Skip to main content

Advertisement

Log in

PAH Degradation Capacity of Soil Microbial Communities—Does It Depend on PAH Exposure?

  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous pollutants of the environment. But is their microbial degradation equally wide in distribution? We estimated the PAH degradation capacity of 13 soils ranging from pristine locations (total PAHs ≈ 0.1 mg kg−1) to heavily polluted industrial sites (total PAHs ≈ 400 mg kg−1). The size of the pyrene- and phenanthrene-degrading bacterial populations was determined by most probable number (MPN) enumeration. Densities of phenanthrene degraders reflected previous PAH exposure, whereas pyrene degraders were detected only in the most polluted soils. The potentials for phenanthrene and pyrene degradation were measured as the mineralization of 14C-labeled spikes. The time to 10% mineralization of added 14C phenanthrene and 14C pyrene was inversely correlated with the PAH content of the soils. Substantial 14C phenanthrene mineralization in all soils tested, including seven unpolluted soils, demonstrated that phenanthrene is not a suitable model compound for predicting PAH degradation in soils. 14C pyrene was mineralized by all Danish soil samples tested, regardless of whether they were from contaminated sites or not, suggesting that in industrialized areas the background level of pyrene is sufficient to maintain pyrene degradation traits in the gene pool of soil microorganisms. In contrast, two pristine forest soils from northern Norway and Ghana mineralized little 14C pyrene within the 140-day test period. Mineralization of phenanthrene and pyrene by all Danish soils suggests that soil microbial communities of inhabited areas possess a sufficiently high PAH degradation capacity to question the value of bioaugmentation with specific PAH degraders for bioremediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. LR Bakken RA Olsen (1987) ArticleTitleThe relationship between cell size and viability of soil bacteria Microb Ecol 13 103–114 Occurrence Handle10.1007/BF02011247

    Article  Google Scholar 

  2. TNP Bosma PJM Middeldorp G Schraa AJB Zender (1997) ArticleTitleMass transfer limitation of biotransformation: quantifying bioavailability Environ Sci Technol 31 248–252 Occurrence Handle1:CAS:528:DyaK28XntVyjsrs%3D

    CAS  Google Scholar 

  3. UC Brinch F Ekelund CS Jacobsen (2002) ArticleTitleMethod for spiking soil samples with organic compounds Appl Environ Microbiol 68 1808–1816 Occurrence Handle11916700 Occurrence Handle10.1128/AEM.68.4.1808-1816.2002 Occurrence Handle1:CAS:528:DC%2BD38XivFGltbs%3D

    Article  PubMed  CAS  Google Scholar 

  4. E Brorström-Lundén (1991) Mättningar av organiska föreningar i luft och deposition vid Svenska vestkusten Institut för Vatten-och Luftvärdsforskning Göteborg, Sweden

    Google Scholar 

  5. L Carmichael F Pfander (1997) ArticleTitlePolynuclear aromatic hydrocarbon metabolism in soils: relationship to soil characteristics and preexposure Environ Toxicol Chem 16 666–675 Occurrence Handle10.1897/1551-5028(1997)016<0666:PAHMIS>2.3.CO;2 Occurrence Handle1:CAS:528:DyaK2sXis12ltL8%3D

    Article  CAS  Google Scholar 

  6. G Carrera P Fernandez RM Vilanova JO Grimalt (2001) ArticleTitlePersistent organic pollutants in snow from European high mountain areas Atmos Environ 35 245–254 Occurrence Handle10.1016/S1352-2310(00)00201-6 Occurrence Handle1:CAS:528:DC%2BD3cXovFyqt7o%3D

    Article  CAS  Google Scholar 

  7. P Fernandez RM Vilanova C Martinez P Appleby JO Grimalt (2000) ArticleTitleThe historical record of atmospheric pyrolytic pollution over Europe registered in the sedimentary PAH from remote mountain lakes Environ Sci Technol 34 1906–1913 Occurrence Handle10.1021/es9912271 Occurrence Handle1:CAS:528:DC%2BD3cXit12jtLw%3D

    Article  CAS  Google Scholar 

  8. A Garcia-Granados PE Lopez E Melguizo A Parra Y Simeo (2004) ArticleTitleOxidation of several triterpenic diene and triene systems. Oxidative cleavage to obtain chiral intermediates for drimane and phenanthrene semi-synthesis Tetrahedron 60 3831–3845 Occurrence Handle1:CAS:528:DC%2BD2cXislyrsbY%3D

    CAS  Google Scholar 

  9. J Grimalt BL Drooge Particlevan A Ribes P Fernández P Appleby (2004) ArticleTitlePolycyclic aromatic hydrocarbon composition in soils and sediments of high altitude lakes Environ Pollut 131 13–24 Occurrence Handle15210271 Occurrence Handle10.1016/j.envpol.2004.02.024 Occurrence Handle1:CAS:528:DC%2BD2cXltVOhtrs%3D

    Article  PubMed  CAS  Google Scholar 

  10. RJ Grosser D Warshawsky JR Vestal (1991) ArticleTitleIndigenous and enhanced mineralization of pyrene, benzo(a)pyrene and carbazole in soils Appl Environ Microbiol 57 3462–3469 Occurrence Handle1785924 Occurrence Handle1:CAS:528:DyaK38Xot1Oquw%3D%3D

    PubMed  CAS  Google Scholar 

  11. Illerup, JB, Nielsen, M, Winther, M, Mikkelsen, MH, Lyck, E, Hoffmann, L, Fauser, P (2004) Annual Danish Emissions Inventory Report to UNECE. Inventories 1990–2002, Research Notes from NERI Vol. 202. National Environmental Research Institute, Ministry of the Environment, Roskilde, Denmark

  12. AR Johnsen K Bendixen U Karlson (2002) ArticleTitleDetection of microbial growth on PAHs in microtiter plates using the respiration indicator WST-1 Appl Environ Microbiol 68 2683–2689 Occurrence Handle12039720 Occurrence Handle1:CAS:528:DC%2BD38XksVWqs7w%3D

    PubMed  CAS  Google Scholar 

  13. SV Kakareka TI Kukharchyk VS Khomich (2005) ArticleTitleStudy of PAH emission from the solid fuels combustion in residential furnaces Environ Pollut 133 383–387 Occurrence Handle15519469 Occurrence Handle10.1016/j.envpol.2004.01.009 Occurrence Handle1:CAS:528:DC%2BD2cXpt1Whsrk%3D

    Article  PubMed  CAS  Google Scholar 

  14. AL Koch (1990) ArticleTitleDiffusion, the crucial process in many aspects of the biology of bacteria Adv Microb Ecol 11 37–69

    Google Scholar 

  15. M Kästner B Mahro (1996) ArticleTitleMicrobial degradation of polycyclic aromatic hydrocarbons in soils affected by the organic matrix of compost Appl Microbiol Biotechnol 44 668–675 Occurrence Handle8703435

    PubMed  Google Scholar 

  16. CJA Macleod KT Semple (2002) ArticleTitleThe adaptation of two similar soils to pyrene catabolism Environ Pollut 119 357–364 Occurrence Handle12166669 Occurrence Handle10.1016/S0269-7491(01)00343-8 Occurrence Handle1:CAS:528:DC%2BD38XjtVSht7s%3D

    Article  PubMed  CAS  Google Scholar 

  17. T Madsen P Kristensen (1997) ArticleTitleEffects of bacterial inoculation and nonionic surfactants on degradation of polycyclic aromatic hydrocarbons in soil Environ Toxicol Chem 16 631–637 Occurrence Handle10.1897/1551-5028(1997)016<0631:EOBIAN>2.3.CO;2 Occurrence Handle1:CAS:528:DyaK2sXis12lt7g%3D

    Article  CAS  Google Scholar 

  18. MM Miller SP Wasik GL Huang WY Shiu D Mackay (1985) ArticleTitleRelationships between octanol water partition—coefficient and aqueous solubility Environ Sci Technol 19 522–529 Occurrence Handle1:CAS:528:DyaL2MXhvFaisLg%3D

    CAS  Google Scholar 

  19. JM Neff (1979) Polycyclic Aromatic Hydrocarbons in the Aquatic Environment Applied Science Publishers Essex, England 8–16

    Google Scholar 

  20. K Prevedouros E Brorström-Lundén CJ Halsall KC Jones RGM Lee RGM Sweetman (2004) ArticleTitleSeasonal and long-term trends in atmospheric PAH concentrations: evidence and implications Environ Pollut 128 17–27 Occurrence Handle14667717 Occurrence Handle1:CAS:528:DC%2BD3sXps1CjtrY%3D

    PubMed  CAS  Google Scholar 

  21. HH Richnow E Annweiler M Koning JC Luth R Stegmann C Garms W Francke W Michaelis (2000) ArticleTitleTracing the transformation of labelled [1-13C]phenanthrene in a soil bioreactor Environ Pollut 108 91–101 Occurrence Handle15092970 Occurrence Handle10.1016/S0269-7491(99)00205-5 Occurrence Handle1:CAS:528:DC%2BD3cXhs1ahs7o%3D

    Article  PubMed  CAS  Google Scholar 

  22. EE Schulte C Kaufmann JB Peter (1991) ArticleTitleThe influence of sample size and heating time on soil weight loss-on-ignition Commun Soil Sci Plant Anal 22 159–168 Occurrence Handle10.1080/00103629109368402

    Article  Google Scholar 

  23. BRT Simoneit JO Grimalt TG Wang RE Cox PG Hatcher A Nissenbaum (1986) ArticleTitleCyclic terpenoids of contemporary resinous plant detritus and of fossil woods, ambers and coals Org Geochem 10 877–889 Occurrence Handle10.1016/S0146-6380(86)80025-0 Occurrence Handle1:CAS:528:DyaL2sXitFOhtrg%3D

    Article  CAS  Google Scholar 

  24. JC Spain PA Veld Particlevan (1983) ArticleTitleAdaptation of natural microbial communities to degradation of xenobiotic compounds—effects of concentration, exposure time, inoculum, and chemical structure Appl Environ Microbiol 45 428–435 Occurrence Handle16346193 Occurrence Handle1:CAS:528:DyaL3sXhtFehurs%3D

    PubMed  CAS  Google Scholar 

  25. YL Tan A Kong MA Monetti (1996) ArticleTitleBiogenic polycyclic aromatic hydrocarbons in an Alaskan arctic lake sediment Polycycl Aromat Compd 9 185–192 Occurrence Handle1:CAS:528:DyaK2sXjt1KltLw%3D

    CAS  Google Scholar 

  26. D Trzesicka-Mlynarz OP Ward (1996) ArticleTitleDegradation of fluoranthene in a soil matrix by indigenous and introduced bacteria Biotechnol Lett 18 181–186 Occurrence Handle10.1007/BF00128676 Occurrence Handle1:CAS:528:DyaK28XhtFaltb4%3D

    Article  CAS  Google Scholar 

  27. RM Vilanova P Fernandez C Martinez JO Grimalt (2001) ArticleTitlePolycyclic aromatic hydrocarbons in remote mountain lake waters Water Res 35 3916–3926 Occurrence Handle12230174 Occurrence Handle10.1016/S0043-1354(01)00113-0 Occurrence Handle1:CAS:528:DC%2BD3MXms1Crtb4%3D

    Article  PubMed  CAS  Google Scholar 

  28. F Volkering AM Breure A Sterkenburg JG Andel Particlevan (1992) ArticleTitleMicrobial degradation of polycyclic aromatic hydrocarbons: effect of substrate availability on bacterial growth kinetics Appl Microbiol Biotechnol 36 548–552 Occurrence Handle10.1007/BF00170201 Occurrence Handle1:CAS:528:DyaK38XhsVOrsLo%3D

    Article  CAS  Google Scholar 

  29. LY Wick T Colangelo H Harms (2001) ArticleTitleKinetics of mass-transfer limited bacterial growth on solid PAHs Environ Sci Technol 35 354–361 Occurrence Handle11347609 Occurrence Handle10.1021/es001384w Occurrence Handle1:CAS:528:DC%2BD3cXos1alsr8%3D

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Technical assistance by Ellen Christiansen, Klaus Jacobsen, Lotte Frederiksen, and Trine L. Hansen is greatly acknowledged. Soils were sampled in Norway by Inger Lise Fagerli, Department of Biology, University of Tromsø, and in Ghana by Bo Elberling, Geografisk Institut, Københavns Universitet. This study was supported financially by the European Commission (contracts “BIOSTIMUL”, QLRT-1999-00326, and “ALARM”, GOCE-CT-2003-506675) and by the Danish Ministry of Science, Technology, and Innovation through embedding of the Strategic Environmental Research Center “BIOPRO” (contract no. VTU44092/175813).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Karlson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnsen, A.R., Karlson, U. PAH Degradation Capacity of Soil Microbial Communities—Does It Depend on PAH Exposure?. Microb Ecol 50, 488–495 (2005). https://doi.org/10.1007/s00248-005-0022-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-005-0022-5

Keywords

Navigation