Skip to main content

Application of Rhodococcus in Bioremediation of Contaminated Environments

  • Chapter
  • First Online:
Biology of Rhodococcus

Part of the book series: Microbiology Monographs ((MICROMONO,volume 16))

Abstract

Environmental pollution with anthropogenic organic compounds is the global problem of our planet. Bioremediation has a great potential to effectively restore polluted environments by using biodegradative activities of microorganisms. The genus Rhodococcus is a promising group of bacteria suitable for biodegradation of recalcitrant contaminants, such as petroleum hydrocarbons, chlorinated, nitrogenated, and other complex organics. Rhodococcus species are ubiquitous in pristine and contaminated environments, survive under harsh environmental conditions, compete successfully in complex bacterial populations, and therefore could be efficiently used in bioremediation applications. Some success in bioremediation of contaminated soils, waters, and air has been achieved using rhodococci either as bioaugmentation agents or members of indigenous microbial communities stimulated by nutrient and oxygen amendments. Laboratory and field-scale studies on Rhodococcus application in cleanup technologies are reviewed relating to in-situ subsurface and groundwater remediation, on site treatments of contaminated soils, sludges, wastewaters, and waste gases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aislabie J, Saul DJ, Foght JM (2006) Bioremediation of hydrocarbon-contaminated polar soils. Extremophiles 10:171–179

    Article  PubMed  CAS  Google Scholar 

  • Al-Awadhi H, Al-Hasan RH, Sorkhoh NA, Salamah S, Radwan SS (2003) Establishing oil-degrading biofilms on gravel particles and glass plates. Int Biodeter Biodegradation 51:181–185

    Article  CAS  Google Scholar 

  • Aldric J-M, Thonart P (2008) Performance evaluation of a water/silicone oil two-phase partitioning bioreactor using Rhodococcus erythropolis T902.1 to remove volatile organic compounds from gaseous effluents. J Chem Technol Biotechnol 83:1401–1408

    Article  CAS  Google Scholar 

  • Alexander M (1999) Biodegradation and bioremediation, 2nd edn. Academic, London

    Google Scholar 

  • Aoshima H, Hirase T, Tada T, Ichimura N, Kato H, Nagata Y, Myoenzono T, Tagauchi M, Takuzumi T, Aoki T, Makino S, Hagita K, Ishiwata H (2007) Safety evaluation of a heavy oil-degrading bacterium Rhodococcus erythropolis C2. J Toxicol Sci 32:69–78

    Article  PubMed  CAS  Google Scholar 

  • Baxter J, Cummings SP (2006) The impact of bioaugmentation on metal cyanide degradation and soil bacteria community structure. Biodegradation 17:207–217

    Article  PubMed  CAS  Google Scholar 

  • Baxter J, Garton NJ, Cummings SP (2006) The impact of acrylonitrile and bioaugmentation on the biodegradation activity and bacterial community structure of a topsoil. Folia Microbiol 51:591–597

    Article  CAS  Google Scholar 

  • Bej AK, Saul D, Aislabie J (2000) Cold-tolerant alkane-degrading Rhodococcus species from Antarctica. Polar Biol 23:100–105

    Article  Google Scholar 

  • Bell KS, Philp JC, Aw DWJ, Christofi N (1998) The genus Rhodococcus. A review. J Appl Microbiol 85:195–210

    Article  PubMed  CAS  Google Scholar 

  • Besse P, Combourieu B, Boyse G, Sancelme M, de Wever H, Delort A-M (2001) Long-range 1H-15N heteronuclear shift correlation at natural abundance: a tool to study benzothiazole biodegradation by two Rhodococcus strains. Appl Environ Microbiol 67:1412–1417

    Article  PubMed  CAS  Google Scholar 

  • Borin S, Marzorati M, Brusetti L, Zilli M, Cherif H, Hassen A, Converti A, Sorlini C, Daffonchio D (2006) Microbial succession in a compost-packed biofilter treating benzene-contaminated air. Biodegradation 17:79–89

    Article  CAS  Google Scholar 

  • Cavalca L, Colombo M, Larcher S, Gigliotti C, Collina E, Andreoni V (2002) Survival and naphthalene-degrading activity of Rhodococcus sp. strain 1BN in soil microcosms. J Appl Microbiol 92:1058–1065

    Article  PubMed  CAS  Google Scholar 

  • Christofi N, Ivshina IB, Kuyukina MS, Philp JC (1998) Biological treatment of crude oil contaminated soil in Russia. In: Lerner DN, London NRG (eds) Contaminated land and groundwater: future directions, vol 14. Geological Society Engineering Geology Publications, London, pp 45–51

    Google Scholar 

  • Coleman NV, Nelson DR, Duxbury T (1998) Aerobic biodegradation of hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine (RDX) as a nitrogen source by a Rhodococcus sp., strain DN22. Soil Biol Biochem 30:1159–1167

    Article  Google Scholar 

  • Colquhoun JA, Heald SC, Tamaoka LLJ, Kato C, Horikoshi K, Bull AT (1998) Taxonomy and biotransformation activities of some deep-sea actinomycetes. Extremophiles 2:269–277

    Article  PubMed  CAS  Google Scholar 

  • Daye KJ, Groff JC, Kirpekar AC, Mazumder R (2003) High efficiency degradation of tetrahydrofuran (THF) using a membrane bioreactor: identification of THF-degrading cultures of Pseudonocardia sp. strain M1 and Rhodococcus ruber isolate M2. J Ind Microbiol Biotechnol 30:705–714

    Article  PubMed  CAS  Google Scholar 

  • Dean-Ross D, Moody JD, Freeman JP, Doerge DR, Cerniglia CE (2001) Metabolism of anthracene by a Rhodococcus species. FEMS Microbiol Lett 204:205–211

    Article  PubMed  CAS  Google Scholar 

  • Dejonghe W, Boon N, Seghers D, Top EM, Verstraete W (2001) Bioaugmentation of soils by increasing microbial richness: missing links. Environ Microbiol 3:649–657

    Article  PubMed  CAS  Google Scholar 

  • De-qing S, Jian Z, Zhao-long G, Jian D, Tian-li W, Murygina V, Kalyuzhnyi S (2007) Bioremediation of oil sludge in Shengli oilfield. Water Air Soil Pollut 185:177–184

    Article  CAS  Google Scholar 

  • Di Lorenzo A, Varcamonti M, Parascandola P, Vignola R, Bernardi A, Sacceddu P, Sisto R, de Alteriis E (2005) Characterization and performance of a toluene-degrading biofilm developed on pumice stones. Microb Cell Factories 4:4

    Article  CAS  Google Scholar 

  • Elo S, Maunuksela L, Salkinoja-Salonen M, Smolander A, Haahtela K (2000) Humus bacteria of Norway spruce stands: plant growth promoting properties and birch, red fescue and alder colonizing capacity. FEMS Microbiol Ecol 31:143–152

    Article  PubMed  CAS  Google Scholar 

  • Etkin DS (2001) Analysis of oil spill trends in the United States and worldwide. Proceedings of International Oil Spills Conference. American Petroleum Institute Publication, Washington, pp 1291–1300

    Google Scholar 

  • Fahy A, Ball AS, Lethbridge G, McGenity TJ, Timmis KN (2008a) High benzene concentrations can favour Gram-positive bacteria in groundwaters from a contaminated aquifer. FEMS Microbiol Ecol 65:526–533

    Article  PubMed  CAS  Google Scholar 

  • Fahy A, Ball AS, Lethbridge G, Timmis KN, McGenity TJ (2008b) Isolation of alkali-tolerant benzene-degrading bacteria from a contaminated aquifer. Lett Appl Microbiol 47:60–66

    Article  PubMed  CAS  Google Scholar 

  • Fahy A, McGenity TJ, Timmis KN, Ball AS (2006) Heterogeneous aerobic benzene-degrading communities in oxygen-depleted groundwaters. FEMS Microbiol Ecol 58:260–270

    Article  PubMed  CAS  Google Scholar 

  • Fava F, Bertin L, Fedi S, Zannoni D (2003) Methyl-β-cyclodextrin-enhanced solubilization and aerobic biodegradation of polychlorinated biphenyls in two aged-contaminated soils. Biotechnol Bioeng 81:381–390

    Article  PubMed  CAS  Google Scholar 

  • Gakhar L, Malik ZA, Allen CCR, Lipscomb DA, Larkin MJ, Ramaswamy S (2005) Structure and increased thermostability of Rhodococcus sp. naphthalene 1, 2-dioxygenase. J Bacteriol 187:7222–7231

    Article  PubMed  CAS  Google Scholar 

  • Genovese M, Denaro R, Cappello S, Di Marco G, La Spada G, Giuliano L, Genovese L, Yakimov MM (2008) Bioremediation of benzene, toluene, ethylbenzene, xylenes-contaminated soil: a biopile pilot experiment. J Appl Microbiol 105:1694–1702

    Article  PubMed  CAS  Google Scholar 

  • Hamamura N, Olson SH, Ward DM, Inskeep WP (2006) Microbial population dynamics associated with crude-oil biodegradation in diverse soils. Appl Environ Microbiol 72:6316–6324

    Article  PubMed  CAS  Google Scholar 

  • Hendrickx B, Dejonghe W, Boenne W, Brennerova M, Cernik M, Lederer T, Bucheli-Witschel M, Bastiaens L, Verstraete W, Top EM, Diels L, Springa D (2005) Dynamics of an oligotrophic bacterial aquifer community during contact with a groundwater plume contaminated with benzene, toluene, ethylbenzene, and xylenes: an in situ mesocosm study. Appl Environ Microbiol 71:3815–3825

    Article  PubMed  CAS  Google Scholar 

  • Hidalgo A, Jaureguibeitia A, Prieto MB, Rodríguez-Fernández C, Serra JL, Llama MJ (2002a) Biological treatment of phenolic industrial wastewaters by Rhodococcus erythropolis UPV-1. Enz Microb Technol 31:221–226

    Article  CAS  Google Scholar 

  • Hidalgo A, Lopategi A, Prieto M, Serra JL, Llama MJ (2002b) Formaldehyde removal in synthetic and industrial wastewater by Rhodococcus erythropolis UPV-1. Appl Microbiol Biotechnol 58:260–263

    Article  PubMed  CAS  Google Scholar 

  • Home Pages of Culture Collections in the World (2009) World Federation for Culture Collections. http://wdcm.nig.ac.jp/hpcc.html. Accessed 08 April 2009

  • Hong SH, Hae LP, Ko U-R, Jae JY, Cho K-S (2007) Bioremediation of oil-contaminated soil using an oil-degrading rhizobacterium Rhodococcus sp. 412 and Zea mays. Korean J Microbiol Biotechnol 35:150–157

    CAS  Google Scholar 

  • Ivshina IB, Berdichevskaya MV, Zvereva LV, Rybalka LV, Elovikova EA (1995) Phenotypic characterization of alkanotrophic rhodococci from various ecosystems. Microbiology 64:507–513

    CAS  Google Scholar 

  • Ivshina IB, Kamenskikh TN, Liapunov YE (1994) IEGM catalogue of strains of regional specialized collection of alkanotrophic microorganisms. Nauka, Moscow

    Google Scholar 

  • Ivshina IB, Kuyukina MS, Plilp JC, Christofi N (1998) Oil desorption from mineral and organic materials using biosurfactant complexes produced by Rhodococcus species.World. J Microbiol Biotechnol 14:711–717

    Article  CAS  Google Scholar 

  • Ivshina IB, Oborin AA, Nesterenko OA, Kasumova SA (1981) Bacteria of the Rhodococcus genus from the ground water of oil-bearing deposits in the Perm region near the Urals. Microbiology 50:709–717

    CAS  Google Scholar 

  • Ivshina IB, Peshkur TA, Korobov VP (2002) Effective uptake of cesium ions by Rhodococcus cells. Microbiology 71:357–361

    Article  CAS  Google Scholar 

  • Jiménez N, Viñas M, Bayona JM, Albaiges J, Solanas AM (2007) The Prestige oil spill: bacterial community dynamics during a field biostimulation assay. Appl Microbiol Biotechnol 77:935–945

    Article  PubMed  CAS  Google Scholar 

  • Joshi T, Iyengar L, Singh K, Garg S (2008) Isolation, identification and application of novel bacterial consortium TJ-1 for the decolourization of structurally different azo dyes. Biores Technol 99:7115–7121

    Article  CAS  Google Scholar 

  • Juneson C, Ward OP, Singh A (2001) Biodegradation of bis(2-ethylhexyl)phthalate in a soil slurry-sequencing batch reactor. Proc Biochem 37:305–313

    Article  CAS  Google Scholar 

  • Juteau P, Larocque R, Rho D, LeDuy A (1999) Analysis of the relative abundance of different types of bacteria capable of toluene degradation in a compost biofilter. Appl Microbiol Biotechnol 52:863–868

    Article  PubMed  CAS  Google Scholar 

  • Katsivela E, Bonse D, Krüger A, Strömpl C, Livingston C, Wittich R-M (1999) An extractive membrane biofilm reactor for degradation of 1, 3-dichloropropene in industrial waste water. Appl Microbiol Biotechnol 52:853–862

    Article  PubMed  CAS  Google Scholar 

  • Kim D, Chae JC, Zylstra GJ, Kim YS, Kim SK, Nam MH, Kim YM, Kim E (2004) Identification of a novel dioxygenase involved in metabolism of o-xylene, toluene, and ethylbenzene by Rhodococcus sp. strain DK17. Appl Environ Microbiol 70:7086–7092

    Article  PubMed  CAS  Google Scholar 

  • Kim J-D, Lee C-G (2007) Microbial degradation of polycyclic aromatic hydrocarbons in soil by bacterium-fungus co-cultures. Biotechnol Bioprocess Eng 12:410–416

    Article  CAS  Google Scholar 

  • Kimbara K, Hayakawa T, Shimura M (1998) Remediating PCB wastes using microorganisms. Jpn Railway Transp Rev 17:17–20

    Google Scholar 

  • Kitamoto D, Isoda H, Nakahara T (2002) Functions and potential applications of glycolipid biosurfactants – from energy-saving materials to gene delivery carriers. J Biosci Bioeng 94:187–201

    PubMed  CAS  Google Scholar 

  • Kitova AE, Kuvichkina TN, Arinbasarova AY, Reshetilov AN (2004) Degradation of 2, 4-dinitrophenol by free and immobilized cells of Rhodococcus erythropolis HL PM-1. Appl Biochem Microbiol 40:258–261

    Article  CAS  Google Scholar 

  • Koronelli TV, Komarova TI, Il’inskii VV, Kuz’min YI, Kirsanov NB, Yanenko AS (1997) Introduction of bacteria of the genus Rhodococcus into oil-contaminated tundra soils. Appl Biochem Microbiol 33:172–175

    Google Scholar 

  • Kuyukina MS, Ivshina IB, Gein SV, Baeva TA, Chereshnev VA (2007) In vitro immunomodulating activity of biosurfactant glycolipid complex from Rhodococcus ruber. Bull Exp Biol Med 144:326–330

    Article  PubMed  CAS  Google Scholar 

  • Kuyukina MS, Ivshina IB, Makarov SO, Litvinenko LV, Cunningham CJ, Philp JC (2005) Effect of biosurfactants on crude oil desorption and mobilization in a soil system. Environ Int 31:155–161

    Article  PubMed  CAS  Google Scholar 

  • Kuyukina MS, Ivshina IB, Ritchkova MI, Philp JC, Cunningham JC, Christofi N (2003) Bioremediation of crude oil-contaminated soil using slurry-phase biological treatment and land farming techniques. Soil Sediment Contamin 12:85–99

    Article  CAS  Google Scholar 

  • Kuyukina MS, Ivshina IB, Serebrennikova MK, Krivorutchko AV, Podorozhko EA, Ivanov RV, Lozinsky VI (2009) Petroleum-contaminated water treatment in a fluidized-bed bioreactor with immobilized Rhodococcus cells. Int Biodeter Biodegradation 63:427–432

    Article  CAS  Google Scholar 

  • Labbé D, Margesin R, Schinner F, Whyte LG, Greer CW (2007) Comparative phylogenetic analysis of microbial communities in pristine and hydrocarbon-contaminated Alpine soils. FEMS Microbiol Ecol 59:466–475

    Article  PubMed  CAS  Google Scholar 

  • Lang S, Philp JC (1998) Surface-active lipids in rhodococci. Antonie van Leeuwenhoek 74:59–70

    Article  PubMed  CAS  Google Scholar 

  • Larkin MJ, Kulakov LA, Allen CCR (2005) Biodegradation and Rhodococcus – masters of catabolic versatility. Curr Opin Biotechnol 16:282–290

    Article  PubMed  CAS  Google Scholar 

  • Lee E-H, Cho K-S (2008) Characterization of cyclohexane and hexane degradation by Rhodococcus sp. EC1. Chemosphere 71:1738–1744

    Article  PubMed  CAS  Google Scholar 

  • Luepromchai E, Singer AC, Yang C-H, Crowley DE (2002) Interactions of earthworms with indigenous and bioaugmented PCB-degrading bacteria. FEMS Microbiol Ecol 41:191–197

    Article  PubMed  CAS  Google Scholar 

  • Luz AP, Pellizari VH, Whyte LG, Greer CW (2004) A survey of indigenous microbial hydrocarbon degradation genes in soils from Antarctica and Brazil. Can J Microbiol 50:323–333

    Article  PubMed  CAS  Google Scholar 

  • Margesin R, Labbé D, Schinner F, Greer CW, Whyte LG (2003) Characterization of hydrocarbon-degrading microbial populations in contaminated and pristine alpine soils. Appl Environ Microbiol 69:3085–3092

    Article  PubMed  CAS  Google Scholar 

  • Martínková L, Uhnáková B, Pátek M, Nešvera J, Křen V (2009) Biodegradation potential of the genus Rhodococcus. Environ Int 35:162–177

    Article  PubMed  CAS  Google Scholar 

  • Masák J, Čejková A, Jirků V, Kotrba D, Hron P, Siglová M (2004) Colonization of surfaces by phenolic compounds utilizing microorganisms. Environ Int 31:197–200

    Article  CAS  Google Scholar 

  • Mergaert J, Verhelst A, Cnockaert MC, Tan T-L, Swings J (2001) Characterization of facultative oligotrophic bacteria from polar seas by analysis of their fatty acids and 16S rDNA sequences. Syst Appl Microbiol 24:98–107

    Article  PubMed  CAS  Google Scholar 

  • Miteva VI, Sheridan PP, Brenchley JE (2004) Phylogenetic and physiological diversity of microorganisms isolated from a deep Greenland glacier ice core. Appl Environ Microbiol 70:202–213

    Article  PubMed  CAS  Google Scholar 

  • Moiseeva OV, Solyanikova IP, Kaschabek SR, Gröning J, Thiel M, Golovleva LA, Schlömann M (2002) A new modified ortho cleavage pathway of 3-chlorocatechol degradation by Rhodococcus opacus 1CP: genetic and biochemical evidence. J Bacteriol 184:5282–5292

    Article  PubMed  CAS  Google Scholar 

  • Murygina VP, Markarova MY, Kalyuzhnyi SV (2005) Application of biopreparation Rhoder for remediation of oil polluted polar marshy wetlands in Komi Republic. Environ Int 31:163–166

    Article  PubMed  CAS  Google Scholar 

  • Nagy I, Schoofs G, Compernolle F, Proost P, Vanderleyden J, de Mot R (1995) Degradation of the thiocarbamate herbicide EPTC (s-ethyldipropylcarbamothioate) and biosafening by Rhodococcus sp. strain NI86/21 involve an inducible cytochrome P-450 system and aldehyde dehydrogenase. J Biotechnol 177:676–687

    CAS  Google Scholar 

  • Nwankwoala AU, Egiebor NO, Nyavor K (2001) Enhanced biodegradation of methylhydrazine and hydrazine contaminated NASA wastewater in fixed-film bioreactor. Biodegradation 12:1–10

    Article  PubMed  CAS  Google Scholar 

  • Ohhata N, Yoshida N, Egami H, Katsuragi T, Tani Y, Takagi H (2007) An extremely oligotrophic bacterium, Rhodococcus erythropolis N9T-4, isolated from crude oil. J Biotechnol 189:6824–6831

    CAS  Google Scholar 

  • Peressutti SR, Alvarez HM, Pucci OH (2003) Dynamics ofhydrocarbon-degrading bacteriocenosis ofan experimental oil pollution in Patagonian soil. Int Biodeter Biodegradation 52:21–30

    Article  CAS  Google Scholar 

  • Petrić I, Hršak D, Fingler S, Vončina E, Ćetković H, Kolar AB, Kolić NU (2007) Enrichment and characterization of PCB-degrading bacteria as potential seed cultures for bioremediation of contaminated soil. Food Technol Biotechnol 45:11–20

    Google Scholar 

  • Pieper DH, Reineke W (2000) Engineering bacteria for bioremediation. Curr Opin Biotechnol 11:262–270

    Article  PubMed  CAS  Google Scholar 

  • Podorozhko EA, Lozinsky VI, Ivshina IB, Kuyukina MS, Krivorutchko AV, Philp JC, Cunningham CJ (2008) Hydrophobised sawdust as a carrier for immobilisation of the hydrocarbon-oxidizing bacterium Rhodococcus ruber. Bioresour Technol 99:2001–2008

    Article  PubMed  CAS  Google Scholar 

  • Poelarends GJ, Zandstra M, Bosma T, Kulakov LA, Larkin MJ, Marchesi JR, Weightman AJ, Janssen DB (2000) Haloalkane-utilizing Rhodococcus strains isolated from geographically distinct locations possess a highly conserved gene cluster encoding haloalkane catabolism. J Bacteriol 5:2725–2731

    Article  Google Scholar 

  • Priestley JT, Coleman NV, Duxbury T (2006) Growth rate and nutrient limitation affect the transport of Rhodococcus sp. strain DN22 through sand. Biodegradation 17:571–576

    Article  PubMed  CAS  Google Scholar 

  • Prieto MB, Hidalgo A, Rodríguez-Fernández C, Serra JL, Llama MJ (2002a) Biodegradation of phenol in synthetic and industrial wastewater by Rhodococcus erythropolis UPV-1 immobilized in an air-stirred reactor with clarifier. Appl Microbiol Biotechnol 58:853–859

    Article  PubMed  CAS  Google Scholar 

  • Prieto MB, Hidalgo A, Serra JL, Llama MJ (2002b) Degradation of phenol by Rhodococcus erythropolis UPV-1 immobilized on Biolite® in a packed-bed reactor. J Biotechnol 97:1–11

    Article  CAS  Google Scholar 

  • Ringelberg DB, Talley JW, Perkins EJ, Tucker SG, Luthy RG, Bouwer EJ, Fredrickson HL (2001) Succession of phenotypic, genotypic, and metabolic community characteristics during in vitro bioslurry treatment of polycyclic aromatic hydrocarbon-contaminated sediments. Appl Environ Microbiol 67:1542–1550

    Article  PubMed  CAS  Google Scholar 

  • Rodrigues JLM, Kachel CA, Aiello MR, Quensen JF, Maltseva OV, Tsoi TV, Tiedje JM (2006) Degradation of Aroclor 1242 dechlorination products in sediments by Burkholderia xenovorans LB400(ohb) and Rhodococcus sp. strain RHA1(fcb). Appl Environ Microbiol 72:2476–2482

    Article  PubMed  CAS  Google Scholar 

  • Ruberto LAM, Vazquez S, Lobalbo A, Mac Cormack WP (2005) Psychrotolerant hydrocarbon-degrading Rhodococcus strains isolated from polluted Antarctic soils. Antarctic Sci 17:47–56

    Article  Google Scholar 

  • Ryu HW, Yang HJ, Youn-J A, Kyung-Suk C (2006) Isolation and characterization of psychrotrophic and halotolerant Rhodococcus sp. YHLT-2. J Microbiol Biotechnol 16:605–612

    CAS  Google Scholar 

  • Safonova E, Kvitko KV, Iankevitch MI, Surgko LF, Afti IA, Reisser W (2004) Biotreatment of industrial wastewater by selected algal-bacterial consortia. Eng Life Sci 4:347–353

    Article  CAS  Google Scholar 

  • Salanitro JP, Spinnler GE, Maner PM, Tharpe DL, Pickle DW, Wisniewski HL, Johnson PC, Bruce C (2001) In situ bioremediation of MTBE using biobarriers of single or mixed cultures. In: Leeson A, Alleman BC, Alvarez PJ, Magar VS (eds) Bioaugmentation, Biobarriers and Biogeochemistry. Battelle Press, Columbus, OH, pp 1–7

    Google Scholar 

  • Seth-Smith HMB, Rosser SJ, Basran A, Travis ER, Dabbs ER, Nicklin S, Bruce NC (2002) Cloning, sequencing, and characterization of the hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine degradation gene cluster from Rhodococcus rhodochrous. Appl Environ Microbiol 10:4764–4771

    Article  CAS  Google Scholar 

  • Sharma SL, Pant A (2000) Biodegradation and conversion of alkanes and crude oil by a marine Rhodococcus sp. Biodegradation 11:289–294

    Article  PubMed  CAS  Google Scholar 

  • Shen J, He R, Yu H, Wang L, Zhang J, Sun X, Li J, Han W, Xu L (2009a) Biodegradation of 2, 4, 6-trinitrophenol (picric acid) in a biological aerated filter (BAF). Bioresour Technol 100:1922–1930

    Article  PubMed  CAS  Google Scholar 

  • Shen J, Zhang J, Zuo Y, Wang L, Sun X, Li J, Han W, He R (2009b) Biodegradation of 2, 4, 6-trinitrophenol by Rhodococcus sp. isolated from a picric acid-contaminated soil. J Hazard Mater 163:1199–1206

    Article  PubMed  CAS  Google Scholar 

  • Sidorov DG, Borzenkov IA, Ibatullin RR, Milekhina EI, Khramov IT, Belyaev SS, Ivanov MV (1997) A field experiment on decontamination of oil-polluted soil employing hydrocarbon-oxidizing microorganisms. Appl Biochem Microbiol 33:441–445

    Google Scholar 

  • Sidorov DG, Borzenkov IA, Milekhina EI, Belyaev SS, Ivanov MV (1998) Microbial destruction of fuel oil in soil induced by the biological preparation Devoroil. Appl Biochem Microbiol 34:255–260

    Google Scholar 

  • Sorkhoh NA, Ghannoum MA, Ibrahim AS, Stretton RJ, Radwan SS (1990) Crude oil and hydrocarbon-degrading strains of Rhodococcus rhodochrous isolated from soil and marine environments in Kuwait. Environ Pollut 65:1–17

    Article  PubMed  CAS  Google Scholar 

  • Sorkhoh NA, Al-Hasan RH, Khanafer M, Radwan SS (1995) Establishment of oil-degrading bacteria associated with cyanobacteria in oil-polluted soil. J Appl Bacteriol 78:194–199

    Article  PubMed  CAS  Google Scholar 

  • Taheri HE, Hatamipour MS, Emtiazi G, Beheshti M (2008) Bioremediation of DSO contaminated soil. Proc Saf Environ Protect 86:208–212

    Article  CAS  Google Scholar 

  • Taki H, Syutsubo K, Mattison RG, Harayama S (2004) Biodegradation of o-xylene in soil using bioaugmentation technology. Proceedings of the second international conference on remediation of contaminated sediments, Venice, Italy, pp 279–283

    Google Scholar 

  • Taki H, Syutsubo K, Mattison RG, Harayama S (2007) Identification and characterization of o-xylene-degrading Rhodococcus spp. which were dominant species in the remediation of o-xylene-contaminated soils. Biodegradation 18:17–26

    Article  PubMed  CAS  Google Scholar 

  • Tartakovsky B, Michotte A, Cadieux J-CA, Lau PCK, Hawari J, Guiot SR (2001) Degradation of Aroclor 1242 in a single-stage coupled anaerobic/aerobic bioreactor. Water Res 35:4323–4330

    Article  PubMed  CAS  Google Scholar 

  • Thomassin-Lacroix EJM, Eriksson M, Reimer KJ, Mohn WW (2002) Biostimulation and bioaugmentation for on-site treatment of weathered diesel fuel in Arctic soil. Appl Microbiol Biotechnol 59:551–556

    Article  PubMed  CAS  Google Scholar 

  • Travkin V, Baskunov BP, Golovlev EL, Boersma MG, Boeren S, Vervoort J, van Berkel WJH, Rietjens MCM, Golovleva LA (2002) Reductive deamination as a new step in the anaerobic microbial degradation of halogenated anilines. FEMS Microbiol Lett 209:307–312

    Article  PubMed  CAS  Google Scholar 

  • Tresse O, Lorrain M-J, Rho D (2002) Population dynamics of free-floating and attached bacteria in a styrene-degrading biotrickling filter analyzed by denaturing gradient gel electrophoresis. Appl Microbiol Biotechnol 59:585–590

    Article  PubMed  CAS  Google Scholar 

  • Uroz S, D’Angelo-Picard C, Carlier A, Elasri M, Sicot C, Petit A, Oger P, Faure D, Dessaux Y (2003) Novel bacteria degrading N-acylhomoserine lactones and their use as quenchers of quorum-sensing-regulated functions of plant-pathogenic bacteria. Microbiology 149:1981–1989

    Article  PubMed  CAS  Google Scholar 

  • US EPA (2007) Treatment technologies for site cleanup: Annual Status Report, 12 edn. EPA 542-R-07-012, Washington

    Google Scholar 

  • Van der Geize R, Dijkhuizen L (2004) Harnessing the catabolic diversity of rhodococci for environmental and biotechnological applications. Curr Opin Microbiol 7:255–261

    Article  PubMed  CAS  Google Scholar 

  • Van Hamme JD, Singh A, Ward OP (2003) Recent advances in petroleum microbiology. Microbiol Mol Biol Rev 67:503–549

    Article  PubMed  CAS  Google Scholar 

  • Van Veen JA, van Overbeek LS, van Elsas JD (1997) Fate and activity of microorganisms introduced into soil. Microbiol Mol Biol Rev 61:121–135

    PubMed  Google Scholar 

  • Vinage P, von Rohr R (2003) Biological waste gas treatment with a modified rotating biological contactor. I. Control of biofilm growth and long-term performance. Bioprocess Biosyst Eng 26:69–74

    Article  PubMed  CAS  Google Scholar 

  • Vogt C, Alfreidera A, Lorbeerb H, Hoffmanna D, Wuenschea L, Babel W (2004) Bioremediation of chlorobenzene-contaminated ground water in an in situ reactor mediated by hydrogen peroxide. J Contamin Hydrol 68:121–141

    Article  CAS  Google Scholar 

  • Wagner-Döbler I, Bennasar A, Vancanneyt M, Strömpl C, Brümmer I, Eichner C, Grammel I, Moore ERB (1998) Microcosm enrichment of biphenyl-degrading microbial communities from soils and sediments. Appl Environ Microbiol 64:3014–3022

    PubMed  Google Scholar 

  • Warhurst AM, Fewson CA (1994) Biotransformations catalyzed by the genus Rhodococcus. Crit Rev Biotechnol 14:29–73

    Article  PubMed  CAS  Google Scholar 

  • Watanabe K, Hamamura N (2003) Molecular and physiological approaches to understanding the ecology of pollutant degradation. Curr Opin Biotechnol 14:289–295

    Article  PubMed  CAS  Google Scholar 

  • Wattiau P (2002) Microbial aspects in bioremediation of soils polluted by polyaromatic hydrocarbons. In: Agathos SN, Reineke W (eds) Biotechnol for the environment: strategy and fundamentals. Kluwer Academic, Netherlands, pp 69–89

    Chapter  Google Scholar 

  • Weidhaas JL, Schroeder ED, Chang DPY (2007) An aerobic sequencing batch reactor for 2, 4, 6-trinitrophenol (picric acid) biodegradation. Biotechnol Bioeng 97:1408–1414

    Article  PubMed  CAS  Google Scholar 

  • Whyte LG, Goalen B, Hawari J, Labbé D, Greer CW, Nahir M (2001) Bioremediation treatability assessment of hydrocarbon-contaminated soils from Eureka, Nunavut. Cold Reg Sci Technol 32:121–132

    Article  Google Scholar 

  • Whyte LG, Hawari J, Zhou E, Bourbonniere L, Inniss WE, Greer CW (1998) Biodegradation of variable-chain-length alkanes at low temperatures by a psychrotrophic Rhodococcus sp. Appl Environ Microbiol 64:2578–2584

    PubMed  CAS  Google Scholar 

  • Whyte LG, Schultz A, van Beilen JB, Luz AP, Pellizari V, Labbé D, Greer CW (2002a) Prevalence of alkane monooxygenase genes in Arctic and Antarctic hydrocarbon-contaminated and pristine. FEMS Microb Ecol 41:141–150

    CAS  Google Scholar 

  • Whyte LG, Slagman SJ, Pietrantonio F, Bourbonniere L, Koval SF, Lawrence JR, Innis WE, Greer SW (1999) Physiological adaptations involved in alkane assimilation at a low temperature by Rhodococcus sp. strain Q15. Appl Environ Microbiol 65:2961–2968

    PubMed  CAS  Google Scholar 

  • Whyte LG, Smits TH, Labbé D, Witholt B, Greer CW, van Beilen JB (2002b) Gene cloning and characterization of multiple alkane hydroxylase systems in Rhodococcus strains Q15 and NRRL B-16531. Appl Environ Microbiol 68:5933–5942

    Article  PubMed  CAS  Google Scholar 

  • Xu P, Yu B, Li FL, Cai XF, Ma CQ (2006) Microbial degradation of sulfur, nitrogen and oxygen heterocycles. Trends Microbiol 14:397–404

    Article  CAS  Google Scholar 

  • Yang X, Xie F, Zhang G, Shi Y, Qian S (2008) Purification, characterization, and substrate specificity of two 2, 3-dihydroxybiphenyl 1, 2-dioxygenase from Rhodococcus sp. R04, showing their distinct stability at various temperature. Biochimie 90:1530–1538

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria S. Kuyukina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kuyukina, M.S., Ivshina, I.B. (2010). Application of Rhodococcus in Bioremediation of Contaminated Environments. In: Alvarez, H. (eds) Biology of Rhodococcus. Microbiology Monographs, vol 16. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12937-7_9

Download citation

Publish with us

Policies and ethics