Skip to main content
Log in

Adaptive demand peak management in online transport process planning

  • Regular Article
  • Published:
OR Spectrum Aims and scope Submit manuscript

Abstract

We investigate the common and integrated dynamic decision making of the coordinator of a supply chain consortium together with a subordinate fleet managing agent offering transport services for the consortium. While the fleet manager aims at minimizing the costs of the generated transport processes, the goal of the coordinator is to keep the reliability and stability of the processes on a reasonable level. It aims to synchronize the transport processes with upstream and downstream parts of the supply chain. The major innovation presented in this article is a framework that controls and adjusts the decision competence distribution between the two planning agents with respect to the current transport process performance. If the transport process timeliness is endangered to fall below a given threshold and thereby the overall supply chain reliability tends to sink, the coordinator is temporarily granted the right to intervene into the planning of the fleet managing agent. Within simulation experiments, we demonstrate that the proposed system is able to increase the reliability of the generated transport processes. We show that the intervention of the superior coordinator agent during workload peaks ensures higher process timeliness than the transport service providing agent is able to achieve without any coordinator interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albers S, Charikar M, Mitzenmacher M (2001) Delayed information and action in on-line algorithms. Inf Comput 170(2): 135–152

    Article  Google Scholar 

  • Andersen ED, Andersen KD (1995) Presolving in linear programming. Math Program 71: 221–245

    Google Scholar 

  • Arnold M, Fink SJ, Grove D, Hind M, Sweeney PF (2005) A survey of adaptive optimization in virtual machines. In: Proceedings of the IEEE 2005 93(2):449–466

  • Ausiello G, Feuerstein E, Leonardi S, Stougie L, Talamo M (1994) Serving requests with on-line routing. In: Schmidt EM, Skyum S (eds) Proceedings of 4th Scandinavian Workshop on algorithm theory. Springer, Berlin, pp 37–48

    Google Scholar 

  • Bierwirth C (1999) Adaptive search and the management of logistics systems. Kluwer, Dordrecht

    Google Scholar 

  • Black F, Scholes M (1973) The pricing of options and corporate liabilities. J Political Econ 81(3): 637–654

    Article  Google Scholar 

  • Brage Illa A (1966) Critical probabilities and determinism in decision theory. Calcolo 2(2): 117–130

    Article  Google Scholar 

  • Branke J (2001) Evolutionary optimization in dynamic environments. Kluwer, Dordrecht

    Google Scholar 

  • Branke J, Mattfeld DC (2005) Anticipation and flexibility in dynamic scheduling. Int J Prod Res 43(15): 3103–3129

    Article  Google Scholar 

  • Brehmer B (1992) Dynamic decision making: human control of complex systems. Acta Psychologica 81: 211–241

    Article  Google Scholar 

  • Busemeyer JR (2001) Dynamic decision making. In: International encyclopedia of the social and behavioral sciences: methodology. Mathematic and computer science. Elsevier, Amsterdam, pp 3903–3908

  • Calza F, Passaro R (1997) EDI network and logistics management at Unilever-Sagit. Supply Chain Manag Int J 2(4): 158–170

    Article  Google Scholar 

  • Crainic T, Laporte G (1997) Planning models for freight transportation. Eur J Oper Res 122: 409–438

    Article  Google Scholar 

  • Delaitre L, Awasthi A, Molet H, Breuil D (2007) A multiple container loading problem based algorithm for efficient allocation of goods to vehicles. In: Proceedings of the 18th IASTED International Conference. pp 313–317

  • Erera A, Karacık B, Savelsbergh M (2008) A dynamic driver management scheme for less-than-truckload carriers. Comput Oper Res 35: 3397–3411

    Article  Google Scholar 

  • Feillet D, Dejax P, Gendreau M (2005) Traveling salesman problems with profits. Transp Sci 39: 188–205

    Article  Google Scholar 

  • Fleischmann B, Gnutzmann S, Sandvoß E (2004) Dynamic vehicle routing based on online traffic information. Transp Sci 28: 420–433

    Article  Google Scholar 

  • Fleischmann B, Gietz M, Gnutzmann S (2004) Time-varying travel times in vehicle routing. Transp Sci 38(2): 160–173

    Article  Google Scholar 

  • Garfinkel RS (1985) Motivation and modeling. In: Lawler EL, Lenstra JK, Rinnooy Kan AHG, Shmoys DB (eds) The traveling salesman problem. Wiley, New York

    Google Scholar 

  • Gendreau M, Laporte G, Semet F (2004) Heuristics and lower bounds for the bin packing problem with conflicts. Comput Oper Res 31(3): 347–358

    Article  Google Scholar 

  • Golden BL, Assad AA (eds) (1988) Vehicle routing: methods and studies. Elsevier, North-Holland

    Google Scholar 

  • Golden, B, Raghavan, S, Wasil, E (eds) (2008) The vehicle routing problem. Springer, New York

    Google Scholar 

  • Grötschel M, Krumke SO, Torres LM (2002) Online-dispatching of automobile service units. In: Leopold-Wildburger U, Rendl F, Wäscher G (eds) Operations research proceedings. Springer, Berlin, pp 168–173

    Google Scholar 

  • Gutenschwager K (2002) Online-Dispositionsprobleme in der Lagerlogistik. Physica-Verlag, Heidelberg

    Google Scholar 

  • Gutenschwager K, Böse J, Voß S (2003) Effiziente Prozesse im Kombinierten Verkehr—Ein neuer Lösungsansatz zur Disposition von Portalkränen. Logistikmanagement 5(1): 62–73

    Google Scholar 

  • Gutenschwager K, Niklaus C, Voß S (2004) Dispatching of an electric monorail system: applying metaheuristics to an online pickup and delivery problem. Transp Sci 38(4): 434–446

    Article  Google Scholar 

  • Hadjiconstantinou E, Roberts D (2002) Routing under uncertainty: an application in the scheduling of field service engineers. In: Toth P, Vigo D (eds) The vehicle routing problem. SIAM, Philadelphia, pp 331–353

    Google Scholar 

  • Hiller B, Krumke SO, Rambau J (2006) Reoptimization gaps versus model errors in online-dispatching of service units for ADAC. Discret Appl Math 154: 1897–1907

    Article  Google Scholar 

  • Ichoua S, Gendreau M, Potvin J-Y (2003) Vehicle dispatching with time-dependent travel times. Eur J Oper Res 144: 379–396

    Article  Google Scholar 

  • Jensen M, Meckling W (1976) Theory of the firm. Managerial behavior, agency costs, and ownership structure. J Financial Econ 3(4): 305–360

    Article  Google Scholar 

  • Kalleberg AL, Reynolds J, Marsden PV (2003) Externalizing employment: flexible staffing arrangements in US organizations. Soc Sci Res 32: 525–552

    Article  Google Scholar 

  • Kaluza B, Dullnig H, Malle F (2003) Principal-Agent-Probleme in der Supply Chain—Problemanalyse und Diskussion von Lösungsvorschlägen. Discussion paper 2003/03 of the College of Business Administration. University of Klagenfurt, Austria

  • Kopfer H, Krajewska M (2007) Approaches for modelling and solving the integrated transportation and forwarding problem. In: Corsten H, Missbauer H (eds) Produktions- und Logistikmanagement. Verlag Franz Vahlen, Munich, pp 439–458

    Google Scholar 

  • Krajewska M, Kopfer H, Laporte G, Ropke S, Zaccour G (2008) Horizontal cooperations among freight carriers: request allocation and profit sharing. J Oper Res Soc 59(11): 1483–1491

    Article  Google Scholar 

  • Krajewska M, Kopfer H (2009) Transportation planning in freight forwarding companies—Tabu Search algorithm for the integrated operational transportation planning problem. Eur J Oper Res (to appear)

  • Krumke SO, Rambau J, Torres LM (2002) Realtime-dispatching of guided and unguided automobile service units with soft time windows. In: Möhring RH, Raman R (eds) Algorithms—ESA 2002, 10th Annual European Symposium, Lecture Notes in Computer Science 2461, Springer, Berlin

  • Laux H (1982) Entscheidungstheorie. Springer, Heidelberg

    Google Scholar 

  • Larsen A, Madsen OGB, Solomon MM (2008) Recent Developments in dynamic vehicle routing. In: Golden B, Raghavan S, Wasil E (eds) The vehicle routing problem. Springer, New York, pp 199–218

    Chapter  Google Scholar 

  • Lindstaedt H (2007) Problemlösen und Verstehen bei ökonomischen Agenten—eine Gegenüberstellung ökonomischer und kognitionspsychologischer Modelle regelbasierten Entscheidens. NeuroPsychoEconomics 2: 30–43

    Google Scholar 

  • Littman ML, Dean TL, Kaelbling LP (1995) On the complexity of solving Markov decision problems. In: Proceedings of the 11th Conference on uncertainty in artificial intelligence. pp 394–402

  • Liu Y-H (2007) A hybrid scatter search for the probabilistic traveling salesman problem. Comput Oper Res 34: 2949–2963

    Article  Google Scholar 

  • Lo S-C, Hall RW (2008) The design of real-time logistics information system for trucking industry. Comput Oper Res 35: 3439–3451

    Article  Google Scholar 

  • Lund K, Madsen OBG, Rygaard JM (1996) Vehicle routing problems with varying degrees of dynamism. Institute of Mathematical Modelling (IMM), Technical University of Denmark, Lyngby, Technical Report, No. IMM-REP-1996-1

  • Madsen OGB, Tosti K, Vælds J (1995) A heuristic method for dispatching repair men. Ann Oper Res 61: 213–226

    Article  Google Scholar 

  • McKendall AR Jr, Jaramillo JR (2006) A tabu search heuristic for the dynamic space allocation problem. Comput Oper Res 33: 768–789

    Article  Google Scholar 

  • Mitrović-Minić S, Krishnamurti R, Laporte G (2004) Double-horizon based heuristic for the dynamic pickup and delivery problem with time windows. Transp Res B 38: 635–655

    Article  Google Scholar 

  • Moreira LM, Oliveira JF, Gomes AM, Ferreira JS (2007) Heuristics for a dynamic rural postman problem. Comput Oper Res 34: 3281–3294

    Article  Google Scholar 

  • Munera HA (1984) The generalized means model (GMM) for non-deterministic decision making: its normative and descriptive power, including sketch of the representation theorem. Theor Decis 18: 173–202

    Article  Google Scholar 

  • Pankratz G (2002) Speditionelle Transportdisposition. DUV Gabler, Wiesbaden

    Google Scholar 

  • Psaraftis HN (1988) Dynamic vehicle routing problems. In: Golden BL, Assad AA (eds) Vehicle routing: methods and studies. Elsevier, North-Holland

    Google Scholar 

  • Psaraftis HN (1995) Dynamic vehicle routing: status and prospects. Ann Oper Res 61: 143–164

    Article  Google Scholar 

  • Potvin J-Y, Xu Y, Benyahia I (2006) Vehicle routing and scheduling with dynamic travel times. Comput Oper Res 33: 1129–1137

    Article  Google Scholar 

  • Powell WB (1996) A stochastic formulation of the dynamic assignment problem, with an application to truckload motor carriers. Transp Sci 30(3): 195–219

    Article  Google Scholar 

  • Powell WB, Cheung RK (2000) Adaptive labeling algorithms for the dynamic assignment problem. Transp Sci 34(1): 50–66

    Article  Google Scholar 

  • Rajagopalan HK, Saydam C, Xiao J (2008) A multiperiod set covering location model for dynamic redeployment of ambulances. Comput Oper Res 35(3): 814–826

    Article  Google Scholar 

  • Ramamritham K, Stankovic JA (1994) Scheduling and operating system support for real-time systems. In: Proceedings of the IEEE. pp 55–67

  • Rego C, Roucairol C (1995) Using Tabu search for solving a dynamic multi-terminal truck dispatching problem. Eur J Oper Res 83: 411–429

    Article  Google Scholar 

  • Ronen B, Coman A, Schragenheim E (2001) Peak management. Int J Prod Res 39(14): 3183–3193

    Article  Google Scholar 

  • Saéz D, Cortéz CE, Núñes A (2008) Hybrid adaptive predictive control for the multi-vehicle dynamic pick-up and delivery problem based on genetic algorithms and fuzzy clustering. Comput Oper Res 35(11): 3412–3438

    Article  Google Scholar 

  • Schönberger J (2005) Operational freight carrier planning. Springer, Heidelberg

    Google Scholar 

  • Schönberger J, Kopfer H (2007) On decision model adaptation in online optimization of a transport system. In: Günther H-O, Mattfeld DC, Suhl L (eds) Management logistischer Netzwerke. Physica-Verlag, Heidelberg, pp 361–381

    Chapter  Google Scholar 

  • Schönberger J, Kopfer H (2007) On the value of objective function adaptation in online optimization. In: Kalcsics J, Nickel S (eds) Operations research proceedings 2007. Springer, Berlin, pp 491–496

    Google Scholar 

  • Schönberger J, Kopfer H (2009a) Transport system responsiveness improvement. Int J Phys Distrib Logist Manag 39(1): 63–79

    Article  Google Scholar 

  • Schönberger J, Kopfer H (2009b) Online decision making and automatic decision model adaptation. Comput Oper Res 36(6): 1740–1750

    Article  Google Scholar 

  • Schönberger J, Kopfer H (2008) Schedule nervousness reduction in transport re-planning. Commun SIWN 3: 7–14

    Google Scholar 

  • Schönberger J, Kopfer H (2009) Rules for the identification of portfolio-incompatible requests in dynamic vehicle routing. In: Hansen HR, Karagiannis D, Fill H-G (eds) Proceedings of Wirtschaftsinformatik 2009, Band 2

  • Séguin R, Potvin J-Y, Gendreau M, Crainic TG, Marcotte P (1997) Real-time decision problems: an operations research perspective. J Oper Res Soc 48(2): 162–174

    Google Scholar 

  • S̆egvić S, Remazeilles A, Chaumette F (2006) Enhancing the point feature tracker by adaptive modelling of the feature support. In: Leonardis A, Bischof H, Pinz A (eds) ECCV 2006. Springer, Berlin, pp 112–124

    Google Scholar 

  • Seiden S (1996) Randomized online scheduling with delivery times. J Comb Optim 3: 399–416

    Article  Google Scholar 

  • Sellmaier S (2007) Langfristiges Entscheiden. LIT Verlag, Berlin-Hamburg-Münster

    Google Scholar 

  • Solnon C (2002) Boosting ACO with a preprocessing step. In: Cagnoni S, Gottlieb J, Hart E, Middendorf M, Raidl GR (eds) (2002) Applications of evolutionary computing. Springer, Berlin, pp 163–172

  • Solomon MM (1987) Algorithms for the vehicle routing and scheduling problem with time window constraints. Oper Res 35(2): 254–265

    Article  Google Scholar 

  • Tang H, Miller-Hooks E (2007) Solving a generalized traveling salesperson problem with stochastic customers. Comput Oper Research 34: 1963–1987

    Article  Google Scholar 

  • Toth, P, Vigo, D (eds) (2002) The vehicle routing problem. SIAM, Philadelphia

    Google Scholar 

  • Williams TM (1984) Special products and uncertainty in production/inventory systems. Eur J Oper Res 15(1): 46–54

    Article  Google Scholar 

  • Woolridge MJ (2002) An introduction to multiagent systems. Wiley, Chichester

    Google Scholar 

  • Zäpfel G (1982) Produktionswirtschaft: Operatives Produktions-Management. de Gruyter, Berlin

    Google Scholar 

  • Zeimpekis V, Giaglis GM (2005) A dynamic real-time fleet management system for incident handling in city logistics. In: Proceedings of 61st IEEE Vehicular Technology Conference (VTC2005 Spring)

  • Zeimpekis, V, Tarantilis, CD, Giaglis, GM, Minis, I (eds) (2007) Dynamic fleet management. Springer, New York

    Google Scholar 

  • Zeimpekis V, Minis I, Mamassis K, Giaglis GM (2007) Dynamic management of a delayed delivery vehicle in a City Logistics environment. In: Zeimpekis V, Tarantilis CD, Giaglis GM, Minis I (eds) Dynamic fleet management. Springer, New York, pp 197–217

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörn Schönberger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schönberger, J. Adaptive demand peak management in online transport process planning. OR Spectrum 32, 831–859 (2010). https://doi.org/10.1007/s00291-009-0190-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00291-009-0190-7

Keywords

Navigation