Skip to main content
Log in

Bacterial cell attachment, the beginning of a biofilm

  • Review
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

The ability of bacteria to attach to surfaces and develop into a biofilm has been of considerable interest to many groups in numerous industries, including the medical and food industry. However, little is understood in the critical initial step seen in all biofilm development, the initial bacterial cell attachment to a surface. This initial attachment is critical for the formation of a bacterial biofilm, as all other cells within a biofilm structure rely on the interaction between surface and bacterial cell for their survival. This review examines what are believed to be some of the most important aspects involved in bacterial attachment to a surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahimou F, Poquot M, Thonart P, Rouxhet PG (2001) Influence of electrical properties on the evaluation of the surface hydrophobicity of Bacillus subtilus. J Microbiol Methods 45:119–126

    Article  CAS  Google Scholar 

  2. Al-Tahhan RA, Sandrin TR, Bodour AA, Maier RM (2000) Rhamnolipid-induced removal of lipopolysaccharide from Pseudomonas aeruginosa: effect on cell surface properties and interaction with hydrophobic substrates. Appl Environ Microbiol 66:3262–3268

    Article  CAS  Google Scholar 

  3. Arnold JW, Bailey GW (2000) Surface finishes on stainless steel reduce bacterial attachment and early biofilm formation: scanning electron and atomic force microscopy study. Poult Sci 79:1839–1845

    CAS  Google Scholar 

  4. Arrizubieta MJ, Toledo-Arana A, Amorena B, Penadés JR, Lasa I (2004) Calcium inhibits BAP-dependent multicellular behavior in Staphylococcus aureus. J Bacteriol 186:7490–7498

    Article  CAS  Google Scholar 

  5. Barnes L-M, Lo MF, Adams MR, Chamberlain HHL (1999) Effect of milk proteins on adhesion of bacteria to stainless steel surfaces. Appl Environ Microbiol 65:4543–4548

    CAS  Google Scholar 

  6. Beech IB, Sunner J (2004) Biocorrosion: towards understanding interactions between biofilms and metals. Curr Opin Biotechnol 15:181–186

    Article  CAS  Google Scholar 

  7. Beresford MR, Andrew PW, Shama G (2001) Listeria monocytogenes adheres to many materials found in food-processing environments. J Appl Microbiol 90:1000–1005

    Article  CAS  Google Scholar 

  8. Boruck MK, Peppin JD, White D, Loge F, Call DR (2003) Variation in biofilm formation among strains of Listeria monocytogenes. Appl Environ Microbiol 69:7336–7342

    Article  CAS  Google Scholar 

  9. Bren L, English L, Fogarty J, Policoro R, Zsidi A, Vance J, Drelich J, Istphanous N, Rohly K (2004) Hydrophilic/electron-acceptor surface properties of metallic biomaterials and their effect on osteoblast activity. J Sci Technol 18:1711–1722

    CAS  Google Scholar 

  10. Briandet R, Meylheuc T, Maher C, Bellon-Fontaine MN (1999) Listeria monocytogenes Scott A: cell surface charge, hydrophobicity, and electron donor and acceptor characteristics under different environmental growth conditions. Appl Environ Microbiol 65:5328–5333

    CAS  Google Scholar 

  11. Brugnoni LI, Lozano JE, Cubitto MA (2007) Potential of yeast isolated from apple juice to adhere to stainless steel in the apple juice industry. Food Res Int 40:332–340

    Article  CAS  Google Scholar 

  12. Burks GA, Velegol SB, Paramonova E, Lindenmuth BE, Feick JD, Logan BE (2003) Macroscopic and nanoscale measurements of the adhesion of bacteria with varying outer layer surface composition. Langmuir 19:2366–2371

    Article  CAS  Google Scholar 

  13. Busscher HJ, van de Belt-Gritter B, van der Mei HC (1995) Implications of microbial adhesion to hydrocarbons for evaluating cell surface hydrophobicity 1. Zeta potentials of hydrocarbon droplets. Colloids Surf B Biointerfaces 5:111–116

    Article  CAS  Google Scholar 

  14. Busscher HJ, Weerkamp AH (1987) Specific and non-specific interactions in bacterial adhesion to solid substrata. FEMS Microbiol Rev 46:165–173

    Article  CAS  Google Scholar 

  15. Butler JL, Stewart JC, Vanderzant C, Carpenter ZL, Smith GC (1979) Attachment of microorganisms to pork skin and surfaces of beef and lamb carcasses. J Food Prot 42:401–406

    Google Scholar 

  16. Carpentier B, Cerf O (1993) Biofilms and their consequences with particular reference to hygiene in the food industry. J Appl Bacteriol 75:499–511

    CAS  Google Scholar 

  17. Castellanos T, Ascencio F, Bashan Y (1997) Cell-surface hydrophobicity and cell-surface charge of Azospirillum spp. FEMS Microbiol Ecol 24:259–172

    Article  Google Scholar 

  18. Chae MS, Schraft H (2000) Comparative evaluation of adhesion and biofilm formation of different Listeria monocytogenes strains. Int J Food Microbiol 62:103–111

    Article  CAS  Google Scholar 

  19. Chae MS, Schraft H, Hansen LT, Mackereth R (2006) Effects of physicochemical surface characteristics of Listeria monocytogenes strains on attachment to glass. Food Microbiol 23:250–259

    Article  CAS  Google Scholar 

  20. Chavant P, Martinie B, Meylheuc T, Bellon-Fontaine MN, Hebraud M (2002) Listeria monocytogenes LO28: surface physicochemical properties and ability to form biofilms at different temperatures and growth phases. Appl Environ Microbiol 68:728–737

    Article  CAS  Google Scholar 

  21. Corpe WA (1974) Periphytic marine bacteria on the formation of microbial film on solid surfaces. In: Colwell R, Morita R (eds) Effect of the ocean environment on microbial activity. University Park Press, Baltimore, pp 397–417

    Google Scholar 

  22. Cucarella C, Solano C, Valle J, Amorena B, Lasa I, Penades JR (2001) BAP a Staphylococcus aureus surface protein involved in biofilm formation. J Bacteriol 183:2888–2896

    Article  CAS  Google Scholar 

  23. Dai X, Boll J, Hayes ME, Aston DE (2004) Adhesion of Crytosporidium parvum and Giardia lamblia to solid surfaces: the role of surface charge and hydrophobicity. Colloids Surf B Biointerfaces 34:259–263

    Article  CAS  Google Scholar 

  24. Dan N (2003) The effect of charge regulation on cell adhesion to substrates: salt-induced repulsion. J Colloid Interface Sci 27:41–47

    CAS  Google Scholar 

  25. Davies DG (2000) Physiological events in biofilm formation. In: Allison D, Gilbert P, Lappin-Scott M, Wilson M (eds) Community structure and co-operation in biofilms, pp 37–51

  26. Dickson JS, Koohmarare M (1989) Cell surface charge characteristics and their relationship to bacterial attachment to meat surfaces. Appl Environ Microbiol 55:832–836

    CAS  Google Scholar 

  27. Donlan RM (2001) Biofilm formation: a clinically relevant microbiological process. Clin Infect Dis 33:1387–1392

    Article  CAS  Google Scholar 

  28. Doyle RJ, Rosenberg M, Drake D (1990) Hydrophobicity of oral bacteria. In: Doyle RJ, Rosenberg M (eds) Microbial cell surface hydrophobicity. American Society of Microbiology, Washington DC, pp 387–419

    Google Scholar 

  29. Doyle RJ (2000) Contribution of the hydrophobic effect to microbial infection. Microbes Infect 2:391–400

    Article  CAS  Google Scholar 

  30. Dunne MW (2002) Bacterial adhesion—seen any good biofilms lately? Clin Microbiol Rev 15:155–166

    Article  CAS  Google Scholar 

  31. Fletcher M (1976) The effect of proteins on bacterial attachment to polystyrene. J Gen Microbial 94:400–404

    CAS  Google Scholar 

  32. Flint SH, Brooks JD, Bremer PJ (1997) The influence of cell surface properties of thermophilic Streptococci on attachment to stainless steel. J Appl Microbiol 83:508–517

    Article  CAS  Google Scholar 

  33. Flint SH, Brooks JD, Bremer PJ (2000) Properties of the stainless steel substrate influencing the adhesion of thermo-resistant Streptococci. J Food Eng 43:235–242

    Article  Google Scholar 

  34. Fukuzaki S, Urano H, Hagata K (1995) Adsorption of pectin onto stainless steel surfaces: role of electrostatic interactions. J Jpn Soc Food Sci Technol-Nippon Shokuhin Kagaku Kogaku Kaishi 12:700–708

    Google Scholar 

  35. Giaouris E, Chorianopoulos N, Nychas G-JE (2005) Effect of temperature, pH, and water activity on biofilm formation by Salmonella enterica Enteritidis PT4 on stainless steel surfaces as indicated by the bead vortexing method and conductance measurements. J Food Prot 68:2149–2154

    CAS  Google Scholar 

  36. Gilbert P, Evans DJ, Evans E, Duguid IG, Brown MRW (1991) Surface characteristics and adhesion of E. coli and Staphylococcus epidermidis. J Appl Bacteriol 71:72–77

    CAS  Google Scholar 

  37. Giovannacci I, Ermel G, Salvat G, Vendeuvre JL, Bellon-Fontaine MN (2000) Physicochemical surface properties of five Listeria monocytogenes strains from a pork-processing environment in relation to serotypes, genotypes and growth temperature. J Appl Microbiol 88:992–1000

    Article  CAS  Google Scholar 

  38. Gross M, Cramton SE, Götz F, Peschel A (2001) Key role of teichoic acid net charge in Staphylococcus aureus colonization of artificial surfaces. Infect Immun 69:3423–3421

    Article  CAS  Google Scholar 

  39. Heilmann C, Gerke C, Perdreau-Remington F, Gotz F (1996) Characterization of Tn917 insertion mutants of Staphylococcus epidermidis affected in biofilm formation. Infect Immun 64:277–282

    CAS  Google Scholar 

  40. Heilmann C, Hussan M, Peters G, Gotz F (1997) Evidence for autolysin mediated primary attachment of Staphylococcus epidermidis to a polystyrene surface. Mol Microbiol 24:1013–1024

    Article  CAS  Google Scholar 

  41. Helke DM, Somers EB, Wong ACL (1993) Attachment of Listeria monocytogenes and Salmonella typhimurium to stainless steel and buna-N in the presence of milk and milk components. J Food Prot 56:479–484

    CAS  Google Scholar 

  42. Hermansson M (1999) The DLVO theory in microbial adhesion. J Colloid Interface Sci 14:105–119

    CAS  Google Scholar 

  43. Hogt AH, Dankart J, Hulstaert CE, Feijen J (1986) Cell surface characterists of coagulase negative Staphylococcus and their adherence to fluorinated poly(ethylenepropylene). Infect Immun 51:294–301

    CAS  Google Scholar 

  44. Hogt AH, Dakart J, Vries JA, Feijen J (1983) Adhesion of coagulase negative Staphylococcus to biomaterials. J Gen Micro 129:2959–2968

    CAS  Google Scholar 

  45. Holah J, Gibson H (2000) Food industry biofilms. In: Allison D, Gilbert JP, Lappin-Scott H, Wilson M (eds) Community Structure and co-operation in biofilms. pp 211–235

  46. Hood SK, Zottola EA (1995) Biofilms in food processing. Food Control 6:9–18

    Article  Google Scholar 

  47. Husmark U, Rönner U (1990) Forces involved in adhesion of Bacillus spores to solid surfaces under different environmental conditions. J Appl Bacteriol 69:557–562

    CAS  Google Scholar 

  48. Husmark U, Rönner U (1992) The influence of hydrophobic electrostatic and morphologic properties on the adhesion of Bacillus spores. Biofouling 5:335–344

    CAS  Google Scholar 

  49. Iwabuchi N, Sunairi M, Anzai H, Morisaki H, Nakajima M (2003) Relationships among colony morphotypes, cell surface properties and bacterial adhesion to substrata in Rodococcus. Colloids Surf B Biointerfaces 30:51–60

    Article  CAS  Google Scholar 

  50. Jeong DK, Frank JF (1994) Growth of Listeria monocytogenes at 21°C in biofilms with microorganisms isolated from meat and diary environments. Lebensm-Wiss Technol 27:415–424

    Article  Google Scholar 

  51. Johl S (1988) Bacterial adhesion to processing surfaces in the meat industry. PhD Thesis, University of Surrey, UK

  52. Jones D.S, Adair CG, Mawhinney MW, Gorman SP (1996) Standardization and comparison of the methods employed for microbial cell surface hydrophobicity and charge determination. Int J Pharm 131:8489

    Google Scholar 

  53. Jucker BA, Harms H, Zehnder AJB (1996) Adhesion of the positively charged bacterium Stenotrophomanas (Xanthomonas) maltophilia 70401 to glass and teflon. J Bacteriol 178:5472–5479

    CAS  Google Scholar 

  54. Jullien C, Benezech T, Carpentier B, Lebret V, Faille C (2002) Identification of surface characteristics relevant to the hygienic status of stainless steel for the food industry. J Food Eng 56:77–87

    Article  Google Scholar 

  55. Kannenberg EL, Carlson RW (2001) Lipid A and O-chain Modifications cause Rhizobium lipopolysaccharides to become hydrophobic during bacteroid development. Mol Microbiol 39:379–391

    Article  CAS  Google Scholar 

  56. Kim KY, Frank JF (1994) Effect of nutrients on biofilm formation by Listeria monocytogenes on stainless steel. J Food Prot 58:246–251

    Google Scholar 

  57. Klausen M, Heydorn A, Ragas P, Lambertsen L, Aaes-Jørgensen A, Molin S, Tolker-Nielsen T (2003) Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV Pili mutants. Mol Microbiol 48:1511–1524

    Article  CAS  Google Scholar 

  58. Knobloch JKM, Bartscht K, Sabottke A, Rohde H, Feucht H, Mack D (2001) Biofilm formation by Staphylococcus epidermidis depends on functional RsbU. An activator of the zyB operon: differential activation mechanisms due to ethanol and salt stress. J Bacteriol 183:2624–2633

    Article  CAS  Google Scholar 

  59. Kumar CG, Anand SK (1998) Significance of microbial biofilms in food industry: a review. Int J Food Microbiol 42:9–27

    Article  CAS  Google Scholar 

  60. Lecleroq-Perlat M-N, Lalande M (1994) Cleanability in relation to surface chemical composition and surface finishing of some materials commonly used in food industries. J Food Eng 23:501–517

    Article  Google Scholar 

  61. Lerebour G, Cupferman S, Bellon-Fontaine MN (2004) Adhesion of Staphylococcus aureus and Staphylococcus epidermidis to Episkin® reconstructed epidermis model and to an inert 304 stainless steel substrate. J App Micro 97:7–16

    Article  CAS  Google Scholar 

  62. Liu Y, Yang S, Li Y, Xu H, Qin L, Tay J (2004) The influence of cell and substratum suface hydrophobicities on microbial attachment. J Bacteriol 110:251–256

    CAS  Google Scholar 

  63. Lundén JM, Miettinen MK, Autio TJ, Korkeala HJ (2000) Persistent Listeria monocytogenes strains show enhanced adherence to food contact surfaces after short contact times. J Food Prot 63:1204–1207

    Google Scholar 

  64. Mafu AA, Roy D, Foulet J, Magny P (1990) Attachment of Listeria monocytogenes to stainless steel, glass, polypropylene and rubber surfaces after short contact times. J Food Prot 53:742–746

    CAS  Google Scholar 

  65. Marshall KC, Stout R, Mitchell R (1971) Mechanisms of the initial events in the absorption of marine bacteria to surfaces. J Gen Micro 68:337–348

    CAS  Google Scholar 

  66. Meinders JM, Van de Mei HC, Busscher JH (1995) Deposition efficiency and reversibility of bacterial adhesion under flow. J Colloid Interface Sci 176: 329–341

    Article  CAS  Google Scholar 

  67. Meylheuc T, Giovannacci I, Briandet R, Bellon-Fontaine MN (2002) Comparison of the cell surface properties and growth characteristics of Listeria monocytogenes and Listeria innocua. J Food Prot 65:786–793

    CAS  Google Scholar 

  68. Millsap KW, Reid G, van der Mei HC, Bussher H (1997) Cluster analysis of genotypically characterized Lactobacillus species based on physicochemical cell surface properties and their relationship with adhesion to hexadacane. Can J Microbiol 43:284–291

    Article  CAS  Google Scholar 

  69. Montie TC, Doyle-Huntzinger D, Craven RC, Holder IA (1982) Loss of virulence associated with absence of flagellum in an isogenic mutant of Pseudomonas aeruginosa in the burned-mouse model. Infect Immun 38:1296–1298

    CAS  Google Scholar 

  70. Norman RS, Frontera-Suau R, Morris PJ (2002) Variability in Pseudomonas aeruginosa lipopolysaccharide expression during crude oil degradation. Appl Environ Microbiol 68:5096–5103

    Article  CAS  Google Scholar 

  71. Mozes N, Rouxhet PG (1987) Methods for measuring hydrophobicity of micro-organisms. J Microbiol Methods 6:99–112

    Article  Google Scholar 

  72. Narendran V (2003) Bacterial attachment to meat surfaces. PhD Thesis, Massey University

  73. Norwood DE, Gilmour A (1999) Adherence of Listeria monocytogenes strains to stainless steel coupons. J Appl Microbiol 86:576–582

    Article  CAS  Google Scholar 

  74. Oakley J.D, Taylor KG, Doyle RJ (1985) Trypsin-susceptible cell surface characteristics of Streptococcus sanguis. Can J Micro 31:1103–1107

    Article  CAS  Google Scholar 

  75. O’Toole GA, Kolter R (1998) The initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signaling pathways: a genetic analysis. Mol Microbiol 28:449–461

    Article  CAS  Google Scholar 

  76. Park KY, So JS (2000) Altered cell surface hydrophobicity of lipopolysaccharide-deficient mutant of Bradyrhizobium japonicum. J Microbiol Methods 41:219–226

    Article  CAS  Google Scholar 

  77. Parker SG, Flint SH, Brooks JD (2003) Physiology of biofilms of Thermophilic Bacilli—potential consequences for cleaning. J Ind Microbiol Biotechnol 30:553–560

    Article  CAS  Google Scholar 

  78. Parker SG, Flint SH, Palmer JS, Brooks JD (2001) Factors influencing attachment of Thermophilic Bacilli to stainless steel. J App Microbiol 90:901–908

    Article  Google Scholar 

  79. Parment PA, Svanborg-Eden C, Chaknis MJ, Sawant AD, Hagber GL, Wilson LA, Adhearn DG (1992) Hemagglutination (Fimbriae) and hydrophobicity in adherence of Serratia marcescens to urinary tract epithelium and contact lenses. Curr Microbiol 25:113–118

    Article  CAS  Google Scholar 

  80. Paul JH, Jeffrey WH (1985) Evidence for separate adhesion mechanisms for hydrophilic and hydrophobic surfaces in Vibrio proteolytica. Appl Environ Microbiol 50:431–437

    CAS  Google Scholar 

  81. Pedersen K (1990) Biofilm development on stainless steel and PVC surfaces in drinking water. Water Res 24:239–243

    Article  CAS  Google Scholar 

  82. Pembrey RS, Marshall KC, Schneider RP (1999) Cell surface analysis techniques: what do cell preparation protocols do to cell surface properties? Appl Environ Microbiol 65:2877–2894

    CAS  Google Scholar 

  83. Peng JS, Tsai WC, Chou CC (2001) Surface characteristics of Bacillus cereus and its adhesion to stainless steel. Int J Food Microbiol 65:105–111

    Article  CAS  Google Scholar 

  84. Poortinga AT, Bos R, Busscher HJ (2001) Charge transfer during Staphylococcal adhesion to TiNOX® coating with different specific resistivity. Biophys Chem 91: 273–279

    Article  CAS  Google Scholar 

  85. Poortinga AT, Bos R, Norde W, Busscher HJ (2002) Electric double layer interactions in bacterial adhesion to surfaces. Surf Sci Rep 47:1–32

    Article  CAS  Google Scholar 

  86. Pratt LA, Kolter R (1998) Genetic analysis of E. coli biofilm formation: roles of flagella, motility, chemotaxis and type I Pili. Mol Microbiol 30:285–293

    Article  CAS  Google Scholar 

  87. Razatos A, Ong YL, Boulay F, Elbert DL, Hubbell JA, Sharma MM, Georgiou G (2000) Force measurements between bacteria and poly(ethylene glycol)-coated surfaces. Langmuir 16:9155–9158

    Article  CAS  Google Scholar 

  88. Razatos A, Ong YL, Sharma MM, Georgiou G (1998) Molecular determinants of bacterial adhesion monitored by atomic force microscopy. Proc Natl Acad Sci 95:11059–11064

    Article  CAS  Google Scholar 

  89. Reid G, Bialkowska-Hobrzanska H, van der Mei HC, Bussher HJ (1999) Correlation between genetic, physico-chemical surface characteristics and adhesion of four strains of Lactobacillus. Colloids Surf B Biointerfaces 13:75–81

    Article  CAS  Google Scholar 

  90. Rijnaarts HHM, Norde W, Bouwer EJ, Lyklema J, Zehnder AJB (1995) Reversibility and mechanism of bacterial adhesion. J Colloid Interface Sci 4:5–22

    CAS  Google Scholar 

  91. Rijnaarts HHM, Norde W, Lyklema J, Zehnder AJB (1995) The isoelectric point of bacteria as an indicator for the presence of cell surface polymers that inhibit adhesion. Colloids Surf B Biointerfaces 4:191–197

    Article  CAS  Google Scholar 

  92. Rijnaarts HHM, Norde W, Lyklema J, Zehnder AJB (1999) DLVO and steric contributions to bacterial deposition in media of different ionic strengths. J Colloid Interface Sci 14:179–195

    CAS  Google Scholar 

  93. Rosenberg M, Gutnick D, Rosenberg E (1980) Adherence of bacteria to hydrocarbons: a simple method for measuring cell-surface hydrophobicity. FEMS Microbiol Lett 9:29–33

    Article  CAS  Google Scholar 

  94. Sasahara KC, Zottaloa EH (1993) Biofilm formation by Listeria monocytogenes utilizes a primary colonizing microorganisms in flowing systems. J Food Prot 56:1022–1028

    Google Scholar 

  95. Schwab U, Hu Y, Wiedmann M, Boor K J (2005) Alternative sigma factor σB is not essential for Listeria monocytogenes surface attachment. J Food Prot 68:311–317

    Google Scholar 

  96. Smit G, Kijne JW, Lugtenberg BJJ (1989) Roles of flagella, lipopolysaccharide, and a Caþ2-dependent cell surface protein in attachment of Rhizobium leguminosarum biovar viciae to Pea root hair tips. J Bacteriol 171:569–572

    CAS  Google Scholar 

  97. Smyth CJ, Jonsson P, Olsson E, Soderland O, Rosengren J, Hjerten A, Adstrom T (1978) Differences in hydrophobic surface characteristics of porcine enteropathogenic E. coli with or without K88 antigen as revealed by HIC. Infect Immun 22:462–472

    CAS  Google Scholar 

  98. Sorongon ML, Bloodgood RA, Burchard RP (1991) Hydrophobicity adhesion and surface exposed proteins of gliding bacteria. Appl Environ Microbiol 57:3193–3199

    CAS  Google Scholar 

  99. Speers JGS, Gilmour A (1985) The influence of milk and milk components on the attachment of bacteria to farm dairy equipment surfaces. J Appl Bacteriol 59:325–332

    CAS  Google Scholar 

  100. Stepanović S, Ćirković I, Ranin L, Švabić-Vlahović M (2004) Biofilm formation by Salmonella spp. and Listeria monocytogenes on plastic surface. Lett Appl Microbiol 38:428–432

    Article  Google Scholar 

  101. Takehara A, Fukuzaki S (2002) Effect of the surface charge of stainless steel on adsorption behaviour of pectin. Biocontrol Sci 7:9–15

    CAS  Google Scholar 

  102. Taylor CM, Beresford M, Epton HSA, Sigee DC, Shama G, Andrew PW, Roberts IS (2002) Listeria monocytogenes relA and hpt mutants are impaired in surface-attached growth and virulence. J Bacteriol 184:621–628

    Article  CAS  Google Scholar 

  103. Timmerman CP, Fleer A, Besnier L, DeGraff L, Cremers F, Verhoef J (1991) Characterisation of a proteinaceous adhesion of Staphylococcus epidermidis which mediates attachment to polystyrene. Infect Immun 59:4187–4192

    CAS  Google Scholar 

  104. Tjalsma H, Bolhuis A, Jongbloed JDH, Bron S, van Dijl JM (2000) Signal peptide-dependent protein transport in Bacillus subtilis: a genome-based survey of the secretome. Microbiol Mol Biol Rev 64:515–547

    Article  CAS  Google Scholar 

  105. Tormo MA, Knecht E, Götz F, Lasa N, Penadés JR, (2005) Bap-dependent biofilm formation by pathogenic species of Staphylococcus: evidence of horizontal gene transfer? Microbiology 151:2465–2475

    Article  CAS  Google Scholar 

  106. Trachoo N, Brooks JD (2005) Attachment and heat resistance of Campylobacter jejuni on Enterococcus faecium biofilm. Pak J Biol Sci 8:599–605

    Article  Google Scholar 

  107. Ukukul DO, Fett WF (2002) Relationship of cell surface change and hydrophobicity to strength of attachment of bacterial to cantaloupe rind. J Food Prot 65:1093–1099

    Google Scholar 

  108. Vadillo-Rodríguez V, Busscher HJ, Norde W, de Vries J, van der Mei HC (2004) Atomic force microscopic corroboration of bond aging for adhesion of Streptococcus thermophilus to solid substrata. J Colloid Interface Sci 278:251–254

    Article  CAS  Google Scholar 

  109. Vadillo-Rodrìguez V, Busscher HJ, van der Mei HC, de Vries J, Norde W (2005) Role of Lactobacillus cell surface hydrophobicity as probed by AFM in adhesion to surfaces at low and high ionic strength. Colloids Surf B Biointerfaces 41:33–41

    Article  CAS  Google Scholar 

  110. Van de Mei HC, Bos R, Busscher HJ (1998) A reference guide to microbial cell surface hydrophobicity based on contact angles. Colloids Surf B Biointerfaces 11:213–221

    Article  Google Scholar 

  111. Van der Mei HC, De Vries J, Buscher HJ (1993) Hydrophobic and electrostatic cell surface properties of thermophilic dairy Streptococci. Appl Environ Microbiol 59:4305–4312

    Google Scholar 

  112. Van der Mei HC, van de Belt-Gritter B, Busscher HJ (1995) Implications of microbial adhesion to hydrocarbons for evaluating cell surface hydrophobicity 2. Adhesion mechanisms. Colloids Surf B Biointerfaces 5:117–126

    Article  Google Scholar 

  113. Van der Wal A, Norde W, Zehnder AJB, Lyklema J (1997) Determination of the total charge in the cell walls of gram-positive bacteria. Colloids Surf B Biointerfaces 9:81–100

    Article  Google Scholar 

  114. Vanhaecke E, Remon J-P Mears M, Roes F, Rudder DD, van-Peteghem A (1990) Kinetics of Pseudomonas aeruginosa adhesion to 304 and 316-L stainless steel role of cell surface hydrophobicity. Appl Environ Microbiol 56:788–795

    CAS  Google Scholar 

  115. Van Loosdrecht MCM, Lyklema J, Norde W, Schroa G, Zehnder AJB (1987) Electrophoretic mobility and hydrophobicity as a measure to predict the initial steps of bacterial adhesion. Appl Environ Microbiol 53:1898–1901

    Google Scholar 

  116. Van Lossdrecht MCM, Lyklema J, Norde W, Schroa G, Zehnder AJB (1987) The role of bacterial cell wall hydrophobicity in adhesion. Appl Environ Microbiol 53:1893–1897

    Google Scholar 

  117. Vatanyoopaisarn S, Nazli A, Dodd CE, Rees CED, Waites WM (2000) Effect of flagella on initial attachment of Listeria monocytogenes to stainless steel. Appl Environ Microbiol 66:860–863

    Article  CAS  Google Scholar 

  118. Veenstra GC, Cremers FFM, van Dijk H, Fleer H (1996) Ultrastructural organization and regulation of biomaterial adhesion of Staphylococcus epidermidis. J Bacteriol 178:537–541

    CAS  Google Scholar 

  119. Verran J, Rowe DL, Boyd RD (2001) The effect of nanometer dimension topographical features on the hygienic status of stainless steel. J Food Prot 64:1183–1187

    CAS  Google Scholar 

  120. Verran J, Whitehead KA (2006) The effect of surface topography on the retention of microorganisms. Food Bioprod Proc 84(C4):253–259

    Article  Google Scholar 

  121. Verran J, Whitehead KA (2006) Assessment of organic materials and microbial components on hygiene surfaces. Food & Bioprod Proc 84(C4):260–264

    Article  Google Scholar 

  122. Walker SL, Hill JE, Redman JA, Elimelech M (2005) Influence of the growth phase on adhesion kinetics of Escherichia coli D12g. Appl Environ Microbiol 71:3093–3099

    Article  CAS  Google Scholar 

  123. Whittaker LJ, Klier CM (1996) Mechanisms of adhesian by oral bacteria. Annu Rev Microbial 50:513–552

    Article  CAS  Google Scholar 

  124. Wiencek MK, Klapes AN, Foegeding PM (1990) Hydrophobicity of Bacillus and Clostridium spores. Appl Environ Microbiol 56:2600–2605

    CAS  Google Scholar 

  125. Yang J, Bos R, Belder GF, Engel J, Busscher HJ (1999) Deposition of oral bacteria and polystyrene particules to quartz and dental enamel in a parallel plate and stagnation point flow chamber. J Colloid Interface Sci 220:410–418

    Article  CAS  Google Scholar 

  126. Zita A, Hermansson M (1997) Effects of bacterial cell surface structures and hydrophobicity on attachment to activated sludge flocs. Appl Environ Microbiol 63:1168–1170

    CAS  Google Scholar 

  127. Zoltai PT, Zoltola EA, McKay L (1981) Scanning electron microscopy of microbial attachment to milk contact surface. J Food Prot 44:204–208

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jon Palmer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palmer, J., Flint, S. & Brooks, J. Bacterial cell attachment, the beginning of a biofilm. J Ind Microbiol Biotechnol 34, 577–588 (2007). https://doi.org/10.1007/s10295-007-0234-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-007-0234-4

Keywords

Navigation