Skip to main content

Potential Bioresources as Future Sources of Biofuels Production: An Overview

  • Chapter
  • First Online:
Biofuel Technologies

Abstract

In recent years, biofuels are receiving increasing public and scientific attention, because of the crude oil reserves of the world that are predicted to deplete in about 40 years and other factors such as uncertainties related to oil price, greenhouse gas emission, and the need for increased energy security and diversity. Biofuels are a wide range of fuels that are in some way derived from renewable bioresources. It is reported that fossil fuels—oil, coal, and natural gas—dominated the world energy economy, covering more than 80 % of the total primary energy supply. Renewable energy sources accounted for 9.8 % of the world’s total primary energy supply in 2007. The wonderful development of the biofuel industry was heralded in the past few years, from the late 1970s as the renewable energy source to worldwide shortages of fossil fuels. Biofuels production is the process of preparing raw materials—starch- or sugar-containing for fermentation by microorganisms, which is currently the only microorganism used for converting sugar into alcohol and the heart of the fermentation process is the yeast cell. Demand for biofuels is increasing at a rate that will require serious consideration of alternatives to the primarily glucose-/starch-based feedstock over the next decade. Various lignocellulosic biomass sources such as agricultural residues, oils, oilseeds, wood and forest wastes, municipal solid wastes, wastes from the pulp and paper industry, and algae have the potential to serve as low-cost and abundant feedstock for biofuels production. Next generation biofuel production from high hydrocarbon (Latex producing) yielding plants and oligogeneous microorganisms are attracting the interest of many investigators in the area of novel and advanced fuels. Advanced genetic engineering tools offer the possibility of improved biodegradative capabilities of cellulases (cellulosomes) by reconstituting cellulosomes and with potent enzymes from different microbial species. Fast-growing grass species, halophytes specifically grown on marginal land and aquatic macrophytes, algae and other oil accumulating microorganisms could provide biofuel feedstock for biorefineries in the future. This chapter focuses the current status and future prospectus of research on ‘liquid biofuel production from different potential substrates’. The first section discusses the introduction of biofuels, the second section gives a detailed presentation on the status and concerns of biofuels, and the third section discusses the types of biofuels and the production of especially liquid biofuels from different bioresources that are currently in use and also points to potential bioresources for future use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd-Aziz S (2002) Sago starch and its utilization. J Biosci Bioeng 94:526–529

    PubMed  CAS  Google Scholar 

  • Abigor RD, Uadia PO, Foglia TA, Haas MJ, Jones KC, Okpefa E, Obibuzor JU, Bafor ME (2000) Lipase-catalyzed production of biodiesel fuel from some Nigerian lauric oils. Biochem Soc Trans 28(6):979–981

    Google Scholar 

  • Adams RP, Balandrin L, Hogge W, Craig A, Price S (1983) Analysis of the non-polar extractables of Asclepias speciosa. J Amer Oil Chem Soc 60:1315–1318

    Article  CAS  Google Scholar 

  • Aden A, Ruth M, Ibsen KN, Jechura J, Neeves K, Sheehan J, Wallace R (2002) Lignocellulosic biomass to ethanol process design and economics utilizing co-current dilute acid prehydrolysis and enzymatic hydrolysis for corn stover. NREL report TP-510-32438 http://www.nrel.gov/docs/fy02osti/32438.pdf, June.

  • Agrocadenas (2006) Colombia, Ministry of Agricultural and Rural Development. <http://www.agrocadenas.gov.co/home.htm> (Feb 2007)

  • Andersen AA, Stier TJB (1953) Anaerobic nutrition of S. cerevisiae. I. Ergosterol requirement for growth in a defined medium. J Cell Biol Comp Physiol 41:23–26

    Article  Google Scholar 

  • Apar DK, Ozbek B (2004) α-Amylase inactivation during corn starch hydrolysis process. Process Biochem 39:1877–1892

    Article  CAS  Google Scholar 

  • Azar C, Lindglen K, Larson E, Mollersten K (2006) Carbon capture and storage from fossil fuels and biomass—costs and potential role in stabilizing the atmosphere. Clim Change 74:47–49

    Article  CAS  Google Scholar 

  • Bajpai D, Tyagi VK (2006) Biodiesel: source, production, composition, properties and its benefits. J Olio Sci 55:487–502

    Article  CAS  Google Scholar 

  • Banerjee A, Sharma R, Chisti Y, Banerjee UC (2002) Botryococcus braunii: a renewable source of hydrocarbons and other chemicals. Crit Revs Biotechnol 22:245–279

    Article  CAS  Google Scholar 

  • Bassham JA (1977) Increasing crop production through more controlled photosynthesis. Science 197:630–638

    Article  PubMed  CAS  Google Scholar 

  • Benemann JR (1997) CO2 mitigation with microalgae systems. Energ Conver Manage 38:475–479

    Article  Google Scholar 

  • Berg C (2001) World Fuel Ethanol. Analysis and Outlook. F.O. Licht. http://www.agraeurope.co.uk/FOLstudies/FOL-Spec04.html/. Accessed Mar 2004

  • Berndes G, Azar C, Kaberger T, Abrahamson D (2001) The feasibility of large-scale lignocellulose-based bioenergy production. Biomass Bioenerg 20:371–383

    Article  CAS  Google Scholar 

  • Buchanan RA, Cull IM, Otey FH, Russell CR (1978) Hydrocarbon and rubber -producing crops: evaluation of 100 US plant species. Econ Bot 32:146–153

    Article  CAS  Google Scholar 

  • Bullock GE (2002) Ethanol from sugarcane. Sugar Research Institute, Australia, p 192

    Google Scholar 

  • Calvin M (1977) Hydrocarbons via photosynthesis. Energ Res 1:299–327

    Article  CAS  Google Scholar 

  • Calvin M (1979) Petroleum plantations for fuel and materials. Bioscience 29:533–538

    Article  Google Scholar 

  • Calvin M (1982) Oils from plants. In: BARC Science Seminar, US Dept of Agriculture, Beltsville Agricultural Research Center, MD

    Google Scholar 

  • Cardona CA, Sanchez OJ, Montoya MI, Quintero JA (2005) Analysis of fuel ethanol production processes using lignocellulosic biomass and starch as feedstocks. In: Seventh world congress of chemical engineering, Glasgow

    Google Scholar 

  • Carroll A, Somerville C (2009) Cellulosic biofuels. Ann Rev Plant Biol 60:165–182

    Article  CAS  Google Scholar 

  • Casey GP, Magnus CA, Ingledew WM (1984) High-gravity brewing: effects of nutrition on yeast composition, fermentative ability, and alcohol production. Appl Environ Microbiol 48:639–646

    PubMed  CAS  Google Scholar 

  • Cheirsilp B, Suwannarat W, Niyomdecha R (2011) Mixed culture of oleaginous yeast Rhodotorula glutinis and microalga Chlorella vulgaris for lipid production from industrial wastes and its use as biodiesel feedstock. New Biotechnol (In Press)

    Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  PubMed  CAS  Google Scholar 

  • Chisti Y (2008) Biodiesel from microalgae beats bioethanol. Trends Biotechnol 26:126

    Google Scholar 

  • Chum HL, Overend RP (2001) Biomass and renewable fuels. Fuel Proces Technol 71:187–195

    Article  CAS  Google Scholar 

  • Chung BH, Nam JG (2002) Process for producing high concentration of ethanol using food wastes by fermentation. Patent KR20020072326

    Google Scholar 

  • Daily GC (1995) Restoring value to the world’s degraded lands. Science 269:350–354

    Article  PubMed  CAS  Google Scholar 

  • Damoano D, Wang SS (1985) Improvements in ethanol concentration and fermentor ethanol productivity in yeast fermentations using whole soy flour in batch and continuous recycle systems. Biotechnol Lett 71:35–140

    Google Scholar 

  • De S, Bag A, Mukherji S (1997) Potential use of Pedilanthus tithymaloides Poit. as a renewable resource of plant hydrocarbons. Bot Bull Acad Sin 38:105–108

    CAS  Google Scholar 

  • Deepak S, Visvanathan L (1984) Effects of oils and fatty acids on the tolerance of distillers yeast to alcohol and temperature. Enzyme Microb Technol 6:78–80

    Google Scholar 

  • Demirbas A (2009) Progress and recent trends in biodiesel fuels. Energ Conserv Manage 50:14–34

    Article  CAS  Google Scholar 

  • Emon JV, Seiber JN (1985) Chemical constituents and energy content of two milk weeds, Asclepias speciosa and A. curassavica. Econ Bot 39:44–55

    Article  Google Scholar 

  • Erdman MD, Erdman BA (1981) Calotropis procera as a source of hydrocarbons. Econ Bot 35:467–472

    Article  CAS  Google Scholar 

  • Ezeji TC, Blaschek HP (2008) Fermentation of dried distillers’ grains and soluble (DDGS) hydrolysates to solvents and value-added products by solventogenic clostridia. Bioresour Technol 99:5232–5242

    Article  PubMed  CAS  Google Scholar 

  • Ezeji TC, Qureshi N, Blaschek HP (2007) Bioproduction of butanol from biomass: from genes to bioreactors. Curr Opin Biotechnol 18:220–227

    Article  PubMed  CAS  Google Scholar 

  • Field B, Campbell JE, Lobell DB (2008) Biomass energy: the scale of the potential resource. Trends Ecol Evol 23:65–72

    Article  PubMed  Google Scholar 

  • Fjerbaek L, Christensen KV, Norddahl B (2008) A review of the current state of biodiesel production using enzymatic transesterification. Biotechnol Bioengg 102:1298–1315

    Article  Google Scholar 

  • Foley JA, De Fries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Hekowski JH, Hollowan T, Howard EA, Kucharik CJ, Monfreda C, Patz JA, Pentice IC, Ramankutty N, Snyder PK (2005) Global consequences of land use. Science 309:570–574

    Article  PubMed  CAS  Google Scholar 

  • Food Agric Organ (FAO) (2000) Land resource potential and constraints at regional and country levels. World soil resources rep. 90, Rome

    Google Scholar 

  • Food Agric Organ (FAO) (2006) Food Agricultural Organization statistical year book, 2005-2006. Rome

    Google Scholar 

  • Food and Agriculture Organization (FAO) (2004) Global cassava market study. Business opportunities for the use of cassava. Proceedings of the validation forum on the global cassava development strategy, vol 6, FAO Rome

    Google Scholar 

  • Fukuda H (2001) Biodiesel fuel production by transesterification of oils. J Biosci Bioeng 92:405–416

    PubMed  CAS  Google Scholar 

  • Garcia HS, Malcata FX, Hill CG, Amundson CH (1992) Use of Candida rugosa lipase immobilized in a spiral wound membrane reactor for the hydrolysis of milk fat. Enzyme Microb Technol 14(7):535–545

    Google Scholar 

  • Ghosh P, Ghose TK (2003) Bioethanol in India: recent past and emerging future. Adv Biochem Engg/Biotechnol 85:1–27

    Article  CAS  Google Scholar 

  • Grassi G (1999) Modern bioenergy in the European union. Renew Energ 16:985–990

    Article  CAS  Google Scholar 

  • Gui MM, Lee KT, Bhatia S (2008) Feasibility of edible vs. non-edible oil vs waste edible oil as biodiesel feedstock. Energy 33:1646–1653

    Google Scholar 

  • Gulati M, Kohlman K, Ladish MR, Hespell R, Bothast RJ (1996) Assessment of ethanol production options for corn products. Bioresour Technol 5:253–264

    Article  Google Scholar 

  • Gutierrez NA, Maddox IS, Schuster KC, Swoboda H, Gapes JR (1998) Strain comparison and medium preparation for the acetone–butanol–ethanol (ABE) fermentation process using a substrate of potato. Bioresour Technol 66:263–265

    Article  CAS  Google Scholar 

  • Haas MJ, McAloon AJ, Yee WC, Foglia TA (2006) A process model to estimate biodiesel production costs. Bioresour Technol 97:671–678

    Article  PubMed  CAS  Google Scholar 

  • Hamelinck CN, Faaji APC (2006) Outlook for advanced biofuels. Energ Policy 34:3268–3283

    Article  Google Scholar 

  • Hammond JB, Egg R, Diggins D, Coble CG (1996) Alcohol from bananas. Bioresource Technol 56:125–130

    Google Scholar 

  • Harun R, Singh M, Forde GM, Danquah MK (2010) Bioprocess engineering of microalgae to produce a variety of consumer products. Renew Sust Ener Revs 14:1037–1047

    Article  CAS  Google Scholar 

  • Hoq MM, Yamane T, Shimizu S (1985) Continuous hydrolysis of olive oil by lipase in microporous hydrophobic membrane bioreactor. J Am Oil Chem Soc 62(6):1016–1021

    Google Scholar 

  • Iso M, Chen B, Eguchi M, Kudo T, Shrestha S (2001) Production of biodiesel fuel from triglycerides and alcohol using immobilized lipase. J Mol Catal B: Enzym 16(1):53–58

    Google Scholar 

  • Jesse T, Ezeji TC, Qureshi N, Blaschek HP (2002) Production of butanol from starch-based waste packing peanuts and agricultural waste. J Ind Microbiol Biotechnol 29:117–123

    Article  PubMed  CAS  Google Scholar 

  • Johanson DJA, Azar C (2007) A scenario based analysis of land use competition between bioenergy and food production in the US. Climatic Change 82:267–291

    Google Scholar 

  • Johnson JD, Hinman CW (1980) Oils and rubber from arid land plants. Science 208:460–464

    Article  PubMed  CAS  Google Scholar 

  • Johnston J (2008) New world for biofuels. Energ Law 86:10–14

    Google Scholar 

  • Jones DT, Woods DR (1986) Acetone-butanol fermentation revisited. Microbiol Rev 50:484–524

    PubMed  CAS  Google Scholar 

  • Kadam KL, Forrest LH, Jacobson WA (2000) Rice straw as a lignocellulosic resource: collection, processing, transportation, and environmental aspects. Biomass Bioenerg 18:369–389

    Article  CAS  Google Scholar 

  • Kadam KL, McMillan JD (2003) Availability of corn stover as a sustainable feedstock for bioethanol production. Bioresour Technol 88:17–25

    Article  PubMed  CAS  Google Scholar 

  • Kaieda M, Samukawa T, Matsumoto T, Ban K, Kondo A, Shimada Y, Noda H, Nomoto F, Ohtsuka K, Izumoto E, Fukuda H (1999) Biodiesel fuel production from plant oil catalyzed by Rhizopus oryzae lipase in a water-containing system without an organic solvent. J Biosci Bioeng 88:627–631

    Google Scholar 

  • Kalscheuer R, Luftmann H, Steinbüchel A (2004) Synthesis of novel lipids in Saccharomyces cerevisiae by heterologous expression of an unspecific bacterial acyltransferase. Appl Environ Microbiol 70:7119–7125

    Article  PubMed  CAS  Google Scholar 

  • Kalscheuer R, Stolting T, Steinbuchel A (2006) Microdiesel: Escherichia coli engineered for fuel production. Microbiol-Sgm 152:2529–2536

    Article  CAS  Google Scholar 

  • Kheshgi HS, Prince RC, Marland G (2000) The potential of biomass fuels in the context of global climate change: focus on transportation fuels. Ann Rev Energ Environ 25:199–244

    Article  Google Scholar 

  • Kim S, Dale BE (2004) Global potential bioethanol production from wasted crops and crop residues. Biomass Bioenerg 26:361–375

    Article  Google Scholar 

  • Knezevic Z, Mojovic L, Adnadjevic B (1998) Palm oil hydrolysis by lipase from Candida cylindracea immobilized on zeolite type Y. Enzyme Microb Technol 22(4):275–280

    Google Scholar 

  • Komers K, Stloukal R, Machek J, Skopal F (2001) Biodiesel from rapeseed oil, methanol and KOH 3: analysis of composition of actual reaction mixture. Eur J Lipid Sci Technol 103:363–371

    Article  CAS  Google Scholar 

  • Kumari V, Shah S, Gupta MN (2007) Preparation of biodiesel by lipasecatalyzed transesterification of high free fatty acid containing oil from Madhuca indica. Energy Fuels 21(1):368–372

    Google Scholar 

  • Ko¨se O, Tu¨ter M, Aksoy HA (2002) Immobilized Candida antarctica lipasecatalyzed alcoholysis of cotton seed oil in a solvent-free medium. Bioresour Technol 83(2):125–129

    Google Scholar 

  • Lai CC, Zullaikah S, Vali SR, Ju YH (2005) Lipase-catalyzed production of biodiesel from rice bran oil. J Chem Technol Biotechnol 80(3):331– 337

    Google Scholar 

  • Lee WC, Huang CT (2000) Modeling of ethanol fermentation using Zymomonas mobilis ATCC 10988 grown on the media containing glucose and fructose. Biochem Engg J 4:217–227

    Article  CAS  Google Scholar 

  • Licht FO (2008) World fuel ethanol production. Renewable fuels association. http://www.ethanolrfa.org/resource/facts/trade

  • Linko YY, Lamsa M, Wu X, Uosukainen E, Seppala J, Linko P (1998) Biodegradable products by lipase biocatalysis. J Biotechnol 66(1):41–50

    Google Scholar 

  • Lynd LR (1996) Overview and evaluation of fuel ethanol from cellulosic biomass: technology, economics, the environment, and policy. Ann Rev Energ Environ 21:403–465

    Google Scholar 

  • Ma F, Hanna MA (1999) Biodiesel production: a review. Bioresour Technol 70:1–15

    Article  CAS  Google Scholar 

  • Macedo IC, Nogueira LAH (2005) Evaluation of ethanol production expansion in Brazil. In: Cadernos NAE/Nu´cleo de Assuntos Estrategicos da Presideˆncia da Repu´ blica. Biofuels, Section 2. Brası´lia (Brazil), Nu´cleo de Assuntos Estrate´gicos da Presideˆncia da Repu´ blica, pp. 113–220

    Google Scholar 

  • Maddox IS, Qureshi N, Gutierrez NA (1993) Utilization of whey and process technology by Clostridia. In: Woods DR (ed) The Clostridia and biotechnology. Butterworth Heinemann, MA, pp 343–369

    Google Scholar 

  • Manzanera M (2011) Biofuels from Oily Biomass, In: Carbon-neutral fuels and energy carriers. Muradov M, Veziroghu N (eds), 635-663, CRC, Taylor & Francis Group, Orlando. ISBN 978-143-9818-57-2

    Google Scholar 

  • Manzoyer M (2001) Protecting small farmers and the rural poor in the context of globalization. FAO, Rome

    Google Scholar 

  • Marchal R, Blanchet D, Vandecasteele JP (1985) Industrial optimization of acetone-butanol fermentation: a study of the optimization of Jerusalem artichokes. Appl Microbiol Biotechnol 23:92–98

    Article  CAS  Google Scholar 

  • Marchal R, Ropars M, Pourquie J, Fayolle F, Vandecasteele JP (1992) Large-scale enzymatic hydrolysis of agricultural lignocellulosic biomass. Part 2: conversion into acetonebutanol. Bioresour Technol 42:205–217

    Article  CAS  Google Scholar 

  • Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sustain Energ Rev 14:217–232

    Article  CAS  Google Scholar 

  • McAloon A, Taylor F, Yee W, Ibsen K, Wooley R (2000) Determining the cost of producing ethanol from corn starch and lignocellulosic feedstocks. Technical report NREL/TP-580-28893. National Renewable Energy Laboratory. Golden, CO (USA) p 35

    Google Scholar 

  • McLaughlin SP, Hoffmann JJ (1982) Survey of biocrude- producing plants from the Southwest. Econ Bot 36:323–339

    Google Scholar 

  • Meher LC, Sagar DV, Naik SN (2006) Technical aspects of biodiesel production by transesterification: a review. Renew Sustain Energ Rev 10:248–268

    Article  CAS  Google Scholar 

  • Merc on F, Sant Anna GL, JrNobrega R (2000) Enzyme hydrolysis of babassu oil in a membrane bioreactor. J Am Oil Chem Soc 77(10): 1043–1048

    Google Scholar 

  • Microalgae to produce a variety of consumer products. Renew Sust Ener Revs. 14:1037–1047

    Google Scholar 

  • Microbiol Biotechnol 52:741–755

    Google Scholar 

  • Modi MK, Reddy JRC, Rao BVSK, Prasad RBN (2007) Lipase-mediated conversion of vegetable oils into biodiesel using ethyl acetate as acyl acceptor. Bioresour Technol 98(6):1260–1264

    Google Scholar 

  • Mittelbach M (1990) Lipase catalyzed alcoholysis of sunflower oil. J Am Oil Chem Soc 67(3):168–170

    Google Scholar 

  • Moreira J, Goldemberg J (1999) The alcohol program. Energy Policy 27:229–245

    Google Scholar 

  • Moreira JS (2000) Sugarcane for energy–recent results and progress in Brazil. Energ Sust Develop 4 (3):43–54

    Google Scholar 

  • Morimura S, Zhong YL, Kida K (1997) Ethanol production by repeated-batch fermentation at high temperature in a molasses medium containing a high concentration of total sugar by a thermotolerant flocculating yeast with improved salt-tolerance. J Ferm Bioengg 83:271–274

    Article  CAS  Google Scholar 

  • Nagendrappa G (2000) Liquid fuels from plants: can we meet our petroleum needs from plants. Resonance 5:47–55

    Article  CAS  Google Scholar 

  • Naik SN, Goud VV, Rout PK, Dalai AK (2010) Production of first and second generation biofuels: a comprehensive review. Renew Sustain Energ Rev 14:578–597

    Article  CAS  Google Scholar 

  • Narendranath NV, Thomas KC, Ingledew WM (2000) Use of urea hydrogen peroxide in fuel alcohol production. Patent CA2300807

    Google Scholar 

  • Nemethy EK, Otvos JW, Calvin M (1979) Analysis of extractables from one Euphorbia. J Amer Oil Chem Soc 56:957–960

    Article  Google Scholar 

  • Palmqvist E, Hahn-Ha¨gerdal B (2000) Fermentation of lignocellulosic hydrolysates. I: inhibition and detoxification. Bioresour Technol 74:17–24

    Article  CAS  Google Scholar 

  • Pandey A, Nigam P, Soccol CR, Soccol VT, Singh D, Mohan R (2000) Advances in microbial amylases. Biotechnol Appl Biochem 31:135–152

    Article  PubMed  CAS  Google Scholar 

  • Parekh SR, Parekh RS, Wayman M (1988) Ethanol and butanol production by fermentation of enzymatically saccharified SO2-prehydrolysed lignocellulosics. Enzyme Microb Technol 110:660–668

    Google Scholar 

  • Patil SG, Patil BG (1989) Chitin supplement speeds up the ethanol production in cane molasses fermentation. Enzyme Microb Technol 11:38–43

    Article  CAS  Google Scholar 

  • Patzek TW, Anti SM, Campos R, Ha KW, Lee J, Li B, Padnick J, Yee SA (2005) Ethanol from corn: clean renewable fuel for the future, or drain on our resources and pockets? Environ Develop Sustain 7:319–336

    Article  Google Scholar 

  • Pimentel D (2003) Ethanol fuels: energy balance, economics, and environmental impacts are negative. Nat Resour Res 12:127–134

    Article  Google Scholar 

  • Poitrat E (1999) The potential of liquid biofuels in France. Renew Energ 16:1084–1089

    Article  CAS  Google Scholar 

  • Prasad S, Singh A, Jain N, Joshi HC (2007) Ethanol production from sweet sorghum syrup for utilization as automotive fuel in India. Energ Fuel 21: 2415–2420

    Google Scholar 

  • Quintero JA, Montoya MI, Sa′nchez OJ, Giraldo OH, Cardona CA (2007) Fuel ethanol production from sugarcane and corn: comparative analysis for a Colombian case. Energy. doi:10.1016/j.energy.2007.10.001

    Google Scholar 

  • Qureshi N, Blaschek HP (2005) Butanol production from agricultural biomass. In: Shetty K, Pometto A, Paliyath G (eds) Food Biotechnology. Taylor and Francis Group plc, Boca Raton, pp 525–551

    Google Scholar 

  • Qureshi N, Li X, Hughes SR, Saha BC, Cotta MA (2006) Production of acetone butanol ethanol from corn fiber xylan using Clostridium acetobutylicum. Biotechnol Prog 22:673–680

    Article  PubMed  CAS  Google Scholar 

  • Qureshi N, Lolas A, Blaschek HP (2001) Soy molasses as fermentation substrate for production of butanol using Clostridium beijerinckii BA101. J Ind Microbiol Biotechnol 26:290–295

    Article  PubMed  CAS  Google Scholar 

  • Qureshi N, Saha BC, Cotta MA (2007) Butanol production from wheat straw hydrolysate using Clostridium beijerinckii. Bioprocess Biosyst Eng 30:419–427

    Article  PubMed  CAS  Google Scholar 

  • Qureshi N, Saha BC, Hector RE, Hughes SR, Cotta MA (2008) Butanol production from wheat straw by simultaneous saccharification and fermentation using Clostridium beijerinckii: Part I–Batch fermentation. Biomass Bioener 32:168–175

    Google Scholar 

  • Qureshi N, Saha BC, Dien B, Hector RE, Cotta MA (2010a) Production of butanol (a biofuel) from agricultural residues: part I e use of barley straw hydrolysate. Biomass Bioenerg 34:559–565

    Article  CAS  Google Scholar 

  • Qureshi N (2010) Agricultural residues and energy crops as potentially economical and novel substrates for microbial production of butanol (a biofuel). Perspec Agric Vet Sci Nutri Nat Resour 5:1–8

    Google Scholar 

  • Qureshi N, Saha BC, Hector RE, Dien B, Hughes SR, Liu S (2010b) Production of butanol (a biofuel) from agricultural residues: II—use of corn stover and switchgrass hydrolysates. Biomass Bioenerg 34:566–571

    Article  CAS  Google Scholar 

  • Ramey D (2004) Butanol advances in biofuels. The Light Party, Washington pp 105–118

    Google Scholar 

  • Ratti N, Siddhu OP, Behl HM (1995) Quantification of polyisoprenes from some promising Euphorbs. Bioresour Technol 52:231–235

    Article  CAS  Google Scholar 

  • Reddy LVA, Reddy OVS (2005) Improvement of ethanol production in very high gravity fermentation by horse gram (Dolichos biflorus) flour supplementation. Lett Appl Microbiol 41:440–444

    Article  PubMed  CAS  Google Scholar 

  • Reddy LVA, Reddy OVS (2006) Rapid and enhanced production of ethanol in very high gravity (VHG) sugar fermentation by Saccharomyces cerevisiae: role of finger millet (Eleusine coracana L) flour. Process Biochem 41:726–729

    Article  CAS  Google Scholar 

  • Reyes JF, Sepulveda MA, Lo PM (2006) Emissions and power of a diesel engine fuelled with crude and refined biodiesel from salmon oil. Fuel 85:1714–1719

    Article  CAS  Google Scholar 

  • Robertson GH, Wong DWS, Lee CC, Wagschal K, Smith MR, Orts WJ (2006) Native or raw starch digestion: a key step in energy efficient biorefining of grain. J Agricul Food Chem 54:353–365

    Article  CAS  Google Scholar 

  • Runge CF, Senauer B (2007) How biofuels could starve the poor. Foreign Aff 86:41–54

    Google Scholar 

  • Sagar AD, Kartha S (2007) Bioenergy and sustainable development? Annu Rev Enviorn Resour 32:131–167

    Article  Google Scholar 

  • Sanchez OJ, Cardona CA (2008) Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour Technol 99:5270–5295

    Article  PubMed  CAS  Google Scholar 

  • Schenk PM, Thomas-Hall SR, Stephans E, Mark VC (2008) Second generation biofuels: high efficiency microalgae for biodiesel production. Bioenergy 1:20–43

    Article  Google Scholar 

  • Shah S, Gupta MN (2007) Lipase catalyzed preparation of biodiesel from Jatropha oil in a solvent-free system. Process Biochem 42(3):409–414

    Google Scholar 

  • Shapouri H, Duffield JA, Wang M (2003) The energy balance of corn ethanol revisited. Trans ASAE 46:959–968

    CAS  Google Scholar 

  • Sharma YC, Singh B, Upadhay SN (2008) Advancements in development and characterization of biodiesel: a review. Fuel 87:2355–2373

    Article  CAS  Google Scholar 

  • Shigechi H, Fujita Y, Koh J, Ueda M, Fukuda H, Kondo A (2004) Energy-saving direct ethanol production from low-temperaturecooked corn starch using a cell-surface engineered yeast strain codisplaying glucoamylase and α-amylase. Biochem Engg J 18:149–153

    Article  CAS  Google Scholar 

  • Shimada Y, Watanabe Y, Sugihara A, Tominaga Y (2002) Enzymatic alcoholysis for biodiesel fuel production and application of the reaction to oil processing. J Mol Catal B: Enzym 17(3–5):133–142

    Google Scholar 

  • Soni SK, Kaur A, Gupta JK (2003) A solid state fermentation based bacterial a-amylase and fungal glucoamylase system and its suitability for the hydrolysis of wheat starch. Process Biochem 39:185–192

    Article  CAS  Google Scholar 

  • Stevenson DE, Stanley RA, Furneaux RH (1994) Near-quantitative production of fatty acid alkyl esters by lipase-catalyzed alcoholysis of fats and oils with adsorption of glycerol by silica gel. Enzyme Microb Technol 16(6):478–484

    Google Scholar 

  • Strobel G, Knighton B, Kluck K, Livinghouse T, Ren y, Griffin M, Spakowicz D, Sears J (2008) The production of myco-diesel hydrocarbons and their derivatives by the endophytic fungus Gliocladium roseum (NRRL 50072). Microbiol 154:3319–3328

    Article  CAS  Google Scholar 

  • Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11

    Article  PubMed  CAS  Google Scholar 

  • Suppes GJ, Bockwinkel K, Lucas S, Botts JB, Mason MH, Heppert JA (2001) Calcium carbonate catalyzed alcoholysis of fats and oils. J Am Oil Chem Soc 78:139–145

    Article  CAS  Google Scholar 

  • Suppes GJ, Dasari MA, Doskocil EJ, Mankidy PJ, Goff MJ (2004) Transesterification of soybean oil with zeolite and metal catalysts. Appl Catal A 257:213–223

    Article  CAS  Google Scholar 

  • synthetic waste water by algae. Ecolog Eng 28:64–70

    Google Scholar 

  • Tiwari AK, Kumar A, Rahamen H (2007) Biodiesel production from Jatropha oil (Jatropha curcas) with high free fatty acids: an optimized process. Biomass Bioenerg 31:569–578

    Article  Google Scholar 

  • Torres CF, Moeljadi M, Hill CG (2003) Lipase-catalyzed ethanolysis of fish oils: Multiresponse kinetics. Biotechnol Bioeng 83(3):274–281

    Google Scholar 

  • Viegas CA, Correia ISA, Novais JM (1984) Rapid production of high concentration of ethanol by S. bayanus: mechanism of action of soy flour supplementation. Biotechnol Lett 7:515–520

    Article  Google Scholar 

  • Von Sivers M, Zacchi G, Olsson L, Hahn-Hägerdal B (1994) Cost analysis of ethanol from willow using recombinant Escherichia coli. Biotechnol Prog 10:555–560

    Article  Google Scholar 

  • Waltermann M, Steinbüchel A (2010) Neutral lipid bodies in prokaryotes: recent insights into structure, formation and relationship to eukaryotic lipid depots. J Bactriol 187:3607–3619

    Article  Google Scholar 

  • Wang S, Ingledew W, Thomas K, Sosulski K, Sosulski F (1999) Optimization of fermentation temperature and mash specific gravity for fuel alcohol production. Cereal Chem 76:82–86

    Article  CAS  Google Scholar 

  • Wang S, Sosulski K, Sosulski F, Ingledew M (1997) Effect of sequential abrasion on starch composition of five cereals for ethanol fermentation. Food Res Inter 30:603–609

    Article  CAS  Google Scholar 

  • Wilkie AC, Riedesel KJ, Owens JM (2000) Stillage characterization and anaerobic treatment of ethanol stillage from conventional and cellulosic feedstocks. Biomass Bioenerg 19:63–102

    Article  CAS  Google Scholar 

  • Winner Network (2002) Village level bioenergy system based on sweet sorghum. http://www.w3c.org/TR/1999/REC-html401-19991224/loose.dtd (Oct 2004)

  • Wiselogel A, Tyson J, Johnsson D (1996) Biomass feedstock resources and composition. In: Wyman CE (ed) Handbook on bioethanol: production and utilization. Taylor and Francis, Washington, pp 105–118

    Google Scholar 

  • Wooley R, Ruth M, Sheehan J, Ibsen K, Majdeski H, Galvez A (1999) Lignocellulosic biomass to ethanol process design and economics utilizing co-current dilute acid prehydrolysis and enzymatic hydrolysis. Current and futuristic scenarios. Technical Report NREL/TP-580-26157. National Renewable Energy Laboratory. Golden, CO (USA), p 123

    Google Scholar 

  • Wyman CE (1999) Opportunities and technological challenges of bioethanol. Presentation to the committee to review the R and D strategy for biomass-derived ethanol and biodiesel transportation fuels. Review for the research strategy for biomass-derived transportation fuels. National Research Council. National Academy, Washington, pp 1–48

    Google Scholar 

  • Xavier MR (2007) The Brazilian sugarcane ethanol experience. Issue Analysis, no. 3, Washington, USA, Competitive Enterprise Institute. 11 p

    Google Scholar 

  • Zverlov VV, Berezina O, Velikodvorskaya GA, Schwarz WH (2006) Bacterial acetone and butanol production by industrial fermentation in the Soviet union: use of hydrolyzed agricultural waste for biorefinery. Appl Microbiol Biotechnol 71:587–597

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author acknowledges the Department of Science and Technology, Government of India for the financial support given in the form of a research Project entitled “Biotechnological production of Acetone-Butanol-Ethanol (ABE) from agricultural biomass using solventogenic bacteria” (Ref No: SR/FT/LS-79/2009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veeranjaneya Reddy Lebaka (L) .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lebaka (L), V. (2013). Potential Bioresources as Future Sources of Biofuels Production: An Overview. In: Gupta, V., Tuohy, M. (eds) Biofuel Technologies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34519-7_9

Download citation

Publish with us

Policies and ethics