Skip to main content

Introduction to Tour Planning: Vehicle Routing and Related Problems

  • Chapter
Pro-active Dynamic Vehicle Routing

Part of the book series: Contributions to Management Science ((MANAGEMENT SC.))

Abstract

In this chapter, we discuss different characteristics and variants of routing problems. First, an introduction to classic static routing problems is given. Since RDOPG applications can be modeled as a variant of the dynamic vehicle routing problem (DVRP) in which new requests dynamically arrive, variants of the VRP and the DVRP make up the main part of this chapter. Different classifications in the literature that deal with differences between static and dynamic routing problems are described. Since dynamic problems can be distinguished according to the type of relevant information revelation, appropriate existing classifications are also presented. In order to aggregate the results that are relevant for the considered RDOPG applications from these classifications, a unified approach for classifying routing problems is developed. According to this classification, different variants of VRPs which are known in the literature are introduced. In order to evaluate the performance of dynamic routing approaches, two different measures known in the literature are presented. Finally, a general classification scheme for characterizing routing problems is presented and extended with regard to additional characteristics which are relevant for RDOPG applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aberle, G. (2009). Transportwirtschaft: Einzelwirtschaftliche und gesamtwirtschaftliche Grundlagen (Wolls Lehr- und Handbücher der Wirtschafts- und Sozialwissenschaften) (5th ed.). München: Oldenbourg Wissenschaftsverlag. ISBN 3486579517.

    Google Scholar 

  • Angelelli, E., Savelsbergh, M. W. P., & Grazia Speranza, M. (2007). Competitive analysis of a dispatch policy for a dynamic multi-period routing problem. Operations Research Letters, 35(6), 713–721.

    Article  Google Scholar 

  • Attanasio, A., Bregman, J., Ghiani, G., & Manni, E. (2007). Real-time fleet management at Ecourier Ltd. In V. Zeimpekis, G. M. Giaglis, I. Minis & C. D. Tarantilis (Eds.), Operations research/computer science interfaces series: Vol. 38. Dynamic fleet management (pp. 219–238). Boston: Springer. ISBN 978-0-387-71722-7.

    Chapter  Google Scholar 

  • Badeau, P., Guertin, F., Gendreau, M., Potvin, J.-Y., & Taillard, É. D. (1997). A parallel tabu search heuristic for the vehicle routing problem with time windows. Transportation Research. Part C, Emerging Technologies, 5(2), 109–122.

    Article  Google Scholar 

  • Baldacci, R., Bartolini, E., & Laporte, G. (2010). Some applications of the generalized vehicle routing problem. Journal of the Operational Research Society, 61(7), 1072–1077.

    Google Scholar 

  • Barceló, J., Grzybowska, H., & Pardo, S. (2007). Vehicle routing and scheduling models, simulation and city logistics. In V. Zeimpekis, G. M. Giaglis, I. Minis & C. D. Tarantilis (Eds.), Operations research/computer science interfaces series: Vol. 38. Dynamic fleet management (pp. 163–195). Boston: Springer. ISBN 978-0-387-71722-7.

    Chapter  Google Scholar 

  • Barnhart, C., Johnson, E. L., Nemhauser, G. L., Savelsbergh, M. W. P., & Vance, P. H. (1998). Branch-and-price: column generation for solving huge integer programs. Operations Research, 46(3), 316–329.

    Article  Google Scholar 

  • Bektas, T. (2006). The multiple traveling salesman problem: an overview of formulations and solution procedures. Omega, 34(3), 209–219.

    Article  Google Scholar 

  • Bellman, R. (1954). The theory of dynamic programming. Bulletin, New Series, of the American Mathematical Society, 60(6), 503–515.

    Article  Google Scholar 

  • Bellman, R. E. (2003). Dover books on mathematics. Dynamic programming. Mineola: Dover. ISBN 9780486428093.

    Google Scholar 

  • Bent, R., & van Hentenryck, P. (2004a). A two-stage hybrid local search for the vehicle routing problem with time windows. Transportation Science, 38(4), 515–530.

    Article  Google Scholar 

  • Bent, R., & van Hentenryck, P. (2004b). Scenario-based planning for partially dynamic vehicle routing with stochastic customers. Operations Research, 52(6), 977–987.

    Article  Google Scholar 

  • Bertsimas, D. J., & van Ryzin, G. V. (1991). A stochastic and dynamic vehicle routing problem in the Euclidean plane. Operations Research, 39(4), 601–615.

    Article  Google Scholar 

  • Bertsimas, D. J., & van Ryzin, G. V. (1993a). Stochastic and dynamic vehicle routing in the Euclidean plane with multiple capacitated vehicles. Operations Research, 41(1), 60–76.

    Article  Google Scholar 

  • Bertsimas, D. J., & van Ryzin, G. V. (1993b). Stochastic and dynamic vehicle routing with general demand and interarrival time distributions. Advances in Applied Probability, 25(4), 947–978.

    Article  Google Scholar 

  • Bianchi, L. (2000). Notes on dynamic vehicle routing—the state of the art (Technical report IDSIA-05-01). Manno-Lugano, Switzerland.

    Google Scholar 

  • Bloos, M., Schönberger, J., & Kopfer, H. (2009). Supporting cooperative demand fulfillment in supply networks using autonomous control and multi-agent-systems. In S. Fischer, E. Maehle, & R. Reischuk (Eds.), Informatik 2009: Im Focus das Leben. Proceedings of the 39th annual conference of the Gesellschaft für Informatik e.V. (GI), 28.9.–2.10.2009, Lübeck (pp. 3590–3604). ISBN 978-3-88579-248-2.

    Google Scholar 

  • Bock, S. (2004). Echtzeitfähige Steuerung von Speditionsnetzwerken: Nutzung moderner Informations- und Kommunikationstechnologien zur effizienten Durchführung von Transporten: Habilitationsschrift Universität Paderborn, 2004 (1st ed.). Wiesbaden: Deutscher Universitäts-Verlag. Gabler Edition Wissenschaft: Schriften zur quantitativen Betriebswirtschaftlehre. ISBN 3-8244-8214-2.

    Google Scholar 

  • Bock, S. (2010). Real-time control of freight forwarder transportation networks by integrating multimodal transport chains. European Journal of Operational Research, 200(3), 733–746.

    Article  Google Scholar 

  • Bodin, L., & Golden, B. (1981). Classification in vehicle routing and scheduling. Networks, 11(2), 97–108.

    Article  Google Scholar 

  • Borndörfer, R., Grötschel, M., Klostermeier, F., & Küttner, C. (1997). Telebus Berlin: vehicle scheduling in a dial-a-ride system (Technical Report SC 97-23). Konrad-Zuse-Zentrum für Informationstechnik Berlin.

    Google Scholar 

  • Brandão, J., & Mercer, A. (1997). A tabu search algorithm for the multi-trip vehicle routing and scheduling problem. European Journal of Operational Research, 100(1), 180–191.

    Article  Google Scholar 

  • Bräysy, O., & Gendreau, M. (2005a). Vehicle routing problem with time windows, Part I: route construction and local search algorithms. Transportation Science, 39(1), 104–118.

    Article  Google Scholar 

  • Bräysy, O., & Gendreau, M. (2005b). Vehicle routing problem with time windows, Part II: metaheuristics. Transportation Science, 39(1), 119–139.

    Article  Google Scholar 

  • Brotcorne, L., Laporte, G., & Semet, F. (2003). Ambulance location and relocation models. European Journal of Operational Research, 147(3), 451–463.

    Article  Google Scholar 

  • Christiansen, C. H., & Lysgaard, J. (2007). A branch-and-price algorithm for the capacitated vehicle routing problem with stochastic demands. Operations Research Letters, 35(6), 773–781.

    Article  Google Scholar 

  • Cordeau, J. F., & Laporte, G. (2003). The dial-a-ride problem (DARP): variants, modeling issues and algorithms. 4OR: A Quarterly Journal of Operations Research, 1(2), 89–101.

    Article  Google Scholar 

  • Cordeau, J. F., & Laporte, G. (2007). The dial-a-ride problem: models and algorithms. Annals of Operations Research, 153(1), 29–46.

    Article  Google Scholar 

  • Cordeau, J. F., Gendreau, M., Hertz, A., Laporte, G., & Sormany, J. S. (2005). New heuristics for the vehicle routing problem. In A. Langevin & D. Riopel (Eds.), Logistics systems: design and optimization (pp. 279–297). New York: Springer. ISBN 978-0-387-24977-3.

    Chapter  Google Scholar 

  • Cordeau, J. F., Laporte, G., Potvin, J.-Y., & Savelsbergh, M. W. P. (2007a). Transportation on demand. In C. Barnhart (Ed.), Handbooks in operations research and management science: Vol. 14. Transportation (pp. 429–466). Amsterdam: Elsevier/North-Holland. ISBN 0444513469.

    Chapter  Google Scholar 

  • Cordeau, J. F., Laporte, G., Savelsbergh, M. W. P., & Vigo, D. (2007b). Vehicle routing. In C. Barnhart (Ed.), Handbooks in operations research and management science: Vol. 14. Transportation (pp. 367–428). Amsterdam: Elsevier/North-Holland. ISBN 0444513469.

    Chapter  Google Scholar 

  • Cortés, C. E., Núñez, A., & Sáez, D. (2008). Hybrid adaptive predictive control for a dynamic pickup and delivery problem including traffic congestion. International Journal of Adaptive Control and Signal Processing, 22(2), 103–123.

    Article  Google Scholar 

  • Crainic, T. G., & Kim, K. H. (2007). Intermodal transportation. In C. Barnhart (Ed.), Handbooks in operations research and management science: Vol. 14. Transportation (pp. 467–537). Amsterdam: Elsevier/North-Holland. ISBN 0444513469.

    Chapter  Google Scholar 

  • Cubillos, C., Crawford, B., & Rodríguez, N. (2007). Distributed planning for the on-line dial-a-ride problem. In F. Preparata & Q. Fang (Eds.), Lecture notes in computer science: Vol. 4613. Frontiers in algorithmics (pp. 124–135). Berlin: Springer.

    Chapter  Google Scholar 

  • Dakin, R. J. (1965). A tree-search algorithm for mixed integer programming problems. Computer Journal, 8(3), 250–255.

    Article  Google Scholar 

  • Dantzig, G., Fulkerson, R., & Johnson, S. (1954). Solution of a large-scale Traveling-Salesman Problem. Journal of the Operations Research Society of America, 2(4), 393–410.

    Article  Google Scholar 

  • Dantzig, G. B., & Ramser, J. H. (1959). The truck dispatching problem. Management Science, 6(1), 80–91.

    Article  Google Scholar 

  • de Paepe, W. E. (2002). Complexity results and competitive analysis for vehicle routing problems. PhD Thesis, Eindhoven: Technische University of Eindhoven.

    Google Scholar 

  • Desaulniers, G., Desrosiers, J., & Solomon, M. M. (2005). GERAD 25th anniversary series. Column generation. Boston: Springer. ISBN 0387254854.

    Book  Google Scholar 

  • Desrochers, M., & Laporte, G. (1991). Improvements and extensions to the Miller-Tucker-Zemlin subtour elimination constraints. Operations Research Letters, 10(1), 27–36.

    Article  Google Scholar 

  • Desrochers, M., Lenstra, J. K., Savelsbergh, M. W. P., & Soumis, F. (1988). Vehicle routing with time windows: optimization and approximation. In Vehicle routing: Methods and studies (pp. 65–84). Amsterdam: North-Holland.

    Google Scholar 

  • DHL Express Germany GmbH (2010). Export Services. http://www.dhl.de/en/express/export-services.html. Accessed on 2010-12-06.

  • Domschke, W., & Scholl, A. (2010). Oldenbourgs Lehr- und Handbücher der Wirtschafts- und Sozialwissenschaften: Vol. 2. Rundreisen und Touren (5th revised and extended ed.). München: Oldenbourg. ISBN 3486590936.

    Google Scholar 

  • Dror, M. (1989). Vehicle routing with stochastic demands: properties and solution frameworks. Transportation Science, 23(3), 166–176.

    Article  Google Scholar 

  • Dror, M. (2005). Vehicle routing with stochastic demands: models & computational methods. In M. Dror, P. L’Ecuyer & F. Szidarovszky (Eds.), International series in operations research & management science: Vol. 46. Modeling uncertainty (pp. 625–649). Boston: Springer. ISBN 978-0-306-48102-4.

    Google Scholar 

  • Dror, M., Laporte, G., & Louveaux, F. V. (1993). Vehicle routing with stochastic demands and restricted failures. Mathematical Methods of Operations Research, 37(3), 273–283.

    Article  Google Scholar 

  • Dumas, Y., Desrosiers, J., Gelinas, E., & Solomon, M. M. (1995). An optimal algorithm for the Traveling Salesman Problem with time windows. Operations Research, 43(2), 367–371.

    Article  Google Scholar 

  • Ehmke, J. F., Meisel, S., Engelmann, S., & Mattfeld, D. C. (2009). Data chain management for planning in city logistics. International Journal of Data Mining, Modelling and Management, 1(4), 335–356.

    Article  Google Scholar 

  • Ehmke, J. F., Meisel, S., & Mattfeld, D. C. (2010). Floating car data based analysis of urban travel times for the provision of traffic quality. In J. Barceló & M. Kuwahara (Eds.), International series in operations research & management science: Vol. 144. Traffic data collection and its standardization (pp. 129–149). New York: Springer. ISBN 978-1-4419-6070-2.

    Chapter  Google Scholar 

  • Eiselt, H. A., Gendreau, M., & Laporte, G. (1995). Arc routing problems, part I: the Chinese postman problem. Operations Research, 43(2), 231–242.

    Article  Google Scholar 

  • Eksioglu, B., Vural, A. V., & Reisman, A. (2009). The vehicle routing problem: a taxonomic review. Computers & Industrial Engineering, 57(4), 1472–1483.

    Article  Google Scholar 

  • El-Sherbeny, N. A. (2010). Vehicle routing with time windows: an overview of exact, heuristic and metaheuristic methods. Journal of King Saud University: Computer and Information Sciences, 22(3), 123–131.

    Article  Google Scholar 

  • Ferrucci, F. (2006). Entwicklung und Validierung einer Echtzeitsteuerung für realitätsnahe Pickup-and-Delivery-Probleme. Diploma Thesis, University of Paderborn.

    Google Scholar 

  • Fischer, K., Müller, J. P., & Pischel, M. (1996). Cooperative transportation scheduling: an application domain for DAI. Applied Artificial Intelligence, 10(1), 1–34.

    Article  Google Scholar 

  • Fisher, M. L. (2004). The Lagrangian relaxation method for solving integer programming problems. Management Science, 50(12), 1861–1871.

    Article  Google Scholar 

  • Flatberg, T., Hasle, G., Kloster, O., Nilssen, E. J., & Riise, A. (2005). Dynamic and stochastic aspects in vehicle routing: a literature survey (Technical report STF90A05413 SINTEF). Oslo, Norway.

    Google Scholar 

  • Fleischmann, B., Gietz, M., & Gnutzmann, S. (2004a). Time-varying travel times in vehicle routing. Transportation Science, 38(2), 160–173.

    Article  Google Scholar 

  • Fleischmann, B., Gnutzmann, S., & Sandvoß, E. (2004b). Dynamic vehicle routing based on online traffic information. Transportation Science, 38(4), 420–433.

    Article  Google Scholar 

  • Fukasawa, R., Longo, H., Lysgaard, J., Aragão, M. P., Reis, M., Uchoa, E., & Werneck, R. F. (2006). Robust branch-and-cut-and-price for the capacitated vehicle routing problem. Mathematical Programming, 106(3), 491–511.

    Article  Google Scholar 

  • Garey, M. R., & Johnson, D. S. (1978). “Strong” NP-completeness results: motivation, examples, and implications. Journal of the ACM, 25(3), 499–508.

    Article  Google Scholar 

  • Garey, M. R., & Johnson, D. S. (1979). A series of books in the mathematical sciences. Computers and intractability: a guide to the theory of NP-completeness (1st ed.). New York: Freeman. ISBN 0716710455.

    Google Scholar 

  • Gass, S. I. (2003). Linear programming: methods and applications (5th ed.). New York: Dover. ISBN 048643284X.

    Google Scholar 

  • Gendreau, M., Laporte, G., & Séguin, R. (1996). Stochastic vehicle routing. European Journal of Operational Research, 88(1), 3–12.

    Article  Google Scholar 

  • Gendreau, M., Laporte, G., Musaraganyi, C., & Taillard, É. D. (1999b). A tabu search heuristic for the heterogeneous fleet vehicle routing problem. Computers & Operations Research, 26(12), 1153–1173.

    Article  Google Scholar 

  • Gendreau, M., Guertin, F., Potvin, J.-Y., & Séguin, R. (2006). Neighborhood search heuristics for a dynamic vehicle dispatching problem with pick-ups and deliveries. Transportation Research. Part C, Emerging Technologies, 14(3), 157–174.

    Article  Google Scholar 

  • Gendreau, M., Potvin, J.-Y., Bräumlaysy, O., Hasle, G., & Løkketangen, A. (2008). Metaheuristics for the vehicle routing problem and its extensions: a categorized bibliography. In B. L. Golden, S. Raghavan & E. A. Wasil (Eds.), Operations research/computer science interfaces series: Vol. 43. The vehicle routing problem: latest advances and new challenges (pp. 143–169). Heidelberg: Springer. ISBN 0387777776.

    Chapter  Google Scholar 

  • Ghiani, G., Guerriero, F., Laporte, G., & Musmanno, R. (2003). Real-time vehicle routing: solution concepts, algorithms and parallel computing strategies. European Journal of Operational Research, 151(1), 1–11.

    Article  Google Scholar 

  • Ghiani, G., Laporte, G., & Musmanno, R. (2004). Wiley-Interscience series in systems and optimization. Introduction to logistics systems planning and control. Chichester: Wiley. ISBN 9780470849170.

    Google Scholar 

  • Golden, B. L., & Stewart Jr., W. (1978). Vehicle routing with probabilistic demands. In Computer science and statistics: tenth annual symposium on the interface: proceedings of the 10th annual symposium held at the National Bureau of Standards, Gaithersburg, Maryland (pp. 252–259).

    Google Scholar 

  • Golden, B. L., Raghavan, S., & Wasil, E. A. (Eds.) (2008). Operations research/computer science interfaces series: Vol. 43. The vehicle routing problem: latest advances and new challenges. Heidelberg: Springer. ISBN 0387777776.

    Google Scholar 

  • Hadjiconstantinou, E., & Roberts, D. (2002). Routing under uncertainty: an application in the scheduling of field service engineers. In P. Toth & D. Vigo (Eds.), SIAM monographs on discrete mathematics and applications. The vehicle routing problem (pp. 331–352). Philadelphia: Society for Industrial and Applied Mathematics. ISBN 0898714982.

    Chapter  Google Scholar 

  • Haghani, A., & Yang, S. (2007). Real-time emergency response fleet deployment: concepts, systems, simulation & case studies. In V. Zeimpekis, G. M. Giaglis, I. Minis & C. D. Tarantilis (Eds.), Operations research/computer science interfaces series: Vol. 38. Dynamic fleet management (pp. 133–162). Boston: Springer. ISBN 978-0-387-71722-7.

    Chapter  Google Scholar 

  • Haklay, M., & Weber, P. (2008). OpenStreetMap: user-generated street maps. IEEE Pervasive Computing, 7(4), 12–18.

    Article  Google Scholar 

  • Halonen, T. (2003). GSM, GPRS, and edge performance: evolution towards 3G/UMTS (2nd ed.). Chichester: Wiley. ISBN 0470866942.

    Book  Google Scholar 

  • Hansen, P., & Mladenovic, N. (2001). Variable neighborhood search: principles and applications. European Journal of Operational Research, 130(3), 449–467.

    Article  Google Scholar 

  • Held, M., & Karp, R. M. (1970). The Traveling-Salesman Problem and minimum spanning trees. Operations Research, 18(6), 1138–1162.

    Article  Google Scholar 

  • Held, M., & Karp, R. M. (1971). The Traveling-Salesman Problem and minimum spanning trees: Part II. Mathematical Programming, 1(1), 6–25.

    Article  Google Scholar 

  • Homberger, J., & Gehring, H. (2005). A two-phase hybrid metaheuristic for the vehicle routing problem with time windows. European Journal of Operational Research, 162(1), 220–238.

    Article  Google Scholar 

  • Hoos, H. H., & Stützle, T. (2005). Stochastic local search: foundations and applications. San Francisco: Morgan Kaufmann. ISBN 1558608729.

    Google Scholar 

  • Horn, M. E. T. (2002a). Fleet scheduling and dispatching for demand-responsive passenger services. Transportation Research. Part C, Emerging Technologies, 10(1), 35–63.

    Article  Google Scholar 

  • Horn, M. E. T. (2002b). Multi-modal and demand-responsive passenger transport systems: a modelling framework with embedded control systems. Transportation Research. Part A, Policy and Practice, 36(2), 167–188.

    Article  Google Scholar 

  • Hülsmann, M., Kopfer, H., Cordes, P., & Bloos, M. (2009). Collaborative transportation planning in complex adaptive logistics systems: a complexity science-based analysis of decision-making problems of “groupage systems”. In J. Zhou (Ed.), Lecture notes of the institute for computer sciences, social informatics and telecommunications engineering: Vol. 4. Complex sciences (pp. 1160–1166). Berlin: Springer. ISBN 978-3-642-02466-5.

    Chapter  Google Scholar 

  • Hvattum, L. M., Løkketangen, A., & Laporte, G. (2006). Solving a dynamic and stochastic vehicle routing problem with a sample scenario hedging heuristic. Transportation Science, 40(4), 421–438.

    Article  Google Scholar 

  • Hvattum, L. M., Løkketangen, A., & Laporte, G. (2007). A branch-and-regret heuristic for stochastic and dynamic vehicle routing problems. Networks, 49(4), 330–340.

    Article  Google Scholar 

  • Ichoua, S., Gendreau, M., & Potvin, J.-Y. (2003). Vehicle dispatching with time-dependent travel times. European Journal of Operational Research, 144(2), 379–396.

    Article  Google Scholar 

  • Ichoua, S., Gendreau, M., & Potvin, J.-Y. (2006). Exploiting knowledge about future demands for real-time vehicle dispatching. Transportation Science, 40(2), 211–225.

    Article  Google Scholar 

  • Jaillet, P. (1987). Stochastic routing problems. In G. Andreatta, F. Mason, & P. Serafini (Eds.), Advanced school on stochastics in combinatorial optimization (pp. 197–213). Singapore: World Scientific.

    Google Scholar 

  • Jézéquel, A. (1985). Probabilistic vehicle routing problems. M.Sc. Dissertation, Massachusetts Institute of Technology, Cambridge, MA.

    Google Scholar 

  • Kaplan, E. D., & Hegarty, C. J. (2006). Understanding GPS: principles and applications (2nd ed.). Boston: Artech House. ISBN 1580538940.

    Google Scholar 

  • Kenyon, A. S., & Morton, D. P. (2003). Stochastic vehicle routing with random travel times. Transportation Science, 37(1), 69–82.

    Article  Google Scholar 

  • Kleywegt, A. J., Savelsbergh, M., & Uyar, E. (2009). A dynamic stochastic routing problem (Technical Report). Georgia Institute of Technology, Atlanta, GA.

    Google Scholar 

  • Kohout, R., & Erol, K. (1999). In-time agent-based vehicle routing with a stochastic improvement heuristic. In Proceedings of the 16th national conference on artificial intelligence and the 11th on innovative applications of artificial intelligence, Orlando, USA (pp. 864–869).

    Google Scholar 

  • Korte, B., & Vygen, J. (2012). Algorithms and combinatorics: Vol. 21. Combinatorial optimization: theory and algorithms (5th ed.). Berlin: Springer. ISBN 3642244874.

    Google Scholar 

  • Krumke, S. O., Rambau, J., & Torres, L. M. (2002). Real-time dispatching of guided and unguided automobile service units with soft time windows. In R. Möhring & R. Raman (Eds.), Lecture notes in computer science: Vol. 2461. Algorithms—ESA 2002 (pp. 417–424). Heidelberg: Springer.

    Google Scholar 

  • Kwan, M. K. (1962). Graphic programming using odd or even points. Chinese Mathematics, 1, 273–277.

    Google Scholar 

  • Lambert, V., Laporte, G., & Louveaux, F. V. (1993). Designing collection routes through bank branches. Computers & Operations Research, 20(7), 783–791.

    Article  Google Scholar 

  • Land, A. H., & Doig, A. G. (1960). An automatic method of solving discrete programming problems. Econometrica, 28(3), 497–520.

    Article  Google Scholar 

  • Laporte, G. (1992a). The vehicle routing problem: an overview of exact and approximate algorithms. European Journal of Operational Research, 59(3), 345–358.

    Article  Google Scholar 

  • Laporte, G. (1992b). The traveling salesman problem: an overview of exact and approximate algorithms. European Journal of Operational Research, 59(2), 231–247.

    Article  Google Scholar 

  • Laporte, G., & Louveaux, F. (1990). Formulations and bounds for the stochastic capacitated vehicle routing problem with uncertain supplies. In J. Gabszewicz, J.-F. Richard & L. A. Wolsey (Eds.), Economic decision-making (pp. 443–455). Amsterdam: North-Holland. ISBN 044488422X.

    Google Scholar 

  • Laporte, G., & Nobert, Y. (1980). A cutting planes algorithm for the m-Salesmen Problem. Journal of the Operational Research Society, 31(11), 1017–1023.

    Google Scholar 

  • Laporte, G., Louveaux, F., & Mercure, H. (1992). The vehicle routing problem with stochastic travel times. Transportation Science, 26(3), 161–170.

    Article  Google Scholar 

  • Laporte, G., Louveaux, F. V., & van Hamme, L. (2002). An integer L-shaped algorithm for the capacitated vehicle routing problem with stochastic demands. Operations Research, 50(3), 415–423.

    Article  Google Scholar 

  • Larsen, A. (2000). The dynamic vehicle routing problem. PhD Thesis, Technical University of Denmark, Lyngby, Denmark.

    Google Scholar 

  • Larsen, A., Madsen, O. B. G., & Solomon, M. M. (2002). Partially dynamic vehicle routing—models and algorithms. Journal of the Operational Research Society, 53(6), 637–646.

    Article  Google Scholar 

  • Larsen, A., Madsen, O. B. G., & Solomon, M. M. (2007). Classification of dynamic vehicle routing systems. In V. Zeimpekis, G. M. Giaglis, I. Minis & C. D. Tarantilis (Eds.), Operations research/computer science interfaces series: Vol. 38. Dynamic fleet management (pp. 19–40). Boston: Springer. ISBN 978-0-387-71722-7.

    Chapter  Google Scholar 

  • Larson, R. C., & Odoni, A. R. (1981). Urban operations research. Englewood Cliffs: Prentice-Hall. http://web.mit.edu/urban_or_book/www/book/.

    Google Scholar 

  • Lenstra, J. K., & Rinnooy Kan, A. H. G. (1979). Computational complexity of discrete optimization problems. In P. L. Hammer, E. L. Johnson & B. H. Korte (Eds.), Proceedings of the advanced research institute on discrete optimization and systems applications of the systems science panel of NATO and of the discrete optimization symposium: Vol. 4. Annals of discrete mathematics: discrete optimization I (pp. 121–140). Amsterdam: Elsevier. ISBN 978-0-444-85322-6.

    Chapter  Google Scholar 

  • Lenstra, J. K., & Rinnooy Kan, A. H. G. (1981). Complexity of vehicle routing and scheduling problems. Networks, 11(2), 221–227.

    Article  Google Scholar 

  • Lew, A., & Mauch, H. (2007). Dynamic programming: a computational tool (1st ed.). Berlin: Springer. ISBN 3642072003.

    Google Scholar 

  • Li, J. Q., Mirchandani, P. B., & Borenstein, D. (2009a). Real-time vehicle rerouting problems with time windows. European Journal of Operational Research, 194(3), 711–727.

    Article  Google Scholar 

  • Li, J. Q., Mirchandani, P. B., & Borenstein, D. (2009b). A Lagrangian heuristic for the real-time vehicle rescheduling problem. Transportation Research. Part E, Logistics and Transportation Review, 45(3), 419–433.

    Article  Google Scholar 

  • Lin, S. (1965). Computer solutions of the traveling salesman problem. The Bell System Technical Journal, 44(10), 2245–2269.

    Google Scholar 

  • Little, J. D. C., Murty, K. G., Sweeney, D. W., & Karel, C. (1963). An algorithm for the Traveling Salesman Problem. Operations Research, 11(6), 972–989.

    Article  Google Scholar 

  • Lund, K., Madsen, O. B. G., & Rygaard, J. M. (1996). Vehicle routing with varying degrees of dynamism (Technical report IMM-REP-1996-1). Institute of Mathematical Modelling, Technical University of Denmark, Lyngby, Denmark.

    Google Scholar 

  • Malandraki, C., & Daskin, M. S. (1992). Time dependent vehicle routing problems: formulations, properties and heuristic algorithms. Transportation Science, 26(3), 185–200.

    Article  Google Scholar 

  • Mendoza, J. E., Castanier, B., Guéret, C., Medaglia, A. L., & Velasco, N. (2009). Constructive heuristics for the multi-compartment vehicle routing problem with stochastic demands (Technical report). Universidad de los Andes.

    Google Scholar 

  • Miller, C. E., Tucker, A. W., & Zemlin, R. A. (1960). Integer programming formulation of traveling salesman problems. Journal of the ACM, 7(4), 326–329.

    Article  Google Scholar 

  • Mitchell, M. (1998). An introduction to genetic algorithms. Cambridge: MIT Press. ISBN 0262631857.

    Google Scholar 

  • Mitrovic-Minic, S., Krishnamurti, R., & Laporte, G. (2004). Double-horizon based heuristics for the dynamic pickup and delivery problem with time windows. Transportation Research. Part B: Methodological, 38(8), 669–685.

    Article  Google Scholar 

  • Mu, Q., Fu, Z., Lysgaard, J., & Eglese, R. (2010). Disruption management of the vehicle routing problem with vehicle breakdown. Journal of the Operational Research Society, 62(4), 742–749.

    Article  Google Scholar 

  • Muyldermans, L., & Pang, G. (2010). On the benefits of co-collection: experiments with a multi-compartment vehicle routing algorithm. European Journal of Operational Research, 206(1), 93–103.

    Article  Google Scholar 

  • Novoa, C., Berger, R., Linderoth, J., & Storer, R. (2006). A set-partitioning-based model for the stochastic vehicle routing problem (Technical Report 06T-008). Industrial and Systems Engineering, Lehigh University, USA.

    Google Scholar 

  • OpenStreetMap (2011). The OpenStreetMap Project. http://www.openstreetmap.org. Accessed on 2011-06-20.

  • Or, I. (1976). Traveling salesman-type combinatorial problems and their relation to the logistics of regional blood banking. PhD Thesis, Northwestern University, Evanston.

    Google Scholar 

  • Parragh, S., Doerner, K., & Hartl, R. (2008). A survey on pickup and delivery problems: Part I: transportation between customers and depot. Journal für Betriebswirtschaft, 58(1), 21–51.

    Article  Google Scholar 

  • Perugini, D., Lambert, D., Sterling, L., & Pearce, A. (2003). A distributed agent approach to global transportation scheduling. In 2003 IEEE/WIC international conference on intelligent agent technology (IAT ’03), Halifax, Canada.

    Google Scholar 

  • Pillac, V., Guéret, A., & Medaglia, A. (2010). Vehicle routing problems: state of the art and prospects (Technical report, 10/4/AUTO). Ecole des Mines de Nantes, France.

    Google Scholar 

  • Potvin, J.-Y., & Rousseau, J. M. (1995). An exchange heuristic for routeing problems with time windows. Journal of the Operational Research Society, 46(12), 1433–1446.

    Google Scholar 

  • Powell, W. B., Jaillet, P., & Odoni, A. (1995). Stochastic and dynamic networks and routing. In Handbooks in operations research and management science (Vol. 8, pp. 141–295).

    Google Scholar 

  • Psaraftis, H. N. (1988). Dynamic vehicle routing problems. In B. L. Golden (Ed.), Studies in management science and systems. Vehicle routing (pp. 223–248). Amsterdam: Elsevier. ISBN 0444704078.

    Google Scholar 

  • Psaraftis, H. N. (1995). Dynamic vehicle routing: status and prospects. Annals of Operations Research, 61(1), 143–164.

    Article  Google Scholar 

  • Puterman, M. L. (2005). Wiley series in probability and statistics. Markov decision processes: discrete stochastic dynamic programming. Hoboken: Wiley-Interscience. ISBN 9780470316887.

    Google Scholar 

  • Richter, A. (2005). Dynamische Tourenplanung: Modifikation von klassischen Heuristiken für das Dynamische Rundreiseproblem (DTSP) und das Dynamische Tourenplanungsproblem (DVRP) mit der Möglichkeit der Änderung des aktuellen Fahrzeugzuges. PhD Thesis, University of Dresden, Germany.

    Google Scholar 

  • Ropke, S., & Pisinger, D. (2006). An adaptive large neighborhood search heuristic for the pickup and delivery problem with time windows. Transportation Science, 40(4), 455–472.

    Article  Google Scholar 

  • Savelsbergh, M. W. P. (1992). The vehicle routing problem with time windows: minimizing route duration. ORSA Journal on Computing, 4, 146–154.

    Article  Google Scholar 

  • Savelsbergh, M. W. P., & Sol, M. (1995). The general pickup and delivery problem. Transportation Science, 29(1), 17–29.

    Article  Google Scholar 

  • Savelsbergh, M. W. P., & Sol, M. (1998). DRIVE: dynamic routing of independent vehicles. Operations Research, 46(4), 474–490.

    Article  Google Scholar 

  • Schönberger, J. (2010). Adaptive demand peak management in online transport process planning. OR Spektrum, 32(3), 831–859.

    Article  Google Scholar 

  • Secomandi, N. (2000). Comparing neuro-dynamic programming algorithms for the vehicle routing problem with stochastic demands. Computers & Operations Research, 27(11-12), 1201–1225.

    Article  Google Scholar 

  • Secomandi, N., & Margot, F. (2009). Reoptimization approaches for the vehicle-routing problem with stochastic demands. Operations Research, 57(1), 214–230.

    Article  Google Scholar 

  • Sedgewick, R. (1983). Addison-Wesley series in computer science. Algorithms. Reading: Addison-Wesley. ISBN 0201066726.

    Google Scholar 

  • Sleator, D. D., & Tarjan, R. E. (1985). Amortized efficiency of list update and paging rules. Communications of the ACM, 28(2), 202–208.

    Article  Google Scholar 

  • Solomon, M. M. (1987). Algorithms for the vehicle routing and scheduling problems with time window constraints. Operations Research, 35(2), 254–265.

    Article  Google Scholar 

  • Stumpf, P. (1998). GVB: Schriftenreihe: Vol. 39 Tourenplanung im speditionellen Güterfernverkehr: Univ., Diss.–Augsburg, 1998 (1st ed.). Nürnberg: GVB. ISBN 3922665349.

    Google Scholar 

  • Tarantilis, C. D., & Kiranoudis, C. T. (2007). A flexible adaptive memory-based algorithm for real-life transportation operations: two case studies from dairy and construction sector. European Journal of Operational Research, 179(3), 806–822.

    Article  Google Scholar 

  • Tarantilis, C. D., Diakoulaki, D., & Kiranoudis, C. T. (2004). Combination of geographical information system and efficient routing algorithms for real life distribution operations: new technologies in transportation systems. European Journal of Operational Research, 152(2), 437–453.

    Article  Google Scholar 

  • Telefónica Germany GmbH & Co. OHG (2011). Tarif o2 Active Data Card. http://www.o2online.de/nw/tarife/datentarif/datentarif.html. Accessed on 2011-06-20.

  • Thangiah, S. R., Osman, I. H., Vinayagamoorthy, R., & Sun, T. (1993). Algorithms for the vehicle routing problems with time deadlines. American Journal of Mathematical and Management Sciences, 13(3-4), 323–355.

    Google Scholar 

  • Tillman, F. A. (1969). The multiple terminal delivery problem with probabilistic demands. Transportation Science, 3(3), 192–204.

    Article  Google Scholar 

  • Toth, P., & Vigo, D. (Eds.) (2002). SIAM monographs on discrete mathematics and applications. The vehicle routing problem. Philadelphia: Society for Industrial and Applied Mathematics. ISBN 0898714982.

    Google Scholar 

  • van de Klundert, J., & Wormer, L. (2010). ASAP: the After-Salesman Problem. Manufacturing & Service Operations Management, 12, 627–641.

    Article  Google Scholar 

  • Verweij, B., Ahmed, S., Kleywegt, A. J., Nemhauser, G., & Shapiro, A. (2003). The sample average approximation method applied to stochastic routing problems: a computational study. Computational Optimization and Applications, 24(2-3), 289–333.

    Article  Google Scholar 

  • Weiss, G. (2000). Multiagent systems: a modern approach to distributed artificial intelligence (2nd ed.). Cambridge: MIT Press. ISBN 0262731312.

    Google Scholar 

  • Westphal, S., & Krumke, S. O. (2008). Pruning in column generation for service vehicle dispatching. Annals of Operations Research, 159(1), 355–371.

    Article  Google Scholar 

  • Wu, C. W., Beck, J. C., & Brown, K. N. (2004). Dynamic vehicle routing with uncertain customer demand. In Proceedings of Changes ’04 (International workshop on constraint solving under change and uncertainty at CP2004), Toronto, Canada (pp. 75–76).

    Google Scholar 

  • Yang, J., Jaillet, P., & Mahmassani, H. S. (2004). Real-time multivehicle truckload pickup and delivery problems. Transportation Science, 38(2), 135–148.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ferrucci, F. (2013). Introduction to Tour Planning: Vehicle Routing and Related Problems. In: Pro-active Dynamic Vehicle Routing. Contributions to Management Science. Physica, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33472-6_2

Download citation

Publish with us

Policies and ethics