Skip to main content

Genome Structure and Gene Expression Variation in Plant Mitochondria, Particularly in the Genus Silene

  • Chapter
  • First Online:
Evolutionary Biology – Concepts, Biodiversity, Macroevolution and Genome Evolution
  • 2015 Accesses

Abstract

The plant mt genomes are highly dynamic. Their evolution is driven by frequent rearrangements and gene transfers, whereas substitution rate is generally slow with several exceptions. The genus Silene (Caryophyllales) represents one of them and exhibits high mutation rate in mt DNA. The gynodioecious species (producing female and hermaphroditic individuals) of this genus show also a high polymorphism in mt DNA due to the balancing selection in favor of various mt genomes in the same population. Thus, Silene species possess plenty of mt markers, which facilitate the study of the impact of mt genome rearrangements on mt gene expression and function. They are also good models for the investigation of functional and evolutionary aspects of heteroplasmy, the situation when two or more organelles with distinct genomes co-occur in the same individual.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelnoor RV, Yule R, Elo A, Christensen AC, Meyer-Gauen G, Mackenzie SA (2003) Substoichiometric shifting in the plant mitochondrial genome is influenced by a gene homologous to MutS. Proc Natl Acad Sci USA 100:5968–5973

    Article  PubMed  CAS  Google Scholar 

  • Adams KL, Palmer JD (2003) Evolution of mitochondrial gene content: gene loss and transfer to the nucleus. Mol Phylogenet Evol 29:380–395

    Article  PubMed  CAS  Google Scholar 

  • Adams KL, Daley DO, Qiu YL, Whelan J, Palmer JD (2000) Repeated, recent and diverse transfers of a mitochondrial gene to the nucleus in flowering plants. Nature 408:354–357

    Article  PubMed  CAS  Google Scholar 

  • Allen JO, Fauron CM, Minx P et al (2007) Comparisons among two fertile and three male sterile mitochondrial genomes of maize. Genetics 177:1173–1192

    Article  PubMed  CAS  Google Scholar 

  • Alverson AJ, Wei XX, Rice DW, Stern DB, Barry K, Palmer JD (2010) Insights into the evolution of mitochondrial genome size from complete sequences of Citrullus lanatus and Cucurbita pepo (Cucurbitaceae). Mol Biol Evol 27:1436–1448

    Article  PubMed  CAS  Google Scholar 

  • Andersson H (1999) Female and hermaphrodite flowers on a chimeric gynomonoecious Silene vulgaris plant produce offspring with different genders: a case of heteroplasmic sex determination? J Hered 90:563–565

    Article  Google Scholar 

  • Andres C, Lurin C, Small ID (2007) The multifarious roles of PPR proteins in plant mitochondrial gene expression. Physiol Plant 129:14–22

    Article  CAS  Google Scholar 

  • Arrieta-Montiel MP, Shedge V, Davila J, Christensen AC, Mackenzie SA (2009) Diversity of the Arabidopsis mitochondrial genome occurs via nuclear-controlled recombination activity. Genetics 183:1261–1268

    Article  PubMed  CAS  Google Scholar 

  • Balk J, Leaver CJ (2001) The PET1-CMS mitochondrial mutation in sunflower is associated with premature programmed cell death and cytochrome c release. Plant Cell 13:1803–1818

    PubMed  CAS  Google Scholar 

  • Barr CM, Fishman L (2010) The nuclear component of a cytonuclear hybrid incompatibility in Mimulus maps to a cluster of pentatricopeptide repeat genes. Genetics 184:455, U198

    Article  PubMed  CAS  Google Scholar 

  • Barr CM, Keller SR, Ingvarsson PI, Sloan DB, Taylor DR (2007) Variation in mutation rate and polymorphism among mitochondrial genes of Silene vulgaris. Mol Biol Evol 24:1783–1791

    Article  PubMed  CAS  Google Scholar 

  • Bentley KE, Mandel JR, McCauley DE (2010) Paternal leakage and heteroplasmy of mitochondrial genomes in Silene vulgaris: evidence from experimental crosses. Genetics 185:961–968

    Article  PubMed  CAS  Google Scholar 

  • Bentolila S, Alfonso AA, Hanson MR (2002) A pentatricopeptide repeat-containing gene restores fertility to cytoplasmic male-sterile plants. Proc Natl Acad Sci USA 99:10887–10892

    Article  PubMed  CAS  Google Scholar 

  • Bergthorsson U, Richardson AO, Young GJ, Goertzen LR, Palmer JD (2004) Massive horizontal transfer of mitochondrial genes from diverse land plant donors to the basal angiosperm Amborella. Proc Natl Acad Sci USA 101:17747–17752

    Article  PubMed  CAS  Google Scholar 

  • Bernasconi G, Antonovics J, Biere A, Charlesworth D, Delph LF, Filatov D, Giraud T, Hood ME, Marais GAB, McCauley DE, Pannell JR, Shykoff JA, Vyskot B, Wolfe L, Wimer A (2009) Silene as a model system in ecology and evolution. Heredity 103:5–14

    Article  PubMed  CAS  Google Scholar 

  • Binder S, Marchfelder A, Brennicke A, Wissinger B (1992) RNA editing in transsplicing intron sequences of nad2 messenger-RNAs in Oenothera mitochondria. J Biol Chem 267:7615–7623

    PubMed  CAS  Google Scholar 

  • Bonen L (2008) Cis- and trans-splicing of group II introns in plant mitochondria. Mitochondrion 8:26–34

    Article  PubMed  CAS  Google Scholar 

  • Boore JL (1999) Animal mitochondrial genomes. Nucleic Acids Res 27:1767–1780

    Article  PubMed  CAS  Google Scholar 

  • Cappadocia L, Marechal A, Parent JS, Lepage E, Sygusch J, Brisson N (2010) Crystal structures of DNA-Whirly complexes and their role in Arabidopsis organelle genome repair. Plant Cell 22:1849–1867

    Article  PubMed  CAS  Google Scholar 

  • Chapdelaine Y, Bonen L (1991) The wheat mitochondrial gene for subunit I of the NADH dehydrogenase complex: a transsplicing model for this gene-in-pieces. Cell 65:465–472

    Article  PubMed  CAS  Google Scholar 

  • Charlesworth D, Laporte V (1998) The male-sterility polymorphism of Silene vulgaris: analysis of genetic data from two populations and comparison with Thymus vulgaris. Genetics 150:1267–1282

    PubMed  CAS  Google Scholar 

  • Chaw SM, Shih ACC, Wang D, Wu YW, Liu SM, Chou TY (2008) The mitochondrial genome of the gymnosperm Cycas taitungensis contains a novel family of short interspersed elements, Bpu sequences, and abundant RNA editing sites. Mol Biol Evol 25:603–615

    Article  PubMed  CAS  Google Scholar 

  • Cho Y, Mower JP, Qiu YL, Palmer JD (2004) Mitochondrial substitution rates are extraordinarily elevated and variable in a genus of flowering plants. Proc Natl Acad Sci USA 101:17741–17746

    Article  PubMed  CAS  Google Scholar 

  • Covello PS, Gray MW (1989) RNA editing in plant mitochondria. Nature 341:662–666

    Article  PubMed  CAS  Google Scholar 

  • Culligan KM, Meyer-Gauen G, Lyons-Weiler J, Hays JB (2000) Evolutionary origin, diversification and specialization of eukaryotic MutS homolog mismatch repair proteins. Nucleic Acids Res 28:463–471

    Article  PubMed  CAS  Google Scholar 

  • Cummings DJ, McNally KL, Domenico JM, Matsuura ET (1990) The complete DNA sequence of the mitochondrial genome of Podospora anserina. Curr Genet 17:375–402

    Article  PubMed  CAS  Google Scholar 

  • Darwin CR (1877) The different forms of flowers on plants of the same species. Murray, London

    Book  Google Scholar 

  • Dewey RE, Levings CS, Timothy DH (1986) Novel recombinations in the maize mitochondrial genome produce a unique transcriptional unit in the Texas male-sterile cytoplasm. Cell 44:439–449

    Article  PubMed  CAS  Google Scholar 

  • Elansary HO, Müller K, Olson MS, Storchova H (2010) Transcription profiles of mitochondrial genes correlate with mitochondrial DNA haplotypes in a natural population of Silene vulgaris. BMC Plant Biol 10:11

    Article  PubMed  CAS  Google Scholar 

  • Feng X, Kaur AP, Mackenizie SA, Dweikat IM (2009) Substoichiometric shifting in the fertility reversion of cytoplasmic male sterile pearl millet. Theor Appl Genet 118:1361–1370

    Article  PubMed  CAS  Google Scholar 

  • Forner J, Weber B, Wietholter C, Meyer RC, Binder S (2005) Distant sequences determine 5′ end formation of cox3 transcripts in Arabidopsis thaliana ecotype C24. Nucleic Acids Res 33:4673–4682

    Article  PubMed  CAS  Google Scholar 

  • Forner J, Weber B, Thuss S, Wildum S, Binder S (2007) Mapping of mitochondrial mRNA termini in Arabidopsis thaliana: t-elements contribute to 5′ and 3′ end formation. Nucleic Acids Res 35:3676–3692

    Article  PubMed  CAS  Google Scholar 

  • Forner J, Hölzle A, Jonietz C, Thuss S, Schwarzländer M, Weber B, Meyer RC, Binder S (2008) Mitochondrial mRNA polymorphisms in different Arabidopsis accessions. Plant Physiol 148:1106–1116

    Article  PubMed  CAS  Google Scholar 

  • Garraud C, Brachi B, Dufay M, Touzet P, Shykoff JA (2011) Genetic determination of male sterility in gynodioecious Silene nutans. Heredity 106:757–764. doi:10.1038/hdy.2010.116

    Article  PubMed  CAS  Google Scholar 

  • Giege P, Hoffmann M, Binder S, Brennicke A (2000) RNA degradation buffers asymmetries of trancription in Arabidopsis mitochondria. EMBO Rep 1:164–170

    Article  PubMed  CAS  Google Scholar 

  • Gillman JD, Bentolila S, Hanson MR (2007) The petunia restorer of fertility protein is part of a large mitochondrial complex that interacts with transcripts of the CMS-associated locus. Plant J 49:217–227

    Article  PubMed  CAS  Google Scholar 

  • Goremykin VV, Salamini F, Velasco R, Viola R (2009) Mitochondrial DNA of Vitis vinifera and the issue of rampant horizontal gene transfer. Mol Biol Evol 26:99–110

    Article  PubMed  CAS  Google Scholar 

  • Gouyon PH, Couvet D (1987) A conflict between two sexes, females and hermaphrodites. In:Stearns SC (ed) The evolution of sex and its consequences. Birkhauser, Basel, pp 245–261

    Google Scholar 

  • Gray MW (2003) Diversity and evolution of mitochondrial RNA editing systems. IUBMB Life 55:227–233

    Article  PubMed  CAS  Google Scholar 

  • Handa H (2008) Linear plasmids in plant mitochondria: peaceful coexistences or malicious invasions? Mitochondrion 8:15–25

    Article  PubMed  CAS  Google Scholar 

  • Handa H, Itani K, Sato H (2002) Structural features and expression analysis of a linear mitochondrial plasmid in rapeseed (Brassica napus L.). Mol Genet Genomics 267:797–805

    Article  PubMed  CAS  Google Scholar 

  • Hanson MR, Bentolila S (2004) Interactions of mitochondrial and nuclear genes that affect male gametophyte development. Plant Cell 16:S154–S169

    Article  PubMed  CAS  Google Scholar 

  • Hattori N, Kitigawa K, Takumi S, Nakamura C (2002) Mitochondrial DNA heteroplasmy in wheat, Aegilops and their nucleus-cytoplasm hybrids. Genetics 160:1619–1630

    PubMed  CAS  Google Scholar 

  • Hedgcoth C, El-Shehawi AM, Wei P, Clarkson M, Tamalis D (2002) A chimeric open redaing frame associated with cytoplasmic male sterility in alloplasmic wheat with Triticum timopheevi mitochondria is present in several Triticum and Aegilops species, barley, and rye. Curr Genet 41:357–365

    Article  PubMed  CAS  Google Scholar 

  • Hedtke B, Legen J, Weihe A, Herrmann RG, Borner T (2002) Six active phage-type RNA polymerase genes in Nicotiana tabacum. Plant J 30:625–637

    Article  PubMed  CAS  Google Scholar 

  • Houliston GJ, Olson MS (2006) Nonneutral evolution of organelle genes in Silene vulgaris. Genetics 174:1983–1994

    Article  PubMed  CAS  Google Scholar 

  • Ingvarsson PK, Taylor DR (2002) Genealogical evidence for epidemics of selfish genes. Proc Natl Acad Sci USA 99:11265–11269

    Article  PubMed  CAS  Google Scholar 

  • Janska H, Sarria R, Woloszynska M, Arrieta-Montiel M, Mackenzie SA (1998) Stoichiometric shifts in the common bean mitochondrial genome leading to male sterility and spontaneous reversion to fertility. Plant Cell 10:1163–1180

    PubMed  CAS  Google Scholar 

  • Kim DH, Kang JG, Kim BD (2007) Isolation and characterization of the cytoplasmic male sterility-associated orf456 gene of chilli pepper (Capsicum annuum L.). Plant Mol Biol 63:519–532

    Article  PubMed  CAS  Google Scholar 

  • Klass AL, Olson MS (2006) Spatial distributions of cytoplasmic types and sex expression in Alaskan populations of Silene acaulis. Int J Plant Sci 167:179–189

    Article  Google Scholar 

  • Knoop V, Schuster W, Wissinger B, Brennicke A (1991) Transsplicing integrates an exon of 22 nucleotides into the nad5 messenger-RNA in higher-plant mitochondria. EMBO J 10:3483–3493

    PubMed  CAS  Google Scholar 

  • Kubo T, Nishizawa S, Mikami T (1999) Alterations in organization and transcription of the mitochondrial genome of cytoplasmic male sterile sugar beet (Beta vulgaris L.). Mol Gen Genet 262:283–290

    Article  PubMed  CAS  Google Scholar 

  • Kubo T, Nishizawa S, Sugawara A, Itchoda N, Estiati A, Mikami T (2000) The complete nucleotide sequence of the mitochondrial genome of sugar beet (Beta vulgaris L.) reveals a novel gene for tRNA(Cys)(GCA). Nucleic Acids Res 28:2571–2576

    Article  PubMed  CAS  Google Scholar 

  • Kühn K, Weihe A, Börner T (2005) Multiple promoters are a common feature of mitochondrial genes in Arabidopsis. Nucleic Acids Res 33:337–346

    Article  PubMed  CAS  Google Scholar 

  • Lee J, Young JPW (2009) The mitochondrial genome sequence of the arbuscular mycorrhizal fungus Glomus intraradices isolate 494 and implications for the phylogenetic placement of Glomus. New Phytol 183:200–211

    Article  PubMed  CAS  Google Scholar 

  • Leino M, Landgren M, Glimelius K (2005) Alloplasmic effects on mitochondrial transcriptional activity and RNA turnover result in accumulated transcripts of Arabidopsis orfs in cytoplasmic male-sterile Brassica napus. Plant J 42:469–480

    Article  PubMed  CAS  Google Scholar 

  • Lupold DS, Caoile AGFS, Stern DB (1999) The maize mitochondrial cox2 gene has five promoters in two genomic regions, including a complex promoter consisting of seven overlapping units. J Biol Chem 274:3897–3903

    Article  PubMed  CAS  Google Scholar 

  • Mackenzie SA (2007) The unique biology of mitochondrial genome instability in plants. In: Logan D (ed) Plant mitochondria. Blackwell Publishing, Oxford, pp 36–46

    Chapter  Google Scholar 

  • Malek O, Knoop V (1998) Trans-splicing group II introns in plant mitochondria: the complete set of cis-arranged homologs in ferns, fern allies, and a hornwort. RNA 4:1599–1609

    Article  PubMed  CAS  Google Scholar 

  • Malek O, Brennicke A, Knoop V (1997) Evolution of trans-splicing plant mitochondrial introns in pre-Permian times. Proc Natl Acad Sci USA 94:553–558

    Article  PubMed  CAS  Google Scholar 

  • Manchekar M, Scissum-Gunn KD, Song DQ, Khazi F, McLean SL, Nielsen BL (2006) DNA recombination activity in soybean mitochondria. J Mol Biol 356:288–299

    Article  PubMed  CAS  Google Scholar 

  • Manchekar M, Scissum-Gunn KD, Hammett LA, Backert S, Nielsen BL (2009) Mitochondrial DNA recombination in Brassica campestris. Plant Sci 177:629–635

    Article  CAS  Google Scholar 

  • Marechal A, Brisson N (2010) Recombination and the maintenance of plant organelle genome stability. New Phytol 186:299–317

    Article  PubMed  CAS  Google Scholar 

  • McCauley DE, Ellis JR (2008) Recombination and linkage disequilibrium among mitochondrial genes in structured populations of the gynodioecious plant Silene vulgaris. Evolution 62:823–832

    Article  PubMed  CAS  Google Scholar 

  • McCauley DE, Olson MS (2008) Do recent findings in plant mitochondrial molecular and population genetics have implications for the study of gynodioecy and cytonuclear conflict? Evolution 62:1013–1025

    Article  PubMed  Google Scholar 

  • McCauley DE, Olson MS, Emery SN, Taylor DR (2000) Population structure influences sex ratio evolution in gynodioecious plant. Am Nat 155:814–819

    Article  PubMed  Google Scholar 

  • McCauley DE, Bailey MF, Sherman NA, Darnell MZ (2005) Evidence for paternal transmission and heteroplasmy in the mitochondrial genome of Silene vulgaris, a gynodioecious plant. Heredity 95:50–58

    Article  PubMed  CAS  Google Scholar 

  • Mellado RP, Penalva MA, Inciarte MR, Salas M (1980) The protein covalently linked to the 5′ termini of the DNA of Bacillus subtilis phage phi-29 is involved in the initiation of DNA-replication. Virology 104:84–96

    Article  PubMed  CAS  Google Scholar 

  • Mower JP, Touzet P, Gummow JS, Delph LF, Palmer JD (2007) Extensive variation in synonymous substitution rates in mitochondrial genes of seed plants. BMC Evol Biol 7:135

    Article  PubMed  CAS  Google Scholar 

  • Moyekens CA, Mackenzie SA, Shoemaker RC (1995) Mitochondrial genome diversity in soybean: repeats and rearrangements. Plant Mol Biol 29:245–254

    Article  Google Scholar 

  • Newton KJ, Mariano JM, Gibson CM, Kuzmin E, Gabay-Laughnan S (1996) Involvement of S2 episomal sequences in the generation of NCS4 deletion mutation in maize mitochondria. Dev Genet 19:277–286

    Article  PubMed  CAS  Google Scholar 

  • Oldenburg DJ, Bendich J (1996) Size and structure of replicating mitochondrial DNA in cultured tobacco cells. Plant Cell 8:447–461

    PubMed  CAS  Google Scholar 

  • Olson MS, McCauley DE (2000) Linkage disequilibrium and phylogenetic congruence between chloroplast and mitochondrial haplotypes in Silene vulgaris. ProcR Soc Lond B 267:1801–1808

    Article  CAS  Google Scholar 

  • Olson MS, McCauley DE (2002) Mitochondrial DNA diversity, population structure, and gender association in the gynodioecious plant Silene vulgaris. Evolution 56:253–262

    PubMed  CAS  Google Scholar 

  • Palmer JD, Shields CR (1984) Tripartite structure of the Brassica-campestris mitochondrial genome. Nature 307:437–440

    Article  CAS  Google Scholar 

  • Palmer JD, Adams KL, Cho Y, Parkinson CL, Qiu YL, Song K (2000) Dynamic evolution of plant mitochondrial genomes: mobile genes and introns and highly variable mutation rates. Proc Natl Acad Sci 97:6960–6966

    Article  PubMed  CAS  Google Scholar 

  • Parkinson CL, Mower JP, Qiu YL, Shirk AJ, Song K, Young ND, dePamphilis CW, Palmer JD (2005) Multiple major increases and decreases in mitochondrial substitution rates in the plant family Geraniaceae. BMC Evol Biol 5:73

    Article  PubMed  CAS  Google Scholar 

  • Pearl SA, Welch ME, McCauley DE (2009) Mitochondrial heteroplasmy and paternal leakage in natural populations of Silene vulgaris, a gynodioecious plant. Mol Biol Evol 26:537–545

    Article  PubMed  CAS  Google Scholar 

  • Qiu YL, Palmer JD (2004) Many independent origins of trans splicing of a plant mitochondrial group II intron. J Mol Evol 59:80–89

    PubMed  CAS  Google Scholar 

  • Richards AJ (1997) Plant breeding systems. Chapman and Hall, London

    Google Scholar 

  • Robison MM, Wolyn DJ (2005) A mitochondrial plasmid and plasmid-like RNA and DNA polymerases encoded within the mitochondrial genome of carrot (Daucus carota L.). Curr Genet 47:57–66

    Article  PubMed  CAS  Google Scholar 

  • Saumitou-Laprade P, Pannenbecker G, Boutin-Stadler V, Michaelis G, Vernet P (1991) Plastid DNA diversity in natural populations of Beta maritima showing additional variation in sexual phenotype and mitochondrial DNA. Theor Appl Genet 81:533–536

    Article  Google Scholar 

  • Schmitz-Linneweber C, Small I (2008) Pentatricopeptide repeat proteins: a socket set for organelle gene expression. Trends Plant Sci 13:663–670

    Article  PubMed  CAS  Google Scholar 

  • Shedge V, Arrieta-Montiel M, Christensen AC, Mackenzie SA (2007) Plant mitochondrial recombination surveillance requires unusual RecA and MutS homologs. Plant Cell 19:1–14

    Article  CAS  Google Scholar 

  • Shedge V, Davile J, Arrieta-Montiel MP, Mohammed S, Mackenzie SA (2010) Extensive rearrangement of the Arabidopsis mitochondrial genome elicits cellular conditions for thermotolerance. Plant Physiol 152:1960–1970

    Google Scholar 

  • Sloan DB, Taylor DR (2010) Testing for selection on synonymous sites in plant mitochondrial DNA: the role of codon bias and RNA editing. J Mol Evol 70:479–491

    Article  PubMed  CAS  Google Scholar 

  • Sloan DB, Barr CM, Olson MS, Keller SR, Taylor DR (2008) Evolutionary rate variation at multiple levels of biological organization in plant mitochondrial DNA. Mol Biol Evol 25:243–246

    Article  PubMed  CAS  Google Scholar 

  • Sloan DB, Oxelman B, Rautenberg A, Taylor DR (2009) Phylogenetic analysis of mitochondrial substitution rate variation in the angiosperm tribe Sileneae. BMC Evol Biol 9:260

    Article  PubMed  CAS  Google Scholar 

  • Sloan DB, Alverson AJ, Storchova H, Palmer JD, Taylor DR (2010a) Extensive loss of translational genes in the structurally dynamic mitochondrial genome of the angiosperm Silene latifolia. BMC Evol Biol 10:274

    Article  PubMed  CAS  Google Scholar 

  • Sloan DB, MacQueen AH, Alverson AJ, Palmer JD, Taylor DR (2010b) Extensive loss of RNA editing sites in rapidly evolving Silene mitochondrial genomes: selection vs. retroprocessing as the driving force. Genetics 185:1369–1380

    Article  PubMed  CAS  Google Scholar 

  • Small I, Isaac P, Leaver C (1987) Stoichiometric differences in DNA molecules containing the atpA gene suggest mechanisms for the generation of mitochondrial genome diversity in maize. EMBO J 6:865–869

    PubMed  CAS  Google Scholar 

  • Small I, Suffolk R, Leaver CJ (1989) Evolution of plant mitochondrial genomes via substoichiometric intermedates. Cell 58:69–76

    Article  PubMed  CAS  Google Scholar 

  • Stadler T, Delph LF (2002) Ancient mitochondrial haplotypes and evidence for intragenic recombination in a gynodioecious plant. Proc Natl Acad Sci USA 99:11730–11735

    Article  PubMed  CAS  Google Scholar 

  • Storchova H, Olson MS (2004) Comparison between mitochondrial and chloroplast DNA variation in the native range of Silene vulgaris. Mol Ecol 13:2909–2919

    Article  PubMed  CAS  Google Scholar 

  • Storchova H, Müller K, Lau S, Olson MS Mosaic origins of a complex chimeric mitochondrial gene in Silene vulgaris. Under review

    Google Scholar 

  • Tian XJ, Zheng J, Hu SN, Yu J (2006) The rice mitochondrial genomes and their variations. Plant Physiol 140:401–410

    Article  PubMed  CAS  Google Scholar 

  • Toro N, Jimenez-Zurdo JI, Garcia-Rodriguez FM (2007) Bacterial group II introns: not just splicing. FEMS Microbiol Rev 31:342–358

    Article  PubMed  CAS  Google Scholar 

  • Touzet P, Delph LF (2009) The effect of breeding system on polymorphism in mitochondrial genes of Silene. Genetics 181:631–644

    Article  PubMed  CAS  Google Scholar 

  • Unseld M, Marienfeld JR, Brandt B, Brennicke A (1997) The mitochondrial genome of Arabidopsis thaliana contains 57 genes in 366,924 nucleotides. Nat Genet 15:57–61

    Article  PubMed  CAS  Google Scholar 

  • Vitart V, DePaeper R, Mathieu C, Chetrit P, Vedel F (1992) Amplification of substoichiometric recombinant mitochondrial DNA sequences in a nuclear, male sterile mutant regenerated from protoplast culture in Nicotiana sylvestris. Mol Gen Genet 233:193–200

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Zou Y, Li X, Zhang Q, Chen L, Wu H, Su D, Chen Y, Guo J, Luo D, Zhong Y, Liu YG (2006) Cytoplasmic male sterility of rice with Boro II cytoplasm is caused by a cytotoxic peptide and is restored by two related PPR motif genes via distinct modes of mRNA silencing. Plant Cell 18:676–687

    Article  PubMed  CAS  Google Scholar 

  • Ward BL, Anderson RS, Bendich AJ (1981) The mitochondrial genome is large and variable in a family of plants (Cucurbitaceae). Cell 25:793–803

    Article  PubMed  CAS  Google Scholar 

  • Weiling F (1991) Historical study: Johann Gregor Mendel 1822–1884. Am J Med Genet 40:1–25

    Article  PubMed  CAS  Google Scholar 

  • Welch ME, Darnell MZ, McCauley DE (2006) Variable populations within variable populations: quantifying mitochondrial heteroplasmy in natural populations of the gynodioecious plant Silene vulgaris. Genetics 174:829–837

    Article  PubMed  CAS  Google Scholar 

  • Wolfe KH, Li WH, Sharp PM (1987) Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proc Natl Acad Sci USA 84:9054–9058

    Article  PubMed  CAS  Google Scholar 

  • Woloszynska M (2010) Heteroplasmy and stoichiometric complexity of plant mitochondrial genomes – though this be madness, yet there’s method in’t. J Exp Bot 61:657–671

    Article  PubMed  CAS  Google Scholar 

  • Woloszynska M, Trojanowski D (2009) Counting mtDNA molecules in Phaseolus vulgaris: sublimons are constantly produced by recombination via short repeats and undergo rigorous selection during substoichiometric shifting. Plant Mol Biol 70:511–521

    Article  PubMed  CAS  Google Scholar 

  • Yu W, Schuster W (1995) Evidence for a site specific cytidine deamination reaction involved in C to U RNA editing of plant mitochondria. J Biol Chem 270:18227–18233

    Article  PubMed  CAS  Google Scholar 

  • Zaegel V, Guermann B, Le Ret M, Andres C, Meyer D, Erhardt M, Canaday J, Gualberto JM, Imbault P (2006) The plant-specific ssDNA binding protein OSB1 is involved in the stoichiometric transmission of mitochondrial DNA in Arabidopsis. Plant Cell 18:3548–3563

    Article  PubMed  CAS  Google Scholar 

  • Zhang QY, Liu YG (2006) Rice mitochondrial genes are transcribed by multiple promoters that are highly diverged. J Integr Plant Biol 48:1473–1477

    Article  CAS  Google Scholar 

Download references

Acknowledgment

I thank Daniel B Sloan from the University of Virginia, USA, for reading the manuscript and very helpful comments. Funding was graciously provided by the grants GA ČR number 521/09/0261 and MŠMT Kontakt ME09035.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helena Storchova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Storchova, H. (2011). Genome Structure and Gene Expression Variation in Plant Mitochondria, Particularly in the Genus Silene . In: Pontarotti, P. (eds) Evolutionary Biology – Concepts, Biodiversity, Macroevolution and Genome Evolution. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20763-1_16

Download citation

Publish with us

Policies and ethics