Skip to main content

Part of the book series: Advanced Topics in Science and Technology in China ((ATSTC))

  • 1024 Accesses

Abstract

Water eutrophication admits superfluous nutrient substances (nitrogen and phosphorus), which lead to the abnormal growth of algae and other aquatic life, changes in water diaphaneity and dissolved oxygen. All the factors above accelerate water substance ageing and affect the aquatic ecosystems and water body functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abeliovich A (1992) Transformations of ammonia and the environmental impact of nitrifying bacteria. Biodegradation 3:255–264.

    Article  CAS  Google Scholar 

  • Ambrose RB, Wool T, Martin JL (1993) The Water Quality Analysis Simulation Program, WASP5, Part A: Model Documentation. In: USEPA (ed.), Athens GA: U.S. EPA National Exposure Research Laboratory, Ecosystems Division.

    Google Scholar 

  • Balkwill DL, Ghiorse WC (1985) Characterization of subsurface bacteria associated with two shallow aquifers in Oklahoma. Appl Environ Microbiol 50:580–588.

    CAS  Google Scholar 

  • Belser LW (1979) Population ecology of nitrifying bacteria. Annu Rev Microbiol 33:309–333.

    Article  CAS  Google Scholar 

  • Bodelier PL, Libochant JA, Blom CW, Laanbroek HJ (1996) Dynamics of nitrification and denitrification in root-oxygenated sediments and adaptation of ammonia-oxidizing bacteria to low-oxygen or anoxic habitats. Appl Environ Microbiol 62:4100–4107.

    CAS  Google Scholar 

  • Bonnet C, Volat B, Bardin R, Degrange V, Montuelle B (1997) Use of immunofluorescence technique for studying a nitrobacter population from wastewater treatment plant following discharge in river sediments: first experimental data. Water Res 31:661–664.

    Article  CAS  Google Scholar 

  • Borsodi AKF, Kurdi P (1998) Numerical analysis of planktonic and reed biofilm bacterial communities of lake Ferto. Water Res 32(6):1831–1840.

    Article  CAS  Google Scholar 

  • Chen YP, Rekha PD, Arun AB, Shen FT, Lai WA, Young CC (2006) Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. App Soil Ecol 34:33–41.

    Article  Google Scholar 

  • Cirello J, Rapaport RA, Strom PF, Matulewich VA, Morris ML, Goetz S, Finstein MS (1979) The question of nitrification in the Passaic River, New Jersey: analysis of historical data and experimental investigation. Water Res 13:525–537.

    Article  CAS  Google Scholar 

  • Coolen MJ, Overmann J (2000) Functional exoenzymes as indicators of metabolically active bacteria in 124,000-year-old sapropel layers of the eastern Mediterranean Sea. Appl Environ Microbiol 66:2589–2598.

    Article  CAS  Google Scholar 

  • Costa E, Perez J, Kreft JU (2006) Why is metabolic labour divided in nitrification? Trends Microbiol 14:213–219.

    Article  CAS  Google Scholar 

  • Davies DG (2000) Physiological events in biofilm formation. Society for General Microbiology 37–51.

    Google Scholar 

  • Donlan RM (2001) Biofilm formation: a clinically relevant microbiological process. Clin Infect Dis 33:1387–1392.

    Article  CAS  Google Scholar 

  • Du LN, et al. (2011) Effect of eutrophication on molluscan community composition in the Lake Dianchi (China, Yunnan). Limnologica 41(3):213–219.

    Article  CAS  Google Scholar 

  • Edwards ML, Lilley AK, Timms-Wilson TH, Thompson IP, Cooper I (2001) Characterisation of the culturable heterotrophic bacterial community in a small eutrophic lake (Priest Pot). FEMS Microbiol Ecol 35:295–304.

    Article  CAS  Google Scholar 

  • Evans DJ, Johnes PJ (2004) Physico-chemical controls on phosphorus cycling in two lowland streams. Part 1-the water column. Sci Total Environ 329:145–163.

    Article  CAS  Google Scholar 

  • Feng JL, Yang ZF, Niu JF (2007) Remobilization of polycyclic aromatic hydrocarbons during the resuspension of Yangtze River sediments using a particle entrainment simulator. Environ Pollut 149:193–200.

    Article  CAS  Google Scholar 

  • Foppen JW, Liem Y, Schijven J (2008) Effect of humic acid on the attachment of Escherichia coli in columns of goethite-coated sand. Water Res 42:211–219.

    Article  CAS  Google Scholar 

  • Gardolinski PCFC, Worsfold PJ, McKelvie ID (2004) Seawater induced release and transformation of organic and inorganic phosphorus from river sediments. Water Res 38:688–692.

    Article  CAS  Google Scholar 

  • Gasol JM, Duarte CM (2000) Comparative analyses in aquatic microbial ecology. FEMS Microbiol Ecol 31:99–106.

    Article  CAS  Google Scholar 

  • Golterman HL (1996) Fractionation of sediment phosphate with chelating compounds: a simplification, and comparison with other methods. Hydrobiologia 335:87–95.

    Article  CAS  Google Scholar 

  • Gresikowski S, Greiser N, Harms H (1996) Distribution and activity of nitrifying bacteria at two stations in the Ems estuary. Arch Hydrob Spe Iss Adv Limnol 47:65–76.

    CAS  Google Scholar 

  • Guardabassi L, Gravesen J, Lund C, Bagge L, Dalsgaard A (2002) Delayed incubation as an alternative method to sample storage for enumeration of E.coli and culturable bacteria in water. Water Res 36:4655–4658.

    Article  CAS  Google Scholar 

  • Hall GH (1982) Apparent and measured rates of nitrification in the hypolimnion of a mesotrophic lake. Appl Environ Microbiol 43:542–54

    CAS  Google Scholar 

  • Illmer P, Schinner F (1995) Solubilization of inorganic calcium phosphates-solubilization mechanisms. Soil Biol Biochem 27:257–263.

    Article  CAS  Google Scholar 

  • Kim LH, Choi E, Stenstrom MK (2003) Sediment characteristics, phosphorus types and phosphorus release rates between river and lake sediments. Chemosphere 50:53–61.

    Article  CAS  Google Scholar 

  • Kim YH, Bae B, Choung YK (2005) Optimization of biological phosphorus removal from contaminated sediments with phosphate-solubilizing microorganisms. J Biosci Bio Eng 99:23–29.

    Article  CAS  Google Scholar 

  • Kittiwanich J, Yamamoto T, Kawaguchi O, Hashimoto T (2007) Analyses of phosphorus and nitrogen cyclings in the estuarine ecosystem of Hiroshima Bay by a pelagic and benthic coupled model. Estuar Coastal Shelf Sci 75:189–204.

    Article  Google Scholar 

  • Koops HP, Moller UC (1992) The lithotrophic ammonia-oxidizing bacteria. 2625–2637.

    Google Scholar 

  • Lesniewska M, Witak M (2011) Diatoms as indicators of eutrophication in the SW part of the Gulf of Gdansk, the Baltic Sea. Oceanol Hydrobiol Stud 40(1):68–81.

    Article  CAS  Google Scholar 

  • Ling TY, Achberger EC, Drapcho CM, Bengtson RL (2002) Quantifying adsorption of an indicator bacteria in a soil-water system. Trans Am Soc Agric Eng 45:669–674.

    Google Scholar 

  • Lipponen MT, Suutari MH, Martikainen PJ (2002) Occurrence of nitrifying bacteria and nitrification in Finnish drinking water distribution systems. Water Res 36:4319–4329.

    Article  CAS  Google Scholar 

  • Liu KK, Kao SJ, Wen LS, Chen KL (2007) Carbon and nitrogen isotopic compositions of particulate organic matter and biogeochemical processes in the eutrophic Danshuei Estuary in northern Taiwan. Sci Total Environ 382:103–120.

    Article  CAS  Google Scholar 

  • Lodi S, et al. (2011) Zooplankton community metrics as indicators of eutrophication in urban lakes. Nat Conserv 9(1):87–92.

    Article  Google Scholar 

  • Magalhaes CM, Joye SB, Moreira RM, Wiebe WJ, Bordalo AA (2005) Effect of salinity and inorganic nitrogen concentrations on nitrification and denitrification rates in intertidal sediments and rocky biofilms of the Douro River estuary, Portugal. Water Res 39:1783–1794.

    Article  CAS  Google Scholar 

  • Marina IS, Wm Brian A, Zhiyao S (2000) Oxygen uptake rate inhibition with PACT sludge. J Hazar Mater B 73:129–142.

    Article  Google Scholar 

  • Massa S, Caruso M, Trovatelli F, Tosques M (1998) Comparison of plate count agar and R2A medium for enumeration of heterotrophic bacteria in natural mineral water. World J Microbiol Biotechnol 14:727–730.

    Article  Google Scholar 

  • McCutcheon S (1987) Laboratory and in-stream nitrification rates for selected streams. J Environ Eng 113:628–646.

    Article  CAS  Google Scholar 

  • Mhamdi BA, Azzouzi A, Elloumi J (2007) Exchange potentials of phosphorus between sediments and water coupled to alkaline phosphatase activity and environmental factors in an oligo-mesotrophic reservoir. C R Biol 330:419–428.

    Article  CAS  Google Scholar 

  • Muirhead RW, Collins RP, Bremer PJ (2006) Interaction of Escherichia coli and soil particles in runoff. Appl Environ Microbiol 72:3406–3411.

    Article  CAS  Google Scholar 

  • Ng AS, Stenstrom MK (1987) Nitrification in powdered activated sludge process. J Environ Eng 113:1285–1301.

    Article  CAS  Google Scholar 

  • Oliver D, Clegg C, Heathwaite A, Haygarth P (2007) Preferential Attachment of Escherichia coli to Different Particle Size Fractions of an Agricultural Grassland Soil. Water, Air, Soil Pollut 185:369–375.

    Article  CAS  Google Scholar 

  • Palmer J, Flint S, Brooks J (2007) Bacterial cell attachment, the beginning of a biofilm. J Ind Microbiol Biotechnol 34:577–588.

    Article  CAS  Google Scholar 

  • Park SJ, Oh JW, Yoon TI (2003) The role of powdered zeolite and activated carbon carriers on nitrification in activated sludge with inhibitory materials. Process Biochem 39:211–219.

    Article  CAS  Google Scholar 

  • Pauer JJ, Auer MT (2000) Nitrification in the water column and sediment of a hypereutrophic lake and adjoining river system. Water Res 34:1247–1254.

    Article  CAS  Google Scholar 

  • Reyes I, Bernier L, Simard RR, Antoun H (1999) Effect of nitrogen source on the solubilization of different inorganic phosphates by an isolate of penicillium rugulosum and two UV-induced mutants. FEMS Microbiol Ecol 28:281–290.

    Article  CAS  Google Scholar 

  • Ruban V, López-Sánchez JF, Pardo P (2001) Harmonized protocol and certified reference material for the determination of extractable contents of phosphorus in freshwater sediments: A synthesis of recent works. Fresenius J Anal Chem 370:224–228.

    Article  CAS  Google Scholar 

  • Sahu SN, Jana BB (2000) Enhancement of the fertilizer value of rock phosphate engineered through phosphate-solubilizing bacteria. Ecol Eng 15:27–39.

    Article  Google Scholar 

  • Satoh K, Yanagida T, Isobe K, Tomiyama H, Takahashi R, Iwano H, Tokuyama T (2003) Effect of root exudates on growth of newly isolated nitrifying bacteria from barley rhizoplane. Soil Sci Plant Nutr 49:757–762.

    Article  CAS  Google Scholar 

  • Scott JA, Abumoghli I (1995) Modelling nitrification in the river Zarka of Jordan. Water Res 29:1121–1127.

    Article  CAS  Google Scholar 

  • Siemens J, Haas M, Kaupenjohann M (2003) Dissolved organic matter induced denitrification in sub-soils and aquifers? Geoderma 113:253–271.

    Article  CAS  Google Scholar 

  • Simon NS, Kennedy MM (1987) The distribution of nitrogen species and adsorption of ammonium in sediments from the tidal Potomac River and estuary. Estuar Coastal Shelf Sci 25:11–26.

    Article  CAS  Google Scholar 

  • Stief P, Schramm A, Altmann D, Beer D (2003) Temporal variation of nitrification rates in experimental freshwater sediments enriched with ammonia or nitrite. FEMS Microbiol Ecol 46:63–71.

    Article  CAS  Google Scholar 

  • Takahashi R, Ohishi M, Ohshima M, Saitoh M, Omata K, Tokuyama T (2001) Characteristics of an ammonia-oxidizing bacterium with a plasmid isolated from alkaline soils and its phylogenetic relationship. J Biosci Bioeng 92:232–236.

    CAS  Google Scholar 

  • Thomsen L, Van Weering T, Gust G (2002) Processes in the benthic boundary layer at the Iberian continental margin and their implication for carbon mineralization. Prog Oceanogr 52:315–329.

    Article  Google Scholar 

  • Van MD, Portielje R, De NW, Boers PC (1998) Nitrogen in Dutch freshwater lakes: Trends and targets. Environ Pollut 102:553–557.

    Article  Google Scholar 

  • Vigdis T, Jostein G, Fride LD (1990) High diversity in DNA of soil bacteria. Appl Environ Microbiol 56:782–787.

    Google Scholar 

  • Wang BD (2006) Cultural eutrophication in the Changjiang (Yangtze River) plume: History and perspective. Estuar Coastal Shelf Sci 69:471–477.

    Article  Google Scholar 

  • Wang HY, Shen ZY, Guo XJ, Niu JF, Kang B (2010) Ammonia adsorption and nitritation in sediments resourced from Three Gorges Reservoir. China Environ Geol 60:1653–1660.

    CAS  Google Scholar 

  • Wang LL, Niu JF, Yang ZF, Shen ZY, Wang JY (2008) Effects of carbonate and organic matter on sorption and desorption behavior of polycyclic aromatic hydrocarbons in the sediments from Yangtze River. J Hazard Mater 154:811–817.

    Article  CAS  Google Scholar 

  • White CS, Gosz JR (1987) Factors controlling nitrogen mineralization and nitrification in forest ecosystems in New Mexico. Biol Fert Soil 5:195–202.

    Article  Google Scholar 

  • Wu GF, Zhou XP (2005) Characterization of phosphorus-releasing bacteria in a small eutrophic shallow lake, Eastern China. Water Res 39:4623–4632.

    Article  CAS  Google Scholar 

  • Xu D, et al. (2011) Evaluation of the potential role of the macroalga Laminaria japonica for alleviating coastal eutrophication. Biores Technol 102(21):9912–9918.

    Article  CAS  Google Scholar 

  • Yang S, Zhao Q, Belkin IM (2002) Temporal variation in the sediment load of the Yangtze river and the influences of human activities. J Hydrol 263(1–4):56–71.

    Article  Google Scholar 

  • Yurkova N, Rathgeber C, Swiderski J, Stackebrandt E, Beatty LT (2002) Diversity, distribution and physiology of the aerobic phototrophic bacteria in the mixolimnion of a meromictic lake. FEMS Microbiol Ecol 40:191–204.

    Article  CAS  Google Scholar 

  • Zhang J, Liu SM, Ren JL, Wu Y, Zhang GL (2007a) Nutrient gradients from the eutrophic Changjiang (Yangtze River) Estuary to the oligotrophic Kuroshio waters and re-evaluation of budgets for the East China Sea Shelf. Prog Oceanogr 74:449–478.

    Article  Google Scholar 

  • Zhang J, Wu Y, Jennerjahn TC, Ittekkot V, He Q (2007b) Distribution of organic matter in the Changjiang (Yangtze River) Estuary and their stable carbon and nitrogen isotopic ratios: Implications for source discrimination and sedimentary dynamics. Mar Chem 106:111–126.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Zhejiang University Press, Hangzhou and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Shen, Z., Niu, J., Wang, Y., Wang, H., Zhao, X. (2013). Biological Effects. In: Distribution and Transformation of Nutrients and Eutrophication in Large-scale Lakes and Reservoirs. Advanced Topics in Science and Technology in China. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34964-5_4

Download citation

Publish with us

Policies and ethics