Skip to main content
Log in

Substoichiometric shifting in the fertility reversion of cytoplasmic male sterile pearl millet

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Cytoplasmic male sterility (CMS) represents an important agricultural trait in pearl millet [Pennisetum glaucum (L.) R. Br.] with a value to the seed industry in facilitating economical hybrid seed production. Among the CMS systems available in millet, the A1 source is the most commonly used for hybrid production, but it can undergo low frequency reversion to fertility. Plant mitochondrial genomes are highly recombinogenic, becoming unstable and prone to ectopic recombination under conditions of tissue culture, somatic hybridization, or interspecific crossing. Similarly, CMS systems prone to spontaneous fertility reversion experience sporadic mitochondrial genome instability. We compared mitochondrial genome configurations between the male-sterile A1 line and fertile revertants of pearl millet to develop a model for millet mitochondrial genome reorganization upon reversion. Relative copy number of a subgenomic molecule containing the CoxI-1-2 junction region, a component of the recombination process for reversion, is amplified tenfold following reversion, relative to the CMS A1 line. We propose that increased copy number of this molecule in a small number of cells or at low frequency triggers a recombination cascade, likely during reproductive development. The proposed recombination process initiates with ectopic recombination through a 7-bp repeat to produce a novel CoxI-3-2 junction molecule and an unstable recombination intermediate. Subsequent intra-molecular recombination stabilizes the intermediate to form a new copy of CoxI accompanied by a deletion. This study furthers the argument that substoichiometric shifting within the plant mitochondrial genome plays an important role in the evolution of the mitochondrial genome and plant reproductive dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abdelnoor RV, Yule R, Elo A, Christensen AC, Meyer-Gauen G, Mackenzie SA (2003) Substoichiometric shifting in the plant mitochondrial genome is influenced by a gene homologous to MutS. Proc Natl Acad Sci USA 100(10):5968–5973

    Article  PubMed  CAS  Google Scholar 

  • Arrieta-Montiel M, Lyznik A, Woloszynska M, Janska H, Tohme J, Mackenzie S (2001) Tracing evolutionary and developmental implications of mitochondrial stoichiometric shifting in the common bean. Genetics 158(2):851–864

    PubMed  CAS  Google Scholar 

  • Bellaoui M, Martin-Canadell A, Pelletier G, Budar F (1998) Low-copy-number molecules are produced by recombination, actively maintained and can be amplified in the mitochondrial genome of Brassicaceae: relationship to reversion of the male sterile phenotype in some cybrids. Mol Gen Genet 257:177–185

    Article  PubMed  CAS  Google Scholar 

  • Budar F, Touzet P, De Paepe R (2003) The nucleo-mitochondrial conflict in cytoplasmic male sterilities revisited. Genetica 117:3–16

    Article  PubMed  CAS  Google Scholar 

  • Burton GW (1977) Fertility sterility maintainer mutants in cytoplasmic male sterile pearl millet. Crop Sci 17:635–637

    Article  Google Scholar 

  • Chahal A, Sidhu HS, Wolyn DJ (1998) A fertile revertant from petaloid cytoplasmic male sterile carrot has a rearranged mitochondrial genome. Theor Appl Genet 97:450–455

    Article  CAS  Google Scholar 

  • Clark E, Gafni Y, Izhar S (1988) Loss of CMS-specific mitochondrial DNA arrangement in fertile segregants of Petunia hybrids. Plant Mol Biol 11:249–253

    Article  CAS  Google Scholar 

  • Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA minipreparation: version II. Plant Mol Biol Rep 1:19

    Article  CAS  Google Scholar 

  • Delorme V, Keen CL, Raik N, Leaver CJ (1997) Cytoplasmic-nuclear male sterility in pearl millet: comparative RFLP and transcript analyses of isonuclear male-sterile lines. Theor Appl Genet 95:961–968

    Article  CAS  Google Scholar 

  • Escote-Carlson LJ, Gabay-Laughnan S, Laughnan JR (1988) Reorganization of mitochondrial genomes of cytoplasmic revertants in cms-S inbred line WF9 in maize. Theor Appl Genet 75:659–667

    Article  CAS  Google Scholar 

  • Fauron CM, Havlik M, Brettell RI (1990) The mitochondrial genome organization of a maize fertile cmsT revertant line is generated through recombination between two sets of repeats. Genetics 124(2):423–428

    PubMed  CAS  Google Scholar 

  • Fauron C, Casper M, Gao Y, Moore B (1995) The maize mitochondrial genome: dynamic, yet functional. Trends Genet 11:228–235

    Article  PubMed  CAS  Google Scholar 

  • Grbic V, Bleecker AB (2000) Axillary meristem development in Arabidopsis thaliana. Plant J 21(2):215–223

    Article  PubMed  CAS  Google Scholar 

  • Janska H, Sarria R, Woloszynska M, ArrietaArrieta-Montiel M, Mackenzie SA (1998) Stoichiometric shifts in the common bean mitochondrial genome leading to male sterility and spontaneous reversion to fertility. Plant Cell 10(7):1163–1180

    Article  PubMed  CAS  Google Scholar 

  • Kanazawa A, Tsutsumi N, Hirai A (1994) Reversible changes in the composition of the population of mtDNAs during dedifferentiation and regeneration in tobacco. Genetics 138(3):865–870

    PubMed  CAS  Google Scholar 

  • Kim S, Lim H, Park S, Cho KH, Sung SK, Oh DG, Kim KT (2007) Identification of a novel mitochondrial genome type and development of molecular markers for cytoplasm classification in radish (Raphanus sativus L). Theor Appl Genet 115:1137–1145

    Article  PubMed  CAS  Google Scholar 

  • Kuhn J, Binder S (2002) RT-PCR analysis of 5′ to 3′-end-ligated mRNAs identifies the extremities of cox2 transcripts in pea mitochondria. Nucleic Acids Res 30:439–446

    Article  PubMed  CAS  Google Scholar 

  • Mackenzie SA (2005) The mitochondrial genome of higher plants: a target for natural adaptation. In: Henry RJ (ed) Diversity and evolution of plants. CABI Publishers, Oxon, pp 69–80

    Google Scholar 

  • Mackenzie SA, Pring DR, Bassett MJ, Chase CD (1988) Mitochondrial DNA rearrangement associated with fertility restoration and cytoplasmic reversion to fertility in cytoplasmic male sterile Phaseolus vulgaris L. Proc Natl Acad Sci USA 85:2714–2717

    Article  PubMed  CAS  Google Scholar 

  • Sandhu AS, Abdelnoor RV, Mackenzie SA (2007) Transgenic induction of mitochondrial rearrangements for cytoplasmic male sterility in crop plants. Proc Natl Acad Sci USA 104:1766–1770

    Article  PubMed  CAS  Google Scholar 

  • Shedge V, Arrieta-Montiel M, Christensen AC, Mackenzie SA (2007) Plant mitochondrial recombination surveillance requires unusual RecA and MutS homologs. Plant Cell 19:1251–1264

    Article  PubMed  CAS  Google Scholar 

  • Shen Y, Cai Q, Gao M, Wang X (1996) Isolation and genetic characterization of a fertility restoring revertant induced from cytoplasmic male sterile rice. Euphytica 90:17–23

    Google Scholar 

  • Small ID, Earle ED, Escote-Carlson LJ, Gabay-Laughnan S, Laughnan JR, Leaver CJ (1988) A comparison of cytoplasmic revertants to fertility from different CMS-S maize sources. Theor Appl Genet 76:609–618

    Article  Google Scholar 

  • Small I, Suffolk R, Leaver CJ (1989) Evolution of plant mitochondrial genomes via substoichiometric intermediates. Cell 58:69–76

    Article  PubMed  CAS  Google Scholar 

  • Smith RL, Chowdhury MKU, Pring DR (1987) Mitochondrial DNA rearrangements in Pennisetum associated with reversion from cytoplasmic male sterility to fertility. Plant Mol Biol 9:277–286

    Article  CAS  Google Scholar 

  • Suzuki T, Kawano S, Sakai A, Hirai A, Kuroiwa T (1996) Variability of mitochondrial subgenomic molecules in the meristematic cells of higher plant. Genes Genet Syst 71:329–333

    Article  PubMed  CAS  Google Scholar 

  • Zaegel V, Guermann B, Le Ret M, Andrés C, Meyer D, Erhardt M, Canaday J, Gualberto JM, Imbault P (2006) The plant-specific ssDNA binding protein OSB1 is involved in the stoichiometric transmission of mitochondrial DNA in Arabidopsis. Plant Cell 18:3548–3563

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We wish to thank Maria Arrieta-Montiel and Alan Christensen for their helpful comments during preparation of the manuscript. This research was supported by a Pioneer Graduate Fellowship to X.F. and NSF award MCB 0744104 to S.M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Mackenzie.

Additional information

Communicated by R. Hagemann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feng, X., Kaur, A.P., Mackenzie, S.A. et al. Substoichiometric shifting in the fertility reversion of cytoplasmic male sterile pearl millet. Theor Appl Genet 118, 1361–1370 (2009). https://doi.org/10.1007/s00122-009-0986-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-009-0986-5

Keywords

Navigation