Skip to main content

Biological Control of Peronosporomycete Phytopathogen by Bacterial Antagonist

  • Chapter
  • First Online:
Bacteria in Agrobiology: Disease Management

Abstract

Peronosporomycetes are devastating pathogens to numerous crop, ornamental, and native plants. They are phylogenetically distinct from those of fungi and hence most of the fungicides are ineffective against them. A large body of literature reveals that several bacterial genera such as Pseudomonas, Bacillus, Burkholderia, Lysobacter, Enterobacter, etc. exert antagonistic activities against the peronosporomycete phytopathogens in both in vitro and in vivo conditions. These bacterial strains originated from diverse habitats and some of them showed high promise for biocontrol of plant diseases caused by these notorious pathogens. Mechanisms of biocontrol by these bacterial antagonists include (1) antibiosis, including biosurfactant activity, (2) secretion of lytic enzymes, (3) competition for nutrients (C and Fe), (4) high plant and hyphal colonization, (5) hyperparasitism, and (6) development of induced systemic resistance in the host plants. This chapter comprehensively reviews advances of research on biocontrol of peronosporomycete phytopathogens by bacterial antagonists including the mode of actions of the antagonistic principles against the pathogens. Recent advances on genome sequencing of several peronosporomycetes and biocontrol agents will provide basis for better understanding of bacteria–plant–pathogen interactions and development of improved strains that will potentially function as effective biocontrol agents against the notorious peronosporomycete phytopathogens for low input sustainable agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abad ZG, Abad JA, Coffey MD, Oudemans PV, et al. (2008) Phytophthora bisheria sp. nov., a new species identified in isolates from the Rosaceous raspberry, rose and strawberry in three continents. Mycoligia 100:99–110

    Article  CAS  Google Scholar 

  • Abdalla MA, Win HY, Islam MT, von Tiedemann A, Schüffler A, Laatsch H (2011) Khatmiamycin, a motility inhibitor and zoosporicide against the grapevine downy mildew pathogen Plasmopara viticola from Streptomyces sp. ANK313. J Antibiot. 64:655–659

    Google Scholar 

  • Agrios GN (1997) Plant pathology. Academic, San Diego, CA

    Google Scholar 

  • Akgül DS, Mirik M (2008) Biocontrol of Phytophthora capsici on pepper plants by Bacillus Megnaterium strains. J Plant Pathol 90(Suppl 1):29–34

    Google Scholar 

  • Andersen JB, Koch B, Nielsen TH, Sørensen D, Hansen M, Nybroe O, Christophersen C, Sørensen J, Molin S, Givskov M (2003) Surface motility in Pseudomonas sp DSS73 is required for efficient biological containment of the root-pathogenic microfungi Rhizoctonia solani and Pythium ultimum. Microbiology 149:37–46

    Article  PubMed  CAS  Google Scholar 

  • Anjaiah V, Koedam N, Nowak-Thompson B, Loper JE, Höfte M, Tambong JT, Cornelis P (1998) Involvement of phenazines and anthranilate in the antagonism of Pseudomonas aeruginosa PNA1 towards Fusarium spp. and Pythium spp. Mol Plant Microbe Interact 11:847–854

    Article  CAS  Google Scholar 

  • Bainton NJ, Lynch JM, Naseby D, Way JA (2004) Survival and ecological fitness of Pseudomonas fluorescens genetically engineered with dual biocontrol mechanisms. Microbiol Ecol 48:349–57

    Article  CAS  Google Scholar 

  • Becker JO, Cook RJ (1988) Role of siderophores in suppression of Pythium species and the production of increased-growth response of wheat by fluorescent pseudomonads. Phytopathology 78:778–782

    Article  CAS  Google Scholar 

  • Berger F, Li H, White D, Frazer R, Leifert C (1996) Effect of pathogen inoculum, antagonist density, and plant species on biological control of Phytophthora and Pythium damping-off by Bacillus subtilis CotI in high-humidity fogging glasshouses. Phytopathology 86:428–433

    Article  Google Scholar 

  • Boller T (1992) Antimicrobial functions of the plant hydrolases, chitinase and β-1,3-glucanase. In: Fritig B, Legrand M (eds) Mechanisms of plant defense responses. Kluwer Academic, Dordrecht, pp 391–400

    Google Scholar 

  • Bonner DP, O’Sullivan J, Tanaka SK, Clark JM, Whitney RR (1988) Lysobactin, a novel antibacterial agent produced by Lysobacter sp. II. Biological properties. J Antibiot (Tokyo) 41:1745–1751

    Article  CAS  Google Scholar 

  • Borriss R (2011) Use of plant-associated Bacillus strains as biofertilizers and biocontrol agents in agriculture. In: Maheshwari DK (ed) Bacteria in agrobiology: plant growth responses. Springer, Berlin, pp 41–76

    Chapter  Google Scholar 

  • Bowers JH, Parke JL (1993) Epidemiology of Pythium damping-off and Aphanomyces root rot of peas after seed treatment with bacterial agents for biological control. Phytopathology 83:466–1473

    Article  Google Scholar 

  • Budi SW, van Tuinen D, Martinotti G, Gianinazzi S (1999) Isolation from the sorghum bicolor mycorrhizosphere of a bacterium compatible with arbuscular mycorrhiza development and antagonistic towards soilborne fungal pathogens. Appl Environ Microbiol 65:5148–5150

    PubMed  CAS  Google Scholar 

  • Burr TJ, Schroth MN, Suslow T (1978) Increased potato yields by treatment of seed pieces with specific strains of Pseudomonas fluorescens and P. putida. Phytopathology 68:1377–1383

    Article  Google Scholar 

  • Buysens S, Heungens K, Poppe J, Hofte M (1996) Involvement of pyochelin and pyoverdin in suppression of Pythium induced damping-off of tomato by Pseudomonas aeruginosa 7NSK2. Appl Environ Microbiol 62:865–71

    PubMed  CAS  Google Scholar 

  • Callan NW, Mathre DE, Miller JB (1990) Bio-priming seed treatment for biological control of Pythium ultimum preemergence damping-off in sh2 sweet corn. Plant Dis 74:368–372

    Article  Google Scholar 

  • Carruthers FL, Shum-Thomas T, Conner AJ, Mahanty HK (1995) The significance of antibiotic production by Pseudomonas aureofaciens PA 147–2 for biological control of Phytophthora megasperma root rot of asparagus. Plant Soil 170:339–344

    Article  CAS  Google Scholar 

  • Chatterton S, Sutton JC, Boland GJ (2004) Timing Pseudomonas chlororaphis applications to control Pythium aphanidermatum, Pythium dissotocum, and root rot in hydroponic peppers. Biol Control 30:360–373

    Article  Google Scholar 

  • Chung S, Kong H, Buyer JS, Lakshman DK, Lydon J, Kim S-D, Roberts D (2008) Isolation and partial characterization of Bacillus subtilis ME488 for suppression of soilborne pathogen of cucumber and pepper. Appl Microbiol Biotechnol 80:115–123

    Article  PubMed  CAS  Google Scholar 

  • Compant S, Duffy B, Nowak J, Clément C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951–4959

    Article  PubMed  CAS  Google Scholar 

  • Cook RJ (1993) Making greater use of introduced microorganisms for biological control of plant pathogens. Annu Rev Phytopathol 31:53–80

    Article  PubMed  CAS  Google Scholar 

  • Crawford DL, Lynch JM, Whipps JM, Ousley MA (1993) Isolation and characterization of actinomycete antagonists of a fungal root pathogen. Appl Environ Microbiol 59:3899–3905

    PubMed  CAS  Google Scholar 

  • de Bruijn I, de Kock MJD, Yang M, de Waard P, van Beek TA, Raaijmakers JM (2007) Genome-based discovery, structure prediction and functional analysis of cyclic lipopeptide antibiotics in Pseudomonas species. Mol Microbiol 63:417–428

    Article  PubMed  CAS  Google Scholar 

  • de Souza JT, Arnould C, Deulvot C, Lemanceau P, Gianinazzi-Pearson V, Raaijmakers JM (2003a) Effect of 2, 4-diacetylphloroglucinol on Pythium: cellular responses and variation in sensitivity among propagules and species. Phytopathology 93:966–975

    Article  PubMed  Google Scholar 

  • de Souza JT, de Boer M, de Waard P, van Beek TA, Raaijmakers JM (2003b) Biochemical, genetic and zoosporicidal properties of cyclic lipopeptide surfactants produced by Pseudomonas fluorescens. Appl Environ Microbiol 69:7161–7172

    Article  PubMed  CAS  Google Scholar 

  • de Weger LA, van der Vlugt CIM, Wljfjes AHM, Bakker PAHM, Schlppers B, Lugtenberg B (1987) Flagella of a plant-growth-stimulating Pseudomonas fluorescens strain are required for colonization of potato roots. J Bacteriol 169:2769–2773

    PubMed  Google Scholar 

  • Dean RA, Kuc J (1986) Induced systemic protection in cucumber: the source of the “signal”. Physiol Mol Plant Pathol 28:227–236

    Article  Google Scholar 

  • DeFlaun MF, Tanzer AS, McAteer AL, Marshall B, Levy SB (1990) Development of an adhesion assay and characterization of an adhesion-deficient mutant of Pseudomonas fluorescens. Appl Environ Microbiol 56:112–119

    PubMed  CAS  Google Scholar 

  • Delany IR, Walsh UF, Ross I, Fenton AM, Corkery DM, Gara FO (2001) Enhancing the biocontrol efficacy of Pseudomonas fluorescens F113 by altering the regulation and production of 2,4-diacetylphloroglucinol. Plant Soil 232:195–205

    Article  CAS  Google Scholar 

  • Deora A, Hashidoko Y, Islam MT, Tahara S (2005) Antagonistic rhizoplane bacteria induce diverse morphological alterations in Peronosporomycete hyphae during in vitro interaction. Eur J Plant Pathol 112:311–322

    Article  Google Scholar 

  • Deora A, Hashidoko Y, Islam MT, Aoyama Y, Ito T, Tahara S (2006) An antagonistic rhizoplane bacterium Pseudomonas sp. strain EC-S101 physiologically stresses a spinach root rot pathogen Aphanomyces cochlioides. J Gen Plant Pathol 72:57–74

    Article  CAS  Google Scholar 

  • Deora A, Hatano E, Tahara S, Hashidoko Y (2010) Inhibitory effects of furanone metabolites of a rhizobacterium, Pseudomonas jessenii, on phytopathogenic Aphanomyces cochlioides and Pythium aphanidermatum. Plant Pathol 59:84–99

    Article  CAS  Google Scholar 

  • Dick MW (2001) The Peronosporomycetes. In: McLaughlin DJ, McLaughlin EG, Lemke PA (eds) Systematics and evolution, Part A, vol VII. Springer, Berlin, pp 39–72

    Google Scholar 

  • Dunne C, Crowley JJ, Moënne-Loccoz Y, Dowling DN, de Bruijn FJ, O’Gara F (1997) Biological control of Pythium ultimum by Stenotrophomonas maltophilia W81 is mediated by an extracellular proteolytic activity. Microbiology 143:3921–3931

    Article  CAS  Google Scholar 

  • Dunne C, Moenne-Loccoz Y, de Bruijn FJ, O’Gara F (2000) Overproduction of an inducible extracellular serine protease improves biological control of Pythium ultimum by Stenotrophomonas maltophilia strain W81. Microbiology 146:2069–2078

    PubMed  CAS  Google Scholar 

  • El-Tarabily KA, Hardy GEStJ, Sivasithamparam K (2010) Performance of three endophytic actinomycetes in relation to plant growth promotion and biological control of Pythium aphanidermatum, a pathogen of cucumber under commercial field production conditions in the United Arab Emirates. Eur J Plant Pathol 128:527–539

    Google Scholar 

  • Everts KL, Armentrout DK (2001) Evaluation of the effectiveness of bio-fungicides, ground cover and host resistance in reducing diseases of pumpkin. Biol Cult Tests 17:V18

    Google Scholar 

  • Fenton AM, Stephens PM, Crowley J, O’Callaghan M, O’Gara F (1992) Exploitation of genes involved in 2, 4-diacetylphloroglucinol biosynthesis to confer a new biocontrol capability to a Pseudomonas strain. Appl Environ Microbiol 58:3873–3878

    PubMed  CAS  Google Scholar 

  • Filonow BA, Dole MJ (1999) Biological control of Pythium damping-off and root rot of greenhouse grown geranium and poinsettias. Proc Okla Acad Sci 79:29–32

    Google Scholar 

  • Folman LB, Postma J, Van Veen JA (2003) Characterization of Lysobacter enzymogenes (Chtistensen and Cook 1978) strain 3.1 T8, a powerful antagonist of fungal diseases of cucumber. Microbiol Res 158:107–115

    Article  PubMed  CAS  Google Scholar 

  • Folman LB, De Klein MJEM, Postma J, van Veen JA (2004) Production of antifungal compounds by Lysobacter enzymogenes isolate 3.1 T8 under different conditions in relation to its efficacy as a biocontrol agent of Pythium aphanidermatum in cucumber. Biol Control 31:145–154

    Article  CAS  Google Scholar 

  • Fridlender M, Inbar J, Chet I (1993) Biological control of soilborne plant pathogens by a β-1, 3 glucanase-producing Pseudomonas cepacia. Soil Biol Biochem 25:1121–1221

    Article  Google Scholar 

  • Fukui R, Campbell GS, Cook J (1994a) Factors influencing the incidence of embryo infection by Pythium spp. during germination of wheat seeds in soils. Phytopathology 84:695–702

    Article  Google Scholar 

  • Fukui R, Poinar EI, Bauer PH, Schroth MN, Hendson M, Wang X-L, Hancock JG (1994b) Spatial colonization patterns and interactions of bacteria on inoculated sugar beet seed. Phytopathology 84:1338–1345

    Article  Google Scholar 

  • Furuya S, Mochizuki M, Aoki Y, Kobayashi H, Takayanagi T, Shimizu M, Suzuki S (2011) Isolation and characterization of Bacillus subtilis KS1 for the biocontrol of grapevine fungal diseases. Biocontrol Sci Technol 21:705–720

    Article  Google Scholar 

  • Georgakopoulos DG, Fiddaman P, Leifert C, Malathrakis NE (2002) Biological control of cucumber and sugar beet damping-off caused by Pythium ultimum with bacterial and fungal antagonists. J Appl Microbiol 92:1078–1086

    Article  PubMed  CAS  Google Scholar 

  • Giesler LJ, Yuen GY (1998) Evaluation of Stenotrophomonas maltophilia strain C3 for biocontrol of brown patch disease. Crop Prot 17:509–513

    Article  Google Scholar 

  • Gleeson O, O’Gara F, Morrissey JP (2010) The Pseudomonas fluorescens secondary metabolite 2, 4-diacetylphloroglucinol impairs mitochondrial function in Saccharomyces cerevisae. Antonie van Leeuwenhoek 97:261–273

    Article  PubMed  CAS  Google Scholar 

  • Gobbin D, Rumbou A, Linde CC, Gessler C (2006) Population genetic structure of Plasmopara viticola after 125 years of colonization in European vineyards. Mol Plant Pathol 7:519–531

    Article  PubMed  CAS  Google Scholar 

  • Gravel V, Martinez C, Antoun H, Tweddell RJ (2005) Antagonist microorganisms with the ability to control Pythium damping-off tomato seeds in rockwool. BioControl 50:771–786

    Article  Google Scholar 

  • Gurusiddaiah S, Weller DM, Sarkar A, Cook RJ (1986) Characterization of an antibiotic produced by a strain of Pseudomonas fluorescens inhibitory to Gaeumannomyces graminis var. tritici and Pythium spp. Antimicrob Agent Chemother 29:488–495

    Article  CAS  Google Scholar 

  • Haas D, Defago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307–319

    Article  PubMed  CAS  Google Scholar 

  • Hadar Y, Harman GE, Taylor AG, Norton JM (1983) Effects of pregermination of pea and cucumber seeds and seed treatment with Entorobacter cloacae on rots caused by Pythium spp. Phytopathology 73:13322–13325

    Article  Google Scholar 

  • Hagedorn C, Gould WD, Bradinelli RT (1989) Rhizobacteria of cotton and their repression of seedling disease pathogens. Appl Environ Microbiol 55:2793–2797

    PubMed  CAS  Google Scholar 

  • Handelsman J, Raffel SJ, Mester EH, Wunderlich L, Grau CR (1990) Biological control of damping-off of alfalfa seedlings with Bacillus cereus UW85. Appl Environ Microbiol 56:713–718

    PubMed  CAS  Google Scholar 

  • Hashidoko Y, Nakayama T, Homma Y, Tahara S (1999) Structure elucidation of xanthobaccin A, a new antibiotic produced from Stenotrophomonas sp. strain SB-K88. Tetrahedron Lett 40:2957–2960

    Article  CAS  Google Scholar 

  • Hashizume H, Igarashi M, Hattori S, Hori M, Hamada M, Takeuchi T (2001) Tripropeptins, novel group antibiotic produced by Lysobacter sp. BMK333-48 F3. J Antibiot (Tokyo) 57:394–399

    Google Scholar 

  • Hashizume H, Hattori S, Igarashi M, Akamatsu Y (2004) Tripropeptin E, a new tripropeptin antimicrobial agents produced by Lysobacter sp. I. Taxonomy, isolation and biological activities. J Antibiot (Tokyo) 54:1054–1059

    Google Scholar 

  • Hatano E, Hashidoko Y, Deora A, Fukushi Y, Tahara S (2007) Isolation and structure elucidation of peronosporomycetes hyphal branching-inducing factors produced by Pseudomonas jessenii EC-S101. Biosci Biotechnol Biochem 71:1601–1605

    Article  PubMed  CAS  Google Scholar 

  • Haverkort AJ, Boonekamp PM, Hutten R, Jacobsen E, Lotz LAP, Visser RGF, Kessel GT, van der Vossen EAG (2008) Societal costs of late blight in potato and prospects of durable resistance through cisgenic modification. Potato Res 51:47–57

    Article  Google Scholar 

  • Heil M, Bostock RM (2002) Induced systemic resistance (ISR) against pathogens in the context of induced plant defenses. Ann Bot 89:502–512

    Article  CAS  Google Scholar 

  • Heungens KK, Parke JL (2000) Zoospore homing and infection events: effects of the biocontrol bacterium Burkholderia cepacia AMMDR1 on two oomycete pathogens of pea. Appl Environ Microbiol 66:5192–5200

    Article  PubMed  CAS  Google Scholar 

  • Heungens KK, Parke JL (2001) Post-infection biological control of oomycete pathogens of pea by Burkholderia cepacia AMMDR1. Phytopathology 91:383–391

    Article  PubMed  CAS  Google Scholar 

  • Höfte M, Seong KY, Jurkevitch E, Verstraete W (1991) Pyoverdin production by the plant growth beneficial Pseudomonas strain 7NSK2: ecological significance in soil. Plant Soil 130:249–258

    Article  Google Scholar 

  • Höfte M, Buysens S, Koedam N, Cornelis P (1993) Zinc affects siderophore-mediated high affinity iron uptake systems in the rhizosphere Pseudomonas aeruginosa 7NSK2. Biometals 6:85–9

    Article  PubMed  Google Scholar 

  • Hong T-Y, Meng M (2003) Biochemical characterization and antifungal activity of an endo-1, 3-β-glucanase of Paenibacillus sp. isolated from garden soil. Appl Microbiol Biotechnol 61:472–478

    PubMed  CAS  Google Scholar 

  • Howell CR, Stipanovic RD (1980) Suppression of Pythium ultimum-induced damping-off of cotton seedlings by Pseudomonas fluorescens and its antibiotic, pyoluteorin. Phytopathology 70:712–715

    Article  CAS  Google Scholar 

  • Howie WJ, Suslow TV (1991) Role of antibiotic biosynthesis in the inhibition of Pythium ultimum in the cotton spermosphere and rhizosphere by Pseudomonas fluorescens. Mol Plant Microbe Interact 4:393–399

    Article  CAS  Google Scholar 

  • Iavicoli A, Boutet E, Buchala A, Métraux JP (2003) Induced systemic resistance in Arabidopsis thaliana in response to root inoculation with Pseudomonas fluorescens CHA0. Mol Plant Microbe Interact 16:851–858

    Article  PubMed  CAS  Google Scholar 

  • Islam MT (2008) Disruption of ultrastructure and cytoskeleton network is involved with biocontrol of damping-off pathogen Aphanomyces cochlioides by Lysobacter sp. SB-K88. Biol Control 46:312–321

    Article  Google Scholar 

  • Islam MT (2010) Mode of antagonism of a biocontrol bacterium Lysobacter sp. SB-K88 toward a damping-off pathogen Aphanomyces cochlioides. World J Microbiol Biotechnol 26:629–637

    Article  CAS  Google Scholar 

  • Islam MT (2011) Potentials for biological control of plant diseases by Lysobacter spp., with special reference to strain SB-K88. In: Maheshwari DK (ed) Bacteria in agrobiology: plant growth responses. Springer, Berlin, pp 335–363

    Chapter  Google Scholar 

  • Islam MT, Fukushi Y (2010) Growth inhibition and excessive branching in Aphanomyces cochlioides induced by 2,4-diacetylphloroglucinol is linked to disruption of filamentous actin cytoskeleton in the hyphae. World J Microbiol Biotechnol 26:1163–1170

    Article  CAS  Google Scholar 

  • Islam MT, von Tiedemann A (2011) 2,4-Diacetylphloroglucinol suppresses zoosporogenesis and impairs motility of Peronosporomycete zoospores. World J Microbiol Biotechnol 27:2071–2079

    Article  PubMed  CAS  Google Scholar 

  • Islam MT, Ito T, Tahara S (2001) Morphological studies on zoospores of Aphanomyces cochlioides and changes during the interaction with host materials. J Gen Plant Pathol 67:255

    Article  Google Scholar 

  • Islam MT, Hashidoko Y, Ito T, Tahara S (2002) Microscopic studies on the attachment and differentiation of zoospores of the phytopathogenic fungus Aphanomyces cochlioides. J Gen Plant Pathol 68:111–117

    Article  CAS  Google Scholar 

  • Islam MT, Hashidoko Y, Deora A, Ito T, Tahara S (2004) Interactions between rhizoplane bacteria and a phytopathogenic Peronosporomycete Aphanomyces cochlioides in relation to the suppression of damping-off disease in sugar beet and spinach. IOBC/WPRS Bull 27:255–260

    Google Scholar 

  • Islam MT, Hashidoko Y, Deora A, Ito T, Tahara S (2005a) Suppression of damping-off disease in host plants by the rhizoplane bacterium Lysobacter sp. strain SB-K88 is linked to plant colonization and antibiosis against soilborne Peronosporomycetes. Appl Environ Microbiol 71:3776–3786

    Google Scholar 

  • Islam MT, Hashidoko Y, Deora A, Ito T, Tahara S (2005b) Lysobacter–Aphanomyces interactions: an ecological role for biocontrol of damping-off disease. Nippon Nogei Kagakkai Taikai KoenYoshishu 2005:221

    Google Scholar 

  • Islam MT, von Tiedemann A, Laatsch H (2011) Protein kinase C is likely to be involved in zoosporogenesis and maintenance of flagellar motility in the Peronosporomycete zoospores. Mol Plant Microbe Interact 24:938–947

    Article  PubMed  CAS  Google Scholar 

  • Jacobi M, Winkelmann G, Kaiser D, Kempter C, Jung G, Berg G, Bahl H (1996) Maltophilin: a new antifungal compound produced by Stenotrophomonas maltophilia R3089. J Antibiot 11:1101–1104

    Article  Google Scholar 

  • Jayaraj J, Radhakrishnan NV (2008) Enhanced activity of introduced biocontrol agents in solarized soils and its implications on the integrated control of tomato damping-off caused by Pythium spp. Plant Soil 304:189–197

    Article  CAS  Google Scholar 

  • Ji GH, Wei LF, He YQ, Wu YP, Bai XH (2008) Biological control of rice bacterial blight by Lysobacter antibioticus strain 13-1. Biol Control 45:288–296

    Article  Google Scholar 

  • Joo G-J (2005) Production of an anti-fungal substance for biological control of Phytophthora capsici causing phytophthora blight in red-peppers by Streptomyces halstedii. Biotechnol Lett 27:201–205

    Article  PubMed  CAS  Google Scholar 

  • Kageyama K, Nelson EB (2003) Differential inactivation of seed exudate stimulation of Pythium ultimum sporangium germination by Enterobacter cloacae influences biological control efficacy on different plant species. Appl Environ Microbiol 69:1114–1120

    Article  PubMed  CAS  Google Scholar 

  • Keel C, Schnider U, Maurhofer M, Voisard C, Burger D, Haas D, Défago G (1992) Suppression of root diseases by Pseudomonas fluorescens CHA0: importance of the bacterial secondary metabolite 2, 4-diacetylphloroglucinol. Mol Plant Microbe Interact 5:4–13

    Article  CAS  Google Scholar 

  • Khamna S, Yokota A, Lumyong S (2009) Actinomycetes isolated from medicinal plant rhizosphere soils: diversity and screening of antifungal compounds, indole-3-acetic acid and siderophore production. World J Microbiol Biotechnol 25:649–655

    Article  CAS  Google Scholar 

  • Khan NI, Filonow AB, Singleton LL, Payton ME (1993) Parasitism of oospores of Pythium spp. by strains of Actinoplanes spp. Can J Microbiol 39:964–972

    Article  Google Scholar 

  • Khan NI, Filonow AB, Singleton LL (1997) Augmentation of soil with sporangia of Actinoplanes spp. for biological control of Pythium damping-off. Biocontrol Sci Technol 7:11–22

    Article  Google Scholar 

  • Khan A, Sutton JC, Grodzinski B (2003) Effects of Pseudomonas chlororaphis on Pythium aphanidermatum and root rot in peppers grown in small-scale hydroponic troughs. Biocontrol Sci Technol 13:615–630

    Article  Google Scholar 

  • Kim BS, Lee JY, Hwang BK (2000) In vivo control and in vitro antifungal activity of rhamnolipid B, a glycolipid antibiotic, against Phytophthora capsici and Colletotrichum orbiculare. Pest Manag Sci 56:1029–1035

    Article  CAS  Google Scholar 

  • Kim YC, Jung H, Kim KY, Park SK (2008) An effective biocontrol bioformulation against Phytophthora blight of pepper using growth mixtures of combined chitinolytic bacteria under different field conditions. Eur J Plant Pathol 120:373–382

    Article  Google Scholar 

  • King EB, Parke JL (1993) Biocontrol of Aphanomyces root rot and Pythium damping-off by Pseudomonas cepacia strain AMMD on four pea cultivars. Plant Dis 77:1185–1188

    Article  Google Scholar 

  • Kloepper JW, Tuzun S (1996) Induced systemic to diseases and increased plant growth by growth-promoting rhizobacteria under field conditions. Phytopathology 81:1508–1516

    Google Scholar 

  • Kloepper JW, Leong J, Teintze M, Schroth MN (1980a) Pseudomonas siderophores: a mechanism explaining disease-suppressive soils. Curr Microbiol 4:317–320

    Article  CAS  Google Scholar 

  • Kloepper JW, Schroth MN, Miller TD (1980b) Effects of rhizosphere colonization by plant growth-promoting rhizobacteria on potato plant development and yield. Phytopathology 70:1078–1082

    Article  Google Scholar 

  • Ko HS, Jin RD, Krishnan HB, Lee SB, Kim KY (2009) Biocontrol ability of Lysobacter antibioticus HS124 against Phytophthora blight is mediated by the production of 4-hydroxyphenylacetic acid and several lytic enzymes. Curr Microbiol 59:608–615

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi DY, Reedy RM, Palumbo JD, Zhou JM, Yuen GY (2005) A clp gene homologue belonging to the Crp gene family globally regulates lytic enzyme production, antimicrobial activity, and biological control activity expressed by Lysobacter enzymogenes strain C3. Appl Environ Microbiol 71:261–269

    Article  PubMed  CAS  Google Scholar 

  • Koch B, Nielsen TH, Sørensen D, Andersen JB, Christophersen C, Molin S, Givskov M, Sørensen J, Nybroe O (2002) Lipopeptide production in Pseudomonas sp. strain DSS73 is regulated by components of sugar beet seed exudates via the Gac two-component regulatory system. Appl Environ Microbiol 68:4509–4516

    Article  PubMed  CAS  Google Scholar 

  • Kraus J, Loper JE (1992) Lack of evidence for a role of antifungal metabolite production by Pseudomonas fluorescens Pf-5 in biological control of Pythium damping-off of cucumber. Phytopathology 82:264–71

    Article  Google Scholar 

  • Leah RH, Tommerup S, Svendsen I, Murphy J (1991) Biochemical molecular characterization of three barley seed proteins with antifungal properties. J Biol Chem 266:1564–1573

    PubMed  CAS  Google Scholar 

  • Leclère V, Bechet M, Adam A, Guez JS, Wathelet B, Ongena M, Thonart P, Gancel F, Chollet-Imbert M, Jacques P (2005) Mycosubtilin overproduction by Bacillus subtilis BBG100 enhances the organism’s antagonistic and biocontrol activities. Appl Environ Microbiol 71:4577–4584

    Article  PubMed  CAS  Google Scholar 

  • Lee HB, Kim Y, Kim JC, Choi GJ, Park S-H, Kim C-J, Jung HS (2005) Activity of some aminoglycoside antibiotics against true fungi, Phytophthora and Pythium species. J Appl Microbiol 99:836–843

    Article  PubMed  CAS  Google Scholar 

  • Lee KJ, Kamala-Kannan S, Sub HS, Seong CK, Lee GW (2008) Biological control of Phytophthora blight in red pepper (Capsicum annuum L.) using Bacillus subtilis. World J Microbiol Biotechnol 24:1139–1145

    Article  CAS  Google Scholar 

  • Leenders F, Stein TH, Kablitz B, Franke P, Vater J (1999) Rapid typing of Bacillus subtilis strains by their secondary metabolites using matrix assisted laser-desorption/ionization mass spectrometry of intact cells. Rapid Commun Mass Spectrom 13:943–949

    Article  CAS  Google Scholar 

  • Lim HS, Kim YS, Kim SD (1991) Pseudomonas stutzeri YPL-1 genetic transformation and antifungal mechanism against Fusarium solani, an agent of plant root rot. Appl Environ Microbiol 57:510–516

    PubMed  CAS  Google Scholar 

  • Liu CH, Chen X, Liu TT, Lian B, Gu YC, Caer V, Xue YR, Wang BT (2007a) Study of the antifungal activity of Acinetobacter baumannii LCH001 in vitro and identification of its antifungal components. Appl Microbiol Biotechnol 76:459–466

    Article  PubMed  CAS  Google Scholar 

  • Liu W, Sutton JC, Grodzinski B, Kloepper JW, Reddy MS (2007b) Biological control of Pythium root rot of Chrysanthemum in small-scale hydroponic units. Phytoparasitica 35:159–17

    Article  Google Scholar 

  • Loper JE (1988) Role of fluorescent siderophore production in biological control of Pythium ultimum by a Pseudomonas fluorescens strain. Phytopathology 78:166–172

    Article  CAS  Google Scholar 

  • Loper JE, Henkels MD (1997) Availability of iron to Pseudomonas fluorescens in rhizosphere and bulk soil evaluated with an ice nucleation reporter gene. Appl Environ Microbiol 63:99–105

    PubMed  CAS  Google Scholar 

  • Loper JE, Henkels MD (1999) Utilization of heterologous siderophores enhances levels of iron available to Pseudomonas putida in the rhizosphere. Appl Environ Microbiol 65:5357–5363

    PubMed  CAS  Google Scholar 

  • Loper JE, Haack C, Schroth MN (1985) Population dynamics of soil Pseudomonads in the rhizosphere of potato (Solanum tuberosum L). Appl Environ Microbiol 49:416–422

    PubMed  CAS  Google Scholar 

  • Lugtenberg BJ, Kravchenko LV, Simons M (1999) Tomato seed and root exudate sugars: composition, utilization by Pseudomonas biocontrol strains, and role in rhizosphere colonization. Environ Microbiol 1:439–446

    Article  PubMed  CAS  Google Scholar 

  • Mao W, Lumsden RD, Lewis JA, Hebbar PK (1998) Seed treatment using pre-infiltration and biocontrol agents to reduce damping-off of corn caused by species of Pythium and Fusarium. Plant Dis 82:294–299

    Article  Google Scholar 

  • Mao S, Lee SJ, Hwangbo H, Kim YW, Park KH, Cha GS, Park RD, Kim KY (2006) Isolation and characterization of antifungal substances from Burkholderia sp. culture broth. Curr Microbiol 53:358–364

    Article  PubMed  CAS  Google Scholar 

  • Margulis L, Schwartz KV (2000) Five kingdoms: an illustrated guide to the phyla of life on earth. W.H. Freeman, New York

    Google Scholar 

  • Martin MO (2002) Predatory prokaryotes: an emerging research opportunity. J Mol Microbiol Biotechnol 4:467–477

    PubMed  CAS  Google Scholar 

  • Mathre DE, Callan NW, Johnston RH, Miller JB, Schwend A (1994) Factors influencing the control of Pythium ultimum-induced seed decay by seed treatment with Pseudomonas aureofaciens AB254. Crop Prot 13:301–307

    Article  Google Scholar 

  • Maurhofer M, Keel C, Haas D, Defago G (1994) Pyoluteorin production by Pseudomonas fluorescens strain CHA0 is involved in the suppression of Pythium damping-off of cress but not of cucumber. Eur J Plant Pathol 100:221–232

    Article  CAS  Google Scholar 

  • Maurhofer M, Keel C, Haas D, Défago G (1995) Influence of plant species on disease suppression by Pseudomonas fluorescens CHA0 with enhanced antibiotic production. Plant Pathol 44:44–50

    Article  Google Scholar 

  • Mazzola M, Zhao X, Cohen MF, Raaijmakers JM (2007) Cyclic lipopeptide surfactant production by Pseudomonas fluorescens SS101 is not required for suppression of complex Pythium spp. populations. Phytopathology 97:1348–1355

    Article  PubMed  CAS  Google Scholar 

  • McSpadden Gardener BB, Fravel DR (2002) Biological control of plant pathogens: research, commercialization, and application in the USA. Plant Health Prog. doi:10.1094/PHP-2002-0510-01-RV

  • Meyer JB, Lutz MP, Frapolli M, Péchy-Tarr M, Rochat L, Keel C, Défago G, Maurhofer M (2010) Interplay between wheat cultivars, biocontrol pseudomonads, and soil. Appl Environ Microbiol 76:6196–6204

    Article  PubMed  CAS  Google Scholar 

  • Milus EA, Rothrock CS (1997) Efficacy of bacterial seed treatments for controlling Pythium root rot of winter wheat. Plant Dis 81:180–184

    Article  Google Scholar 

  • Misk A, Franco C (2011) Biocontrol of chickpea root rot using endophytic actinobacteria. BioControl 56:811–822

    Article  Google Scholar 

  • Muranova TA, Krasovskaya LA, Tsfasman IM, Stepnaya OA, Kulaev IS (2004) Structural investigations and identification of the extracellular bacteriolytic endopeptidase L1 from Lysobacter sp. XL1. Biochemistry (Mosc) 69(5):501–505

    Article  CAS  Google Scholar 

  • Muthukumar A, Eswaran A, Sangeetha G (2011) Induction of systemic resistance by mixtures of fungal and endophytic bacterial isolates against Pythium aphanidermatum. Acta Physiol Plant. doi:10.1007/s11738-011-0742-8

  • Nakayama T, Homma Y, Hashidoko Y, Mizutani J, Tahara S (1999) Possible role of xanthobaccins produced by Stenotrophomonas sp. strain SB-K88 in suppression of sugar beet damping-off disease. Appl Environ Microbiol 65:4334–4339

    PubMed  CAS  Google Scholar 

  • Nandeeshkumar P, Ramachandrakini K, Prakash HS, Niranjana SR, Shetty HS (2008) Induction of resistance against downy mildew on sunflower by rhizobacteria. J Plant Interact 3:256–262

    Article  Google Scholar 

  • National Academy of Sciences (1987) Research briefings 1987: Report of the research briefing panel on biological control in managed ecosystems. National Academy Press, Washington, DC

    Google Scholar 

  • Nelson EB (1988) Biological control of Pythium seed rot and preemergence damping-off of cotton with Enterobacter cloacae and Erwinia herbicola applied as seed treatments. Plant Dis 72:140–142

    Article  Google Scholar 

  • Nelson EB (1990) Exudate molecules initiating fungal responses to seeds and roots. Plant Soil 129:61–73

    Article  CAS  Google Scholar 

  • Nelson EB (2004) Microbial dynamics and interactions in the spermosphere. Ann Rev Phytopathol 42:271–309

    Article  CAS  Google Scholar 

  • Nes WD (1987) Biosynthesis and requirement of sterols in the growth and reproduction of the oomycetes. In: Fuller G, Nes WD (eds) Ecology and Metabolism of Plant Lipids. American Chemical Society, Symposium Series 325, Washington DC, pp. 304–328

    Chapter  Google Scholar 

  • Nielsen MN, Sørensen J, Fels J, Pedersen HC (1998) Secondary metabolite- and endochitinase-dependent antagonism toward plant-pathogenic microfungi of Pseudomonas fluorescens isolates from sugar beet rhizosphere. Appl Environ Microbiol 64:3563–3569

    PubMed  CAS  Google Scholar 

  • Nielsen TH, Christophersen C, Anthoni U, Sørensen J (1999) Viscosinamid, a new cyclic depsipeptide with surfactant and antifungal properties produced by Pseudomonas fluorescens DR54. J Appl Microbiol 86:80–90

    Article  Google Scholar 

  • Nielsen TH, Sørensen D, Tobiasen C, Andersen JB, Christophersen C, Givskov M, Sørensen J (2002) Antibiotic and biosurfactant properties of cyclic lipopeptides produced by fluorescent Pseudomonas spp. from the sugar beet rhizosphere. Appl Environ Microbiol 68:3416–3423

    Article  PubMed  CAS  Google Scholar 

  • O’Sullivan DJ, O’Gara F (1992) Traits of fluorescent Pseudomonas spp. involved in suppression of plant root pathogens. Microbiol Rev 56:662–676

    PubMed  Google Scholar 

  • Ogura J, Toyoda A, Kurosawa T, Chong AL, Chohnan S, Masaki T (2006) Purification, characterization, and gene analysis of cellulase (Cel8A) from Lysobacter sp. IB-9374. Biosci Biotechnol Biochem 70:2420–2428

    Article  PubMed  CAS  Google Scholar 

  • Ongena M, Daay F, Jacques P, Thonart P, Benhamou N, Paulitz TC, Cornelis P, Koedam NM, Bélanger RR (1999) Protection of cucumber against Pythium root rot by fluorescent pseudomonads: Predominant role of induced resistance over siderophores and antibiosis. Plant Pathol 48:66–76

    Article  Google Scholar 

  • Ongena M, Duby F, Jourdan E, Beaudry T, Jadin V, Dommes J, Thonart P (2005) Bacillus subtilis M4 decreases plant susceptibility towards fungal pathogens by increasing host resistance associated with differential gene expression. Appl Microbiol Biotechnol 67:692–698

    Article  PubMed  CAS  Google Scholar 

  • Osburn RM, Schroth MN, Hancock JG, Hendson M (1989) Dynamics of sugar beet colonization by Pythium ultimum and Pseudomonas species: effects on seed rot and damping-off. Phytopathology 79:709–716

    Article  Google Scholar 

  • Osburn RM, Milner JL, Oplinger ES, Smith RS, Handelsman J (1995) Effect of Bacillus cereus UW85 on the yield of soybean at two field sites in Wisconsin. Plant Dis 79:551–556

    Article  Google Scholar 

  • Palumbo JD, Sullivan RF, Kobayashi DY (2003) Molecular characterization and expression in Escherichia coli of three β-1,3-glucanase genes from Lysobacter enzymogenes Strain N4-7. J Bacteriol 185:4362–4370

    Article  PubMed  CAS  Google Scholar 

  • Palumbo JD, Yuen GY, Jochum CC, Tatum K, Kobayashi DY (2005) Mutagenesis of beta-1, 3-glucanase genes in Lysobacter enzymogenes strain C3 results in reduced biological control activity toward Bipolaris leaf spot of tall fescue and Pythium damping-off of sugar beet. Phytopathology 95:701–707

    Article  PubMed  CAS  Google Scholar 

  • Pang Y, Liu X, Ma Y, Chernin L, Berg G, Gao K (2009) Induction of systemic resistance, root colonization and biocontrol activities of the rhizospheric strain of Serratia plymuthica are dependent on N-acyl homoserine lactones. Eur J Plant Pathol 124:261–268

    Article  CAS  Google Scholar 

  • Parke JL, Rand RE, Joy AE, King EB (1991) Biological control of Pythium damping-off and Aphanomyces root rot of peas by application of Pseudomonas cepacia or Ps. fluorescens to seed. Plant Dis 75:987–992

    Article  Google Scholar 

  • Paulitz TC, Loper JE (1991) Lack of a role for fluorescent siderophore production in the biological control of Pythium damping off of cucumber by a strain of Pseudomonas putida. Phytopathology 81:930–935

    Article  Google Scholar 

  • Perneel M, D’Hondt L, De Maeyer K, Adiobo A, Rabaey K, Hofte M (2008) Phenazines and biosurfactants interact in the biological control of soil-borne diseases caused by Pythium spp. Environ Microbiol 10:778–788

    Article  PubMed  Google Scholar 

  • Postma J, Stvens LH, Wiegors GL, Davelaar E, Nijhuis EH (2009) Biological control of Pythium aphanidermatum in cucumber with a combined application of Lysobacter engymogenes strain 3.1T8 and chitosan. Biol Control 48:301–309

    Article  Google Scholar 

  • Raj SN, Deepak SA, Basavaraju P, Shetty HS, Reddy MS, Kloepper JW (2003) Comparative performance of formulations of plant growth promoting rhizobacteria in growth promotion and suppression of downy mildew in pearl millet. Crop Prot 22:579–588

    Article  Google Scholar 

  • Ramamoorthy V, Raguchander T, Samiyappan R (2002) Enhancing resistance of tomato and hot pepper to Pythium diseases by seed treatment with fluorescent Pseudomonads. Eur J Plant Pathol 108:429–441

    Article  CAS  Google Scholar 

  • Riazanova LP, Ledova LA, Tsurikova NV, Stepnaia OA, Sinitsyn AP, Kulaev IS (2005) Effect of the proteolytic enzymes of Bacillus licheniformis and the lysoamidase of Lysobacter sp. XL1 on Proteus vulgaris and Proteus mirabilis. Prikl Biokhim Mikrobiol 41(5):558–563

    PubMed  CAS  Google Scholar 

  • Rotem R, Paz GF, Homonnai ZT, Kalina M, Naor Z (1990) Protein kinase C is present in human sperm: possible role in flagellar motility. Proc Natl Acad Sci USA 87:7305–7308

    Article  PubMed  CAS  Google Scholar 

  • Schisler DA, Slininger PJ, Miller JS, Woodell LK, Clayson S, Olsen N (2009) Bacterial antagonists, zoospore inoculum retention time and potato cultivar influence pink rot disease development. Am J Potato Res 86:102–111

    Article  Google Scholar 

  • Schmidt CS, Agostini F, Leifert C, Killham K, Mullins CE (2004a) Influence of inoculum density of the antagonistic bacteria Pseudomonas fluorescens and Pseudomonas corrugata on sugar beet seedling colonisation and suppression of Pythium damping off. Plant Soil 265:111–122

    Article  CAS  Google Scholar 

  • Schmidt CS, Agostini F, Leifert C, Killham K, Mullins CE (2004b) Influence of soil temperature and matric potential on sugar beet seedling colonization and suppression of Pythium damping-off by the antagonistic bacteria Pseudomonas fluorescens and Bacillus subtilis. Phytopathology 94:351–363

    Article  PubMed  CAS  Google Scholar 

  • Schmidt CS, Agostini F, Simon A-M, Whyte J, Leifert JTC, Killham K, Mullins C (2004c) Influence of soil type and pH on the colonisation of sugar beet seedlings by antagonistic Pseudomonas and Bacillus strains, and on their control of Pythium damping-off. Eur J Plant Pathol 110:1025–1046

    Article  Google Scholar 

  • Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56

    Article  PubMed  CAS  Google Scholar 

  • Shanahan P, O’Sullivan DJ, Simpson P, Glennon JD, O’Gara F (1992) Isolation of 2,4-diacetylphloroglucinol from a fluorescent pseudomonad and investigation of physiological parameters influencing its production. Appl Environ Microbiol 58:353–358

    PubMed  CAS  Google Scholar 

  • Shetty SA, Shetty HS, Mathur SB (1995) Downy mildew of pearl millet. Technical Bulletin, Downy Mildew Research Laboratory, Department of Studies in Applied Botany, University of Mysore, Manasagangotri, Mysore, India

    Google Scholar 

  • Sid Ahmed A, Ezziyyani M, Egea-Gilabert C, Candela ME (2003a) Selecting bacterial strains for use in the biocontrol of diseases caused by Phytophthora capsici and Alternaria alternata in sweet pepper plants. Biol Plant 47:569–574

    Google Scholar 

  • Sid Ahmed A, Ezziyyani M, Pérez-Sanchez C, Candela ME (2003b) Effect of chitin on biological control activity of Bacillus spp. and Trichoderma harzianum against root rot disease in pepper (Capsicum annuum) plants. Eur J Plant Pathol 109:418–426

    Article  Google Scholar 

  • Siddiqui MA, Shaukat SS (2003) Suppression of root-knot disease by Pseudomonas fluorescens CHA0 in tomato: importance of bacterial secondary metabolite, 2, 4-diacetylpholoroglucinol. Soil Biol Biochem 35:1615–1623

    Article  CAS  Google Scholar 

  • Silo-Suh LA, Lethbridge BJ, Raffel SJ, He H, Clardy J, Handelsman J (1994) Biological activities of two fungistatic antibiotics produced by Bacillus cereus UW85. Appl Environ Microbiol 60:2023–2030

    PubMed  CAS  Google Scholar 

  • Sørensen D, Nielsen TH, Christophersen C, Sørensen J, Gajhede M (2001) Cyclic lipodecapeptide amphisin from Pseudomonas sp. strain Dss73. Acta Crystallogr C Cryst Struct Commun 57:1123–1124

    Article  Google Scholar 

  • Spormann AM (1999) Gliding motility in bacteria: insights from studies of Myxococcus xanthus. Microbiol Mol Biol Rev 63:621–641

    PubMed  CAS  Google Scholar 

  • Stanghellini ME, Burr TJ (1973) Germination in vivo of Pythium aphanidermatum in oospores and sporangia. Phytopathology 63:1493–1496

    Article  Google Scholar 

  • Stanghellini ME, Miller RM (1997) Biosurfactants; their identity and potential efficacy in the biological control of zoosporic plant pathogens. Plant Dis 81:4–12

    Article  CAS  Google Scholar 

  • Stephan D, Schmitt A, Carvalho SM, Seddon B, Koch E (2005) Evaluation of biocontrol preparation and plant extracts for the control of Phytophthora infestans on potato leaves. Eur J Plant Pathol 112:235–246

    Article  Google Scholar 

  • Stockwell VO, Stack JP (2007) Using Pseudomonas spp. for integrated biological control. Phytopathology 97:244–249

    Article  PubMed  Google Scholar 

  • Stutz EW, Defago G, Kern H (1986) Naturally occurring fluorescent pseudomonads involved in suppression of black root of tomato. Phytopathology 80:1050–1053

    Google Scholar 

  • Tambong JT, Höfte M (2001) Phenazines are involved in biocontrol of Pythium myriotylum on cocoyam by Pseudomonas aeruginosa PNA1. Eur J Plant Pathol 107:511–521

    Article  CAS  Google Scholar 

  • Timmusk S, van West P, Gow NAR, Paul Huffstutler R (2009) Paenibacillus polymyxa antagonizes oomycete plant pathogens Phytophthora palmivora and Pythium aphanidermatum. J Appl Microbiol 106:1473–1481

    Article  PubMed  CAS  Google Scholar 

  • Ton J, Van Pelt JA, Van Loon LC, Pieterse CMJ (2002) Differential effectiveness of salicylate-dependent and jasmonate/ethylene-dependent induced resistance in Arabidopsis. Mol Plant Microbe Interact 15:27–34

    Article  PubMed  CAS  Google Scholar 

  • Tran HTT, Ficke A, Asiimwe T, Hofte M, Raaijmakers JM (2007) Role of the cyclic lipopeptide surfactant massetolide A in biological control of Phytophthora infestans and colonization of tomato plants by Pseudomonas fluorescens. New Phytol 175:731–42

    Article  PubMed  CAS  Google Scholar 

  • Tu JC (1978) Protection of soybean from severe Phytophthora root rot by Rhizobium. Physiol Plant Pathol 12:237–240

    Google Scholar 

  • Umesha S, Dharmesh SM, Shettyt SA, Krishnappa M, Shetty HS (1998) Biocontrol of downy mildew disease of pearl millet using Pseudomonas fluorescens. Crop Prot 17:387–392

    Article  Google Scholar 

  • Valois D, Fayad K, Barasubiye T, Gagnon M, Déry C, Brzezinski R, Beaulieu C (1996) Glucanolytic actinomycetes antagonistic to Phytophtora fragariae var. rubi, the causal agent of raspberry root rot. Appl Environ Microbiol 62:1630–1635

    PubMed  CAS  Google Scholar 

  • van de Mortel JE, Tran H, Govers F, Raaijmakers JM (2009) Cellular responses of the late blight pathogen Phytophthora infestans to cyclic lipopeptide surfactants and their dependence on G proteins. Appl Environ Microbiol 75(15):4950–4957

    Article  PubMed  CAS  Google Scholar 

  • van der Ent S, Verhagen BWM, Van Doorn R, Bakker D, Verlaan MG, Pel MJC, Joosten RG, Proveniers MCG, Van Loon LC, Ton J, Pieterse CMJ (2008) MYB72 is required in early signaling steps of rhizobacteria-induced systemic resistance in Arabidopsis. Plant Physiol 146:1293–1304

    Article  PubMed  CAS  Google Scholar 

  • van Dijk K, Nelson EB (1998) Inactivation of seed exudate stimulants of Pythium ultimum sporangium germination by biocontrol strains of Enterobacter cloacae and other seed-associated bacteria. Soil Biol Biochem 30:183–192

    Article  Google Scholar 

  • van Dijk K, Nelson EB (2000) Fatty acid competition as a mechanism by which Enterobacter cloacae suppresses Pythium ultimum sporangium germination and damping-off. Appl Environ Microbiol 66:5340–5347

    Article  PubMed  Google Scholar 

  • van Loon LC, Bakker PAHM, Pieterse CMJ (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36:453–483

    Article  PubMed  Google Scholar 

  • van Wees SCM, Luijendijk M, Smoorenburg I, van Loon LC, Pieterse CMJ (1999) Rhizobacteria-mediated induced systemic resistance (ISR) in Arabidopsis is not associated with a direct effect on expression of known defense-related genes but stimulates the expression of the jasmonate-inducible gene Atvsp upon challenge. Plant Mol Biol 41:537–549

    Article  PubMed  Google Scholar 

  • Verhagen BWM, Glazebrook J, Zhu T, Chang H-S, Van Loon LC, Pieterse CMJ (2004) The transcriptome of rhizobacteria-induced systemic resistance in Arabidopsis. Mol Plant Microbe Interact 17:895–908

    Article  PubMed  CAS  Google Scholar 

  • Wakelin SA, Walter M, Jaspers M, Stewart A (2002) Biological control of Aphanomyces euteiches root-rot of pea with spore-forming bacteria. Australas Plant Pathol 31:401–407

    Article  Google Scholar 

  • Wang H, Hwang SF, Chang KF, Turnbull GD, Howard RJ (2003) Suppression of important pea diseases by bacterial antagonists. BioControl 48:447–460

    Article  Google Scholar 

  • Weller DM (1988) Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Annu Rev Phytopathol 26:379–407

    Article  Google Scholar 

  • Weller DM (2007) Pseudomonas biocontrol agents of soilborne pathogens: looking back over 30 years. Phytopathology 97:250–256

    Article  PubMed  Google Scholar 

  • Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52:487–511

    Article  PubMed  CAS  Google Scholar 

  • Whipps JM, Lumsden DR (1991) Biological control of Pythium species. Biocontrol Sci Technol 1:75–90

    Article  Google Scholar 

  • White D, de Lamirande E, Gagnon C (2007) Protein kinase C is an important signaling mediator associated with motility of intact sea urchin spermatozoa. J Exp Biol 210:4053–4064

    Article  PubMed  CAS  Google Scholar 

  • Williams GE, Asher MJC (1996) Selection of rhizobacteria for the control of Pythium ultimum and Aphanomyces cochlioides on sugarbeet seedlings. Crop Prot 15:479–48

    Article  Google Scholar 

  • Windstam S, Nelson EB (2008a) Differential interference with Pythium ultimum sporangium activation and germination by Enterobacter cloacae in the corn and cucumber spermospheres. Appl Environ Microbiol 74:4285–4291

    Article  PubMed  CAS  Google Scholar 

  • Windstam S, Nelson EB (2008b) Temporal release of fatty acids and sugars in the spermosphere: impacts on Enterobacter cloacae-induced biological control. Appl Environ Microbiol 74:4292–4299

    Article  PubMed  CAS  Google Scholar 

  • Woo J-H, Kitamura E, Myouga H, Kamei Y (2002) An antifungal protein from the marine bacterium Streptomyces sp. strain AP77 is specific for Pythium porphyrae, a causative agent of red rot disease in Porphyra spp. Appl Environ Microbiol 68:2666–2675

    Article  PubMed  CAS  Google Scholar 

  • Xiao K, Samac DA, Kinkel LL (2002) Biological control of Phytophthora root rots on alfalfa and soybean with Streptomyces. Biol Control 23:285–295

    Article  CAS  Google Scholar 

  • Yan Z, Reddy MS, Ryu C-M, McInroy JA, Wilson M, Kloepper JW (2002) Induced systemic protection against tomato late blight elicited by plant growth-promoting rhizobacteria. Phytopathology 92:1329–1333

    Article  PubMed  CAS  Google Scholar 

  • Yang C-H, Menge JA, Cooksey DA (1994) Mutations affecting hyphal colonization and pyoverdine production in Pseudomonads antagonistic toward Phytophthora parasitica. Appl Environ Microbiol 60:473–481

    PubMed  CAS  Google Scholar 

  • Yu F, Zaleta-Rivera K, Zhu X, Huffman J, Millet JC, Harris SD, Yuen G, Li XC, Du L (2007) Structure and biosynthesis of heat-stable antifungal factor (HSAF), a broad-spectrum antimycotic with a novel mode of action. Antimicrob Agents Chemother 51:64–72

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z, Yuen GY, Sarath G, Penheiter A (2001) Chitinases from the plant disease biocontrol agent, Stenotrophomonas maltophilia C3. Phytopathology 91:204–211

    Article  PubMed  CAS  Google Scholar 

  • Zhang S, White LW, Martinez MC, McInroy JA, Kloepper JW, Klessen W (2010) Evaluation of plant growth-promoting rhizobacteria for control of Phytophthora blight on squash under greenhouse conditions. Biol Control 53:129–135

    Article  Google Scholar 

  • Zinada DS, Shaabana KA, Abdalla MA, Islam MT, Schüffler A, Laatsch H (2011) Bioactive isocoumarins from a terrestrial Streptomyces sp. ANK302. Nat Prod Commun 6:45–48

    Google Scholar 

Download references

Acknowledgements

The first author (MTI) is thankful to Prof. Satoshi Tahara and Prof. Yasuyuki Hashidoko of Hokkaido University, Japan, for their supports during his postdoc research under a JSPS fellowship. The Ministry of Science and Information and Communication Technology of the Government of Peoples Republic of Bangladesh (project Nos. BS-77 and ES-12) also deserve special thanks for partial financial supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Tofazzal Islam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Islam, M.T., Hossain, M.M. (2013). Biological Control of Peronosporomycete Phytopathogen by Bacterial Antagonist. In: Maheshwari, D. (eds) Bacteria in Agrobiology: Disease Management. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33639-3_7

Download citation

Publish with us

Policies and ethics