  Google Scholar 

  27. Widyastuti Y, Stenseth R, Berg KS, Pleym H, Wahba A, Videm V (2012) Preoperative and intraoperative prediction of risk of cardiac dysfunction following open heart surgery. Eur J Anaesthesiol 29:143–151

    Article  PubMed  Google Scholar 

  28. Buja LM (2005) Myocardial ischemia and reperfusion injury. Cardiovasc Pathol 14:170–175

    Article  PubMed  CAS  Google Scholar 

  29. Fox JM, Maurer MS (2005) Ventriculo-vascular coupling in systolic and diastolic heart failure. Curr Heart Fail Rep 2:204–211

    Article  PubMed  Google Scholar 

  30. Majure DT, Teerlink JR (2011) Update on the management of acute decompensated heart failure. Curr Treat Options Cardiovasc Med 13:570–585

    Article  Google Scholar 

  31. Toller WG, Stranz C, Nieminen MS (2006) Levosimendan, a new inotropic and vasodilator agent. Anaesthesiology 104:556–569

    Article  CAS  Google Scholar 

  32. Landoni G, Mizzi A, Biondi-Zoccai G et al (2010) Levosimendan reduces mortality in critically ill patients. A meta-analysis of randomized controlled studies. Minerva Anestesiol 76:276–286

    PubMed  CAS  Google Scholar 

  33. De Santis V, Vitale D, Tritapepe L (2010) Levosimendan and cardiac surgery. J Cardiothorac Vasc Anesth 24:210

    Article  PubMed  Google Scholar 

  34. Toller W, Algotsson L, Guarracino F, et al (2013) Perioperative use of levosimendan: Best practice in operative settings. J Cardiothorac Vasc Anesth (in press)

    Google Scholar 

  35. Masutani S, Cheng HJ, Tachibana H, Little WC, Cheng CP (2011) Levosimendan restores the positive force-frequency relation in heart failure. Am J Physiol Heart Circ Physiol 301:H488–H496

    Article  PubMed  CAS  Google Scholar 

  36. Monge García MI, Gil Cano A, Gracia Romero M (2011) Dynamic arterial elastance to predict arterial pressure response to volume loading in preload-dependent patients. Crit Care 15:R15

    Article  PubMed  Google Scholar 

  37. Pinsky MR (2002) Functional hemodynamic monitoring: applied physiology at the bedside. In: Vincent JL (ed) Yearbook of Intensive Care and Emergency Medicine. Springer, Heidelberg, pp 534–551

    Google Scholar 

  38. Lamia B, Chemla D, Richard C, Teboul JL (2005) Clinical review: interpretation of arterial pressure wave in shock states. Crit Care 9:601–606

    Article  PubMed  Google Scholar 

  39. Little WC (2001) Hypertensive pulmonary oedema is due to diastolic dysfunction. Eur Heart J 22:1961–1964

    Article  PubMed  CAS  Google Scholar 

  40. Ross J (1997) On variations in the cardiac hypertrophic response to pressure overload. Circulation 95:1349–1351

    Article  PubMed  Google Scholar 

  41. Vieillard-Baron A (2011) Septic cardiomyopathy. Ann Intensive Care 1:6

    Article  PubMed  Google Scholar 

  42. Hunter JD, Doddi M (2010) Sepsis and the heart. Br J Anaesth 104:3–11

    Article  PubMed  CAS  Google Scholar 

  43. Young JD (2004) The heart and circulation in severe sepsis. Br J Anaesth 93:114–120

    Article  PubMed  CAS  Google Scholar 

  44. De BD, Taccone FS, Radermacher P (2007) Levosimendan in septic shock: another piece in the puzzle, but many pieces are still lacking. Intensive Care Med 33:403–405

    Article  Google Scholar 

  45. Pinto BB, Rehberg S, Ertmer C, Westphal M (2008) Role of levosimendan in sepsis and septic shock. Curr Opin Anaesthesiol 21:168–177

    Article  PubMed  Google Scholar 

  46. Price LC, Wort SJ, Finney SJ, Marino PS, Brett SJ (2010) Pulmonary vascular and right ventricular dysfunction in adult critical care: current and emerging options for management: a systematic literature review. Crit Care 14:R169

    Article  PubMed  Google Scholar 

  47. Kevin LG, Barnard M (2007) Right ventricular failure. Contin Educ Anaesth Crit Care Pain 7:89–94

    Article  Google Scholar 

  48. Grignola JC, Ginés F, Bia D, Armentano R (2007) Improved right ventricular–vascular coupling during active pulmonary hypertension. Int J Cardiol 115:171–182

    Article  PubMed  Google Scholar 

  49. Sanz J, García-Alvarez A, Fernández-Friera L et al (2012) Right ventriculo-arterial coupling in pulmonary hypertension: a magnetic resonance study. Heart 98:238–243

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Guarracino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg and BioMed Central Ltd.

About this chapter

Cite this chapter

Guarracino, F., Baldassarri, R., Pinsky, M.R. (2013). Ventriculo-arterial Decoupling in Acutely Altered Hemodynamic States. In: Vincent, JL. (eds) Annual Update in Intensive Care and Emergency Medicine 2013. Annual Update in Intensive Care and Emergency Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35109-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35109-9_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35108-2

  • Online ISBN: 978-3-642-35109-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics