Skip to main content

Microbial Degradation of PAHs: Organisms and Environmental Compartments

  • Chapter
  • First Online:
Microbial Degradation of Xenobiotics

Abstract

Polycyclic aromatic hydrocarbons (PAHs) represent a major class of organic compounds (Xue and Warshawsky 2005), that consist of over 100 individual moieties (Rehmann et al. 2008). Because of their toxicity and wide spread occurrence, PAH represent one of the most important groups of environmental pollutants (Eggen and Majcherczyk 1998). They consist of two or more fused benzene rings in linear, angular or cluster arrangements. The persistence of these chemicals in the environment is mainly due to their low solubility in water and stable polycondensed aromatic structure. Hydrophobicity and recalcitrance of PAHs to microbial degradation generally increase as the molecular weight increases. Besides being toxic to animals, some PAHs with four or more benzene rings, such as benzo[a]anthracene, chrysene and benzo[a]pyrene, have been shown to be carcinogenic (Bezalel et al. 1996).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ambrosoli R, Petruzzelli L, Luis Minati J, Ajmone Marsan F (2005) Anaerobic PAH degradation in soil by a mixed bacterial consortium under denitrifying conditions. Chemosphere 60:1231–1236

    Article  CAS  Google Scholar 

  • Anokhina TO, Kochetkov VV, Zelenkova NF, Balakshina VV, Boronin AM (2004) Biodegradation of phenanthrene by Pseudomonas bacteria bearing rhizospheric plasmids in model plant-microbial associations. Appl Biochem Microbiol 40:568–572

    Article  CAS  Google Scholar 

  • Arias L, Bauzá J, Tobella J, Vila J, Grifoll M (2008) A microcosm system and an analytical protocol to assess PAH degradation and metabolite formation in soils. Biodegradation 19:425–434

    Article  CAS  Google Scholar 

  • Arias AH, Spetter CC, Freije RH, Marcovecchio JE (2009) Polycyclic aromatic hydrocarbons in water, mussels (Brachidontes sp., Tagelus sp.) and fish (Odontesthes sp.) from Bahía Blanca Estuary, Argentina. Estuarine, Coastal, Shelf Sci 85:67–81

    Article  CAS  Google Scholar 

  • Bamforth SM, Singleton I (2005) Bioremediation of polycyclic aromatic hydrocarbons: current knowledge and future directions. J Chem Technol Biotechnol 80:723–736

    Article  CAS  Google Scholar 

  • Barret M, Carrère H, Delgadillo L, Patureau D (2010) PAH fate during the anaerobic digestion of contaminated sludge: Do bioavailability and/or cometabolism limit their biodegradation? Water Res 44:3797–3806

    Article  CAS  Google Scholar 

  • Baumard P, Budzinski H, Garrigues P, Narbonne JF, Burgeot T, Michel X, Bellocq J (1999) Polycyclic aromatic hydrocarbon (PAH) burden of mussels (Mytilus sp.) in different marine environments in relation with sediment PAH contamination, and bioavailability. Marine Environ Res 47:415–439

    Article  CAS  Google Scholar 

  • Bengtsson G, Törneman N, Yang X (2010) Spatial uncoupling of biodegradation, soil respiration, and PAH concentration in a creosote contaminated soil. Environ Pollut 158:2865–2871

    Article  CAS  Google Scholar 

  • Bernal-Martínez A, Carrère H, Patureau D, Delgenès JP (2005) Combining anaerobic digestion and ozonation to remove PAH from urban sludge. Process Biochem 40:3244–3250

    Article  Google Scholar 

  • Bezalel L, Hadar Y, Fu P, Freeman J, Cerniglia C (1996) Initial oxidation products in the metabolism of pyrene, anthracene, fluorene, and ibenzothiophene by the white rot fungus Pleurotus ostreatus. Appl Environ Microbiol 62:2554–2559

    CAS  Google Scholar 

  • Bogan BW, Sullivan WR (2003) Physicochemical soil parameters affecting sequestration and mycobacterial biodegradation of polycyclic aromatic hydrocarbons in soil. Chemosphere 52:1717–1726

    Article  CAS  Google Scholar 

  • Borde X, Guieysse B, Delgado O, Muñoz R, Hatti-Kaul R, Nugier-Chauvin C, Patin H, Mattiasson B (2003) Synergistic relationships in algal-bacterial microcosms for the treatment of aromatic pollutants. Biores Technol 86:293–300

    Article  Google Scholar 

  • Bosma T, Harms H, Zehnder A (2001) Biodegradation of xenobiotics in environment and technosphere. In: Beek B (ed) Biodegradation and Persistence. Springer, Berlin

    Google Scholar 

  • Bouchez M, Blanchet D, Vandecasteele JP (1995) Degradation of polycyclic aromatic hydrocarbons by pure strains and by defined strain associations: inhibition phenomena and cometabolism. Appl Microbiol Biotechnol 43:156–164

    Article  CAS  Google Scholar 

  • Buchholz F, Wick LY, Harms H, Maskow T (2007) The kinetics of polycyclic aromatic hydrocarbon (PAH) biodegradation assessed by isothermal titration calorimetry (ITC). Thermochimica Acta 458:47–53

    Article  CAS  Google Scholar 

  • Bumpus JA (1989) Biodegradation of polycyclic hydrocarbons by Phanerochaete chrysosporium. Appl Environ Microbiol 55:154–158

    CAS  Google Scholar 

  • Cajthaml T, Möder M, Kacer P, Sasek V, Popp P (2002) Study of fungal degradation products of polycyclic aromatic hydrocarbons using gas chromatography with ion trap mass spectrometry detection. J Chromatogr A 974:213–222

    Article  CAS  Google Scholar 

  • Cao B, Nagarajan K, Loh K-C (2009) Biodegradation of aromatic compounds: current status and opportunities for biomolecular approaches. Appl Microbiol Biotechnol 85:207–228

    Article  CAS  Google Scholar 

  • Cerniglia CE (1984) Microbial metabolism of polycyclic aromatic hydrocarbons. In: Allen IL (ed) Advances in applied microbiology. Academic Press,  

    Google Scholar 

  • Cerniglia CE (1993) Biodegradation of polycyclic aromatic hydrocarbons. Curr Opin Biotechnol 4:331–338

    Article  CAS  Google Scholar 

  • Cerniglia CE, Sutherland JB (2001) Bioremediation of polycyclic aromatic hydrocarbons by ligninolytic and non-ligninolytic fungi. In: de Gadd GM (ed) Fungi in Bioremediation. Cambridge University Press, Cambridge

    Google Scholar 

  • Cerniglia CE, Gibson DT, Van Baalen C (1980) Oxidation of naphthalene by cyanobacteria and microalgae. J Gen Microbiol 116:495–500

    CAS  Google Scholar 

  • Chang B-V, Chang I, Yuan S (2008) Anaerobic degradation of phenanthrene and pyrene in mangrove sediment. Bull Environ Contam Toxicol 80:145–149

    Article  CAS  Google Scholar 

  • Chen J, Wong MH, Wong YS, Tam NFY (2008) Multi-factors on biodegradation kinetics of polycyclic aromatic hydrocarbons (PAHs) by Sphingomonas sp. a bacterial strain isolated from mangrove sediment. Marine Pollut Bull 57:695–702

    Article  CAS  Google Scholar 

  • Chen B, Wang Y, Hu D (2010) Biosorption and biodegradation of polycyclic aromatic hydrocarbons in aqueous solutions by a consortium of white-rot fungi. J Hazard Mater 179:845–851

    Article  CAS  Google Scholar 

  • Chiou CT, Mcgroddy SE, Kile DE (1998) Partition characteristics of polycyclic aromatic hydrocarbons on soils and sediments. Environ Sci Technol 32:264–269

    Article  CAS  Google Scholar 

  • Code of Federal Regulation (1982) Title 40, Appendix A to part 423-126 Priority pollutants. 47 FR 52304

    Google Scholar 

  • Countway RE, Dickhut RM, Canuel EA (2003) Polycyclic aromatic hydrocarbon (PAH) distributions and associations with organic matter in surface waters of the York River, VA Estuary. Organ Geochem 34:209–224

    Article  CAS  Google Scholar 

  • Covino S, Cvancarová M, Muzikár M, Svobodová K, D’annibale A, Petruccioli M, Federici F, Kresinová Z, Cajthaml T (2010a) An efficient PAH-degrading Lentinus (Panus) tigrinus strain: Effect of inoculum formulation and pollutant bioavailability in solid matrices. J Hazard Mater 183:669–676

    Article  CAS  Google Scholar 

  • Covino S, Svobodová K, Kresinová Z, Petruccioli M, Federici F, D’annibale A, Cvancarová M, Cajthaml T (2010b) In vivo and in vitro polycyclic aromatic hydrocarbons degradation by Lentinus (Panus) tigrinus CBS 577.79. Biores Technol 101:3004–3012

    Article  CAS  Google Scholar 

  • Daane LL, Harjono I, Zylstra GJ, Haggblom MM (2001) Isolation and characterization of polycyclic aromatic hydrocarbon-degrading bacteria associated with the rhizosphere of salt marsh plants. Appl Environ Microbiol 67:2683–2691

    Article  CAS  Google Scholar 

  • Daane LL, Harjono I, Barns SM, Launen LA, Palleroni NJ, Haggblom MM (2002) PAH-degradation by Paenibacillus spp. and description of Paenibacillus naphthalenovorans sp. nov., a naphthalene-degrading bacterium from the rhizosphere of salt marsh plants. Int J Syst Evol Microbiol 52:131–139

    CAS  Google Scholar 

  • Das K, Mukherjee AK (2007) Crude petroleum-oil biodegradation efficiency of Bacillus subtilis and Pseudomonas aeruginosa strains isolated from a petroleum-oil contaminated soil from North-East India. Biores Technol 98:1339–1345

    Article  CAS  Google Scholar 

  • Dean-Ross D, Moody J, Cerniglia CE (2002) Utilization of mixtures of polycyclic aromatic hydrocarbons by bacteria isolated from contaminated sediment. FEMS Microbiol Ecol 41:1–7

    Article  CAS  Google Scholar 

  • Djomo JE, Garrigues P, Narbonne JF (1996) Uptake and depuration of polycyclic aromatic hydrocarbons from sediment by the zebrafish (Brachydanio Rerio). Environ Toxicol Chem 15:1177–1181

    Article  CAS  Google Scholar 

  • Eggen T, Majcherczyk A (1998) Removal of polycyclic aromatic hydrocarbons (PAH) in contaminated soil by white rot fungus Pleurotus ostreatus. Int Biodeter Biodegrad 41:111–117

    Article  CAS  Google Scholar 

  • Fernandes MB, Sicre MA, Boireau A, Tronczynski J (1997) Polyaromatic hydrocarbon (PAH) distributions in the Seine river and its estuary. Marine Pollut Bull 34:857–867

    Article  CAS  Google Scholar 

  • Fuchedzhieva N, Karakashev D, Angelidaki I (2008) Anaerobic biodegradation of fluoranthene under methanogenic conditions in presence of surface-active compounds. J Hazard Mater 153:123–127

    Article  CAS  Google Scholar 

  • Haritash AK, Kaushik CP (2009) Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): A review. J Hazard Mater 169:1–15

    Article  CAS  Google Scholar 

  • Hinga KR (2003) Degradation rates of low molecular weight PAH correlate with sediment TOC in marine subtidal sediments. Marine Pollut Bull 46:466–474

    Article  CAS  Google Scholar 

  • Hong Y-W, Yuan D-X, Lin Q-M, Yang T-L (2008) Accumulation and biodegradation of phenanthrene and fluoranthene by the algae enriched from a mangrove aquatic ecosystem. Marine Pollut Bull 56:1400–1405

    Article  CAS  Google Scholar 

  • Huesemann MH, Hausmann TS, Fortman TJ (2004) Does bioavailability limit biodegradation? A comparison of hydrocarbon biodegradation and desorption rates in aged soils. Biodegradation 15:261–274

    Article  CAS  Google Scholar 

  • Hwang S, Cutright TJ (2004) Preliminary exploration of the relationships between soil characteristics and PAH desorption and biodegradation. Environ Int 29:887–894

    Article  CAS  Google Scholar 

  • IARC (2010) Some non-heterocyclic polycyclic aromatic hydrocarbons and some related exposures. Monographs on the evaluation of carcinogenic risks to humans, vol. 92

    Google Scholar 

  • Jackson W, Pardue J (1999) Potential for intrinsic and enhanced crude oil biodegradation in Louisiana’s freshwater marshes. Wetlands 19:28–34

    Article  Google Scholar 

  • Johnsen A, Karlson U (2005) PAH degradation capacity of soil microbial communities: Does it depend on PAH exposure? Microb Ecol 50:488–495

    Article  CAS  Google Scholar 

  • Johnsen AR, Wick LY, Harms H (2005) Principles of microbial PAH-degradation in soil. Environ Pollut 133:71–84

    Article  CAS  Google Scholar 

  • Juhasz AL, Naidu R (2000) Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: a review of the microbial degradation of benzo[a]pyrene. Int Biodeter Biodegrad 45:57–88

    Article  CAS  Google Scholar 

  • Ke L, Luo L, Wang P, Luan T, Tam NF-Y (2010) Effects of metals on biosorption and biodegradation of mixed polycyclic aromatic hydrocarbons by a freshwater green alga Selenastrum capricornutum. Biores Technol 101:6950–6961

    Article  CAS  Google Scholar 

  • Kim IS, Park J-S, Kim K-W (2001) Enhanced biodegradation of polycyclic aromatic hydrocarbons using nonionic surfactants in soil slurry. Appl Geochem 16:1419–1428

    Article  CAS  Google Scholar 

  • Kim M, Bae S, Seol M, Lee J-H, Oh Y-S (2008) Monitoring nutrient impact on bacterial community composition during bioremediation of anoxic PAH-contaminated sediment. J Microbiol 46:615–623

    Article  CAS  Google Scholar 

  • Kirk TK, Farrell RL (1987) Enzymatic “Combustion”: The microbial degradation of Lignin. Ann Rev Microbiol 41:465–501

    Article  CAS  Google Scholar 

  • Kotterman MJJ, Heessels E, Jong E, Field JA (1994) The physiology of anthracene biodegradation by the white-rot fungus Bjerkandera sp. strain BOS55. Appl Microbiol Biotechnol 42:179–186

    Article  CAS  Google Scholar 

  • LaRocca C, Conti L, Crebelli R, Crochi B, Iacovella N, Rodriguez F, Turrio-Baldassarri L, DiDomenico A (1996) PAH content and mutagenicity of marine sediments from the Venice Lagoon. Ecotoxicol Environ Safety 33:236–245

    Article  CAS  Google Scholar 

  • Lei A-P, Hu Z-L, Wong Y-S, Tam NF-Y (2007) Removal of fluoranthene and pyrene by different microalgal species. Biores Technol 98:273–280

    Article  CAS  Google Scholar 

  • Li C-H, Zhou H-W, Wong Y-S, Tam NF-Y (2009) Vertical distribution and anaerobic biodegradation of polycyclic aromatic hydrocarbons in mangrove sediments in Hong Kong, South China. Sci Total Environ 407:5772–5779

    Article  CAS  Google Scholar 

  • Lin C, Gan L, Chen Z-L (2010) Biodegradation of naphthalene by strain Bacillus fusiformis (BFN). J Hazard Mater 182:771–777

    Article  CAS  Google Scholar 

  • Macías-Zamora JV, Mendoza-Vega E, Villaescusa-Celaya JA (2002) PAHs composition of surface marine sediments: a comparison to potential local sources in Todos Santos Bay, B.C., Mexico. Chemosphere 46:459–468

    Article  Google Scholar 

  • Mackay D, Shiu WY, Ma K-C, Lee SC (2006) Polynuclear aromatic hydrocarbons (PAHs) and related aromatic hydrocarbons. Handbook of physical-chemical properties and environmental fate for organic chemicals, 2nd Edition edn. CRC Press, Boca Raton

    Google Scholar 

  • Mahanty B, Pakshirajan K, Dasu V (2010) Batch biodegradation of PAHs in mixture by Mycobacterium frederiksbergense: analysis of main and interaction effects. Clean Technol Environ Pol 12:441–447

    Article  CAS  Google Scholar 

  • Maliszewska-Kordybach B, Smreczak B, Klimkowicz-Pawlas A, Terelak H (2008) Monitoring of the total content of polycyclic aromatic hydrocarbons (PAHs) in arable soils in Poland. Chemosphere 73:1284–1291

    Article  CAS  Google Scholar 

  • Márquez-Rocha FJ, Hernández-Rodríguez VZ, Vázquez-Duhalt R (2000) Biodegradation of soil-adsorbed polycyclic aromatic hydrocarbons by the white rot fungus Pleurotus ostreatus. Biotechnol Lett 22:469–472

    Article  Google Scholar 

  • McElroy AE, Farrington JW, Teal JM (1989) Bioavailability of polycyclic aromatic hydrocarbons in the aquatic environment. In: Vanarasi U (ed) Metabolism of polycyclic aromatic hydrocarbons in the aquatic environment. CRC Press, Boca Raton, pp 1–40

    Google Scholar 

  • Nadal M, Schuhmacher M, Domingo JL (2004) Levels of PAHs in soil and vegetation samples from Tarragona County, Spain. Environ Pollut 132:1–11

    Article  CAS  Google Scholar 

  • Nam K, Alexander M (1998) Role of nanoporosity and hydrophobicity in sequestration and bioavailability: Tests with model solids. Environ Sci Technol 32:71–74

    Article  CAS  Google Scholar 

  • Nam K, Kim JY (2002) Role of loosely bound humic substances and humin in the bioavailability of phenanthrene aged in soil. Environ Pollut 118:427–433

    Article  CAS  Google Scholar 

  • Nam JJ, Thomas GO, Jaward FM, Steinnes E, Gustafsson O, Jones KC (2008) PAHs in background soils from Western Europe: Influence of atmospheric deposition and soil organic matter. Chemosphere 70:1596–1602

    Article  CAS  Google Scholar 

  • Narro ML, Cerniglia CE, Van Baalen C, Gibson DT (1992a) Evidence for an NIH shift in oxidation of naphthalene by the marine cyanobacterium Oscillatoria sp. strain JCM. Appl Environ Microbiol 58:1360–1363

    CAS  Google Scholar 

  • Narro M, Cerniglia CE, Van Baalen C, Gibson DT (1992b) Metabolism of phenanthrene by the marine cyanobacterium Agmenellum quadruplicatum PR-6. Appl Environ Microbiol 58:1351–1359

    CAS  Google Scholar 

  • Navarro RR, Iimura Y, Ichikawa H, Tatsumi K (2008) Treatment of PAHs in contaminated soil by extraction with aqueous DNA followed by biodegradation with a pure culture of Sphingomonas sp. Chemosphere 73:1414–1419

    Article  CAS  Google Scholar 

  • Neff JM (1979) Polycyclic aromatic hydrocarbons in the aquatic environment, sources, fates, and biological effects. Applied Science Publishers Ltd., London

    Google Scholar 

  • Pagnout C, Frache G, Poupin P, Maunit B, Muller J-F, Férard J-F (2007) Isolation and characterization of a gene cluster involved in PAH degradation in Mycobacterium sp. strain SNP11: Expression in Mycobacterium smegmatis mc2155. Res Microbiol 158:175–186

    Article  CAS  Google Scholar 

  • Poeton TS, Stensel HD, Strand SE (1999) Biodegradation of polyaromatic hydrocarbons by marine bacteria: effect of solid phase on degradation kinetics. Water Res 33:868–880

    Article  CAS  Google Scholar 

  • Porte C, Albaigés J (1994) Bioaccumulation patterns of hydrocarbons and polychlorinated biphenyls in bivalves, crustaceans, and fishes. Arch Environ Contam Toxicol 26:273–281

    Article  CAS  Google Scholar 

  • Potin O, Veignie E, Rafin C (2004) Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by Cladosporium sphaerospermum isolated from an aged PAH contaminated soil. FEMS Microbiol Ecol 51:71–78

    Article  CAS  Google Scholar 

  • Pott P (1775) Cirurgical observations relative to the cataract, the polypus of the nose, the cancer of the scrotum, the different kinds of ruptures and the mortification of the toes and feet. In: Hawes, Clarke and Collins (eds) London, pp 63–68

    Google Scholar 

  • Pozdnyakova N, Nikiforova S, Makarov O, Chernyshova M, Pankin K, Turkovskaya O (2010) Influence of cultivation conditions on pyrene degradation by the fungus Pleurotus ostreatus D1. World J Microbiol Biotechnol 26:205–211

    Article  CAS  Google Scholar 

  • Quantin C, Joner EJ, Portal JM, Berthelin J (2005) PAH dissipation in a contaminated river sediment under oxic and anoxic conditions. Environ Pollut 134:315–322

    Article  CAS  Google Scholar 

  • Rehmann L, Prpich GP, Daugulis AJ (2008) Remediation of PAH contaminated soils: application of a solid-liquid two-phase partitioning bioreactor. Chemosphere 73:798–804

    Article  CAS  Google Scholar 

  • Reineke W (2001) Aerobic and anaerobic biodegradation potentials of microorganisms. In: Beek B (ed) Biodegradation and Persistance. Springer, Berlin

    Google Scholar 

  • Reuter W, Müller C (1993) New trends in photobiology: Adaptation of the photosynthetic apparatus of cyanobacteria to light and CO2. J Photochem Photobiol B: Biol 21:3–27

    Article  CAS  Google Scholar 

  • Rockne KJ, Chee-Sanford JC, Sanford RA, Hedlund BP, Staley JT, Strand SE (2000) Anaerobic naphthalene degradation by microbial pure cultures under nitrate-reducing conditions. Appl Environ Microbiol 66:1595–1601

    Article  CAS  Google Scholar 

  • Shao Z, Cui Z, Dong C, Lai Q, Chen L (2010) Analysis of a PAH-degrading bacterial population in subsurface sediments on the Mid-Atlantic Ridge. Deep Sea Res Part I: Oceanographic Res Papers 57:724–730

    Article  CAS  Google Scholar 

  • Smith JD, Bagg J, Wrigley I (1991) Extractable polycyclic hydrocarbons in waters from rivers in South-Eastern Australia. Water Res 25:1145–1150

    Article  CAS  Google Scholar 

  • Sobisch T, Heß H, Niebelschütz H, Schmidt U (2000) Effect of additives on biodegradation of PAH in soils. Colloids and Surfaces A: Physicochemical and Eng Aspects 162:1–14

    Article  CAS  Google Scholar 

  • Somtrakoon K, Suanjit S, Pokethitiyook P, Kruatrachue M, Lee H, Upatham S (2008) Enhanced biodegradation of anthracene in acidic soil by inoculated Burkholderia sp. VUN10013. Curr Microbiol 57:102–106

    Article  CAS  Google Scholar 

  • Tadros M, Hughes J (1997) Degradation of polycyclic aromatic hydrocarbons (PAHs) by indigenous mixed and pure cultures isolated from coastal sediments. Appl Biochem Biotechnol 63–65:865–870

    Article  Google Scholar 

  • Tang L, Tang X-Y, Zhu Y-G, Zheng M-H, Miao Q-L (2005) Contamination of polycyclic aromatic hydrocarbons (PAHs) in urban soils in Beijing, China. Environ Int 31:822–828

    Article  CAS  Google Scholar 

  • Tesai J-C, Kumar M, Lin J-G (2009) Anaerobic biotransformation of fluorene and phenanthrene by sulfate-reducing bacteria and identification of biotransformation pathway. J Hazard Mater 164:847–855

    Article  Google Scholar 

  • Valentín L, Feijoo G, Moreira MT, Lema JM (2006) Biodegradation of polycyclic aromatic hydrocarbons in forest and salt marsh soils by white-rot fungi. Int Biodeter Biodegrad 58:15–21

    Article  Google Scholar 

  • Valentín L, Lu-Chau TA, López C, Feijoo G, Moreira MT, Lema JM (2007) Biodegradation of dibenzothiophene, fluoranthene, pyrene and chrysene in a soil slurry reactor by the white-rot fungus Bjerkandera sp. BOS55. Process Biochem 42:641–648

    Article  Google Scholar 

  • Walter U, Beyer M, Klein J, Rehm HJ (1991) Degradation of pyrene by Rhodococcus sp. UW1. Appl Microbiol Biotechnol 34:671–676

    Article  CAS  Google Scholar 

  • Wang J, Bi Y, Pfister G, Henkelmann B, Zhu K, Schramm K-W (2009) Determination of PAH, PCB, and OCP in water from the Three Gorges reservoir accumulated by semipermeable membrane devices (SPMD). Chemosphere 75:1119–1127

    Article  CAS  Google Scholar 

  • Warshawsky D, Radike M, Jayasimhulu K, Cody T (1988) Metabolism of benzo(A)pyrene by a dioxygenase enzyme system of the freshwater green alga Selenastrum capricornutum. Biochem Biophys Res Commun 152:540–544

    Article  CAS  Google Scholar 

  • Warshawsky D, Cody T, Radike M, Reilman R, Schumann B, Ladow K, Schneider J (1995) Biotransformation of benzo[a]pyrene and other polycyclic aromatic hydrocarbons and heterocyclic analogs by several green algae and other algal species under gold and white light. Chemico-Biol Interact 97:131–148

    Article  CAS  Google Scholar 

  • Wilson SC, Jones KC (1993) Bioremediation of soil contaminated with polynuclear aromatic hydrocarbons (PAHs): A review. Environ Pollut 81:229–249

    Article  CAS  Google Scholar 

  • Witt G (2002) Occurrence and transport of polycyclic aromatic hydrocarbons in the water bodies of the Baltic Sea. Marine Chem 79:49–66

    Article  CAS  Google Scholar 

  • Xia XH, Yu H, Yang ZF, Huang GH (2006) Biodegradation of polycyclic aromatic hydrocarbons in the natural waters of the Yellow River: Effects of high sediment content on biodegradation. Chemosphere 65:457–466

    Article  CAS  Google Scholar 

  • Xue W, Warshawsky D (2005) Metabolic activation of polycyclic and heterocyclic aromatic hydrocarbons and DNA damage: A review. Toxicol Appl Pharmacol 206:73–93

    Article  CAS  Google Scholar 

  • Yamagiwa K, Ichikawa K (1915) Experimentelle Studie über die Pathogenese der Epithelialgeschwülste. Mitteilungen der Medizinischen Fakultät, Universität Tokyo 15, pp 295–344

    Google Scholar 

  • Yuan SY, Chang JS, Yen JH, Chang B-V (2001) Biodegradation of phenanthrene in river sediment. Chemosphere 43:273–278

    Article  CAS  Google Scholar 

  • Yuan SY, Shiung LC, Chang BB (2002) Biodegradation of polycyclic aromatic hydrocarbons by inoculated microorganisms in soil. Bull Environ Contam Toxicol 69:66–73

    Article  CAS  Google Scholar 

  • Yutthammo C, Thongthammachat N, Pinphanichakarn P, Luepromchai E (2010) Diversity and activity of PAH-degrading bacteria in the Phyllosphere of ornamental plants. Microb Ecol 59:357–368

    Article  CAS  Google Scholar 

  • Zhang C, Bennett GN (2005) Biodegradation of xenobiotics by anaerobic bacteria. Appl Microbiol Biotechnol 67:600–618

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisa Rojo-Nieto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rojo-Nieto, E., Perales-Vargas-Machuca, J.A. (2012). Microbial Degradation of PAHs: Organisms and Environmental Compartments. In: Singh, S. (eds) Microbial Degradation of Xenobiotics. Environmental Science and Engineering(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23789-8_10

Download citation

Publish with us

Policies and ethics