Skip to main content
Log in

Bioremediation of Oil Sludge in Shengli Oilfield

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

Large quantity of dehydrated oil sludge, generated in the disposal process of oil-containing sewage in Shengli oilfield, needs to be rendered harmless to human and to the environment. Bioremediation has been accepted as an important method for the treatment of oil sludge by employing indigenous or extraneous microbial flora. The bioremediation of a dehydrated oil sludge of 960 m3 in volume was carried out in a prepared bed in Binyi oil-containing sewage disposal station, Shengli oil fields, China. Four different treatments were made to study the impact of certain process parameters on the bioremediation efficiency. Of the oil contaminants, 52.75% was degraded within 160 days when treated in a greenhouse, while the oil contaminations decreased by only 15.46% in the untreated sludge. The variations of the physical and chemical properties of oil sludge, the amount and the functional diversity of microorganisms in sludge were characterized. The results indicated that the water-holding capacity of oil sludge, the amount and the metabolism functional diversity of microorganisms in sludge in the three treatments increased markedly compared with the control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ayotamuno, M. J., Kogbara, R. B., Ogaji, S. O. T., & Probert, S. D. (2006). Bioremediation of a crude-oil polluted agricultural-soil at Port Harcourt, Nigeria. Applied Energy, 83, 1249–1257.

    Article  CAS  Google Scholar 

  • Barathi, S., & Vasudevan, N. (2003). Bioremediation of crude oil contaminated soil by bioaugmentation of Pseudomonas fluorescens NS1. Journal of Environmental Science and Health, Part A—Toxic/Hazardous Substances & Environmental Engineering, 38, 1857–1866.

    CAS  Google Scholar 

  • Capelli, S. M., Busalmen, J. P., & Sanchez, S. R. (2001). Hydrocarbon bioremediation of a mineralbase contaminated waste from crude oil extraction by indigenous bacteria. International Biodeterioration & Biodegradation, 47, 233–238.

    Article  Google Scholar 

  • Chaîneau, C. H., Yepremian, C., Vidalie, J. F., Ducreux, J., & Ballerini, D. (2003). Bioremediation of a crude oil-polluted soil: biodegradation, leaching and toxicity assessments. Water, Air, and Soil Pollution, 144, 419–440.

    Article  Google Scholar 

  • Christofi, N., Ivshina, I. B., Kuyukina, M. S., & Philp, J. C. (1998). Biological treatment of crude oil contaminated soil in Russia. In: D. N. Lerner & N. R. G. Walton (Eds.), Contaminated land and groundwater: future directions. Engineering Geology Special Publication, 14 (pp. 45–51). London: Geological Society.

    Google Scholar 

  • Del’Arco, J. P., & de Franca, F. P. (1999). Biodegradation of crude oil in sandy sediment. International Biodeterioration & Biodegradation, 44, 87–92.

    Article  CAS  Google Scholar 

  • Delillea, D., Coulona, F., & Pelletierb, E. (2004). Effects of temperature warming during a bioremediation study of natural and nutrient-amended hydrocarbon-contaminated sub-Antarctic soils. Cold Regions Science and Technology, 40, 61–70.

    Article  Google Scholar 

  • Essien, J. P., & Udosen, E. D. (2000). Distribution of actinomycetes in oil contaminated ultisols of the Niger Delta (Nigeria). Journal of Environmental Science, 12(3), 296–302.

    CAS  Google Scholar 

  • Gibb, A., Chu, A., Wong, R. C. K., & Goodam, R. H. (2001). Bioremediation kinetics of crude oil at 5°C. Journal of Environmental Engineering, 127, 818–824.

    Article  CAS  Google Scholar 

  • Gogoi, B. K., Dutta, N. N., Goswami, P., & Krishna Mohan, T. R. (2003). A case study of bioremediation of petroleum-hydrocarbon contaminated soil at a crude oil spill site. Advances in Environmental Research, 7, 767–782.

    Article  CAS  Google Scholar 

  • Jackson, A. W., Pardue, J. H., & Araujo, R. (1996). Monitoring crude oil mineralization in salt marshes: Use of stable carbon isotope ratios. Environmental Science & Technology, 30, 1139–1144.

    Article  CAS  Google Scholar 

  • Jørgensen, K. S., Puustinen, J., & Suortti, A. M. (2000). Bioremediation of petroleum hydrocarbon-contaminated soil by composting in biopiles. Environmental Pollution, 107, 245–254.

    Article  Google Scholar 

  • Kuyukina, M. S., Ivshina, I. B., Ritchkova, M. I., Philp, J. C., Cunningham, C. J., & Christofi, N. (2003). Bioremediation of crude oil-contaminated soil using slurry-phase biological treatment and land farming techniques. Soil and Sediment Contamination, 12(1), 85–99.

    Article  CAS  Google Scholar 

  • Li, M. R., Sun, X. D., & Yuan, C. G. (2006). Deep treatment technology of crude oil reclaimed from tank bottom oily sludge rich in oil. Journal of Petrochemical University, 19(2), 30–33.

    Google Scholar 

  • Mesarch, M. B., & Nies, L. (1997). Modification of heterotrophic plate counts for assessing the bioremediation potential of petroleum contaminated soils. Environment & Technology, 18, 639–646.

    Article  CAS  Google Scholar 

  • Milne, B. J., Baheri, H. R., Hill, G. A. (1998). Composting of a heavy oil refinery sludge. Environmental Progress, 1, 24–27.

    Article  Google Scholar 

  • Mishra, S., Jyot, J., Kuhad, R. C., & Lal, B. (2001). Evaluation of inoculum addition to stimulate in situ bioremediation of oily-sludge-contaminated soil. Applied and Environmental Microbiology, 67, 1675–1681.

    Article  CAS  Google Scholar 

  • Murygina, V., Arinbasarov, M., & Kalyuzhnyi, S. (2000). Bioremediation of oil polluted aquatic systems and soils with novel preparation “Rhoder”. Biodegradation, 11(6), 385–389.

    Article  CAS  Google Scholar 

  • Murygina, V. P., Markarova, M. Y., & Kalyuzhnyi, S. V. (2005). Application of biopreparation “Rhoder” for remediation of oil polluted polar marshy wetland in Komi Republic. Environment International, 31, 163–166.

    Article  CAS  Google Scholar 

  • Ouyang, W., Liu, H., Yu, Y. Y., Murygina, V., Kalyuzhnyi, S., & Xu, Z. D. (2006). Field-scale study on performance comparison of bio-augmentation and compost treatment of oily sludge. Huanjing Kexue, 27(1), 160–164.

    CAS  Google Scholar 

  • Salanitro, J. P., Dorn, P. B., Huesemann, M. H., Moore, K. O., Rhodes, I. A., Jackson, L. M. R., et al. (1997). Crude oil hydrocarbon bioremediation and soil ecotoxicity assessment. Environmental Science & Technology, 31, 1769–1776.

    Article  CAS  Google Scholar 

  • Skladney, G. J., & Metting, F. B. (1993). Bioremediation of contaminated soil. In F. B. Metting Jr. (Ed.), Soil microbial ecology (pp. 483–510). New York: Marcel-Dekker.

    Google Scholar 

  • Vasudevan, N., & Rajaram, P. (2001). Bioremediation of oil sludge-contaminated soil. Environment International, 26, 409–411.

    Article  CAS  Google Scholar 

  • Venosa, A. D., Suidan, M. T., Wrenn, B. A., Strohmeier, K. L., Haines, J. R., Eberhart, B. L., et al. (1996). Bioremediation of an experimental oil spill on the shoreline of Delaware Bay. Environmental Science & Technology, 30, 1764–1775.

    Article  CAS  Google Scholar 

  • Whyte, L. G., Goalen, B., Hawari, J., Labbé, D., Greer, C. W., & Nahir, M. (2001). Bioremediation treatability assessment of hydrocarbon-contaminated soils from Eureka, Nunavut. Cold Regions Science and Technology, 32, 121–132.

    Article  Google Scholar 

  • Whyte, L. G., Hawari, J., Zhou, E., Bourbonnie`re, L., Inniss, W. E., & Greer, C. W. (1998). Biodegradation of variable-chainlength alkanes at low temperatures by a psychrotrophic Rhodococcus sp. Applied and Environmental Microbiology, 64, 2578–2584.

    CAS  Google Scholar 

  • Wrenn, B. A., & Venosa, A. D. (1996). Selective enumeration of aromatic and aliphatic hydrocarbon-degrading bacteria by a most-probable number procedure. Canadian Journal of Microbiology, 42, 252–258.

    Article  CAS  Google Scholar 

  • Yan-gen, B. I. (2000). Application of TLC-FID Technique for Analysis of Characteristic Groups in Heavy Oils. Journal of Fuel Chemistry and Technology, 28(5), 388–391.

    Google Scholar 

  • Yang, Y. H., Yao, J. H., & Xiao, M. (2000). Effect of pesticide pollution against functional microbial diversity in soil. Chinese Journal of Microbiology, 20(2), 23–25.

    Google Scholar 

  • Zak, J. C., Willing, M. R., Moorhead, D. L., & Wildman, H. G. (1994). Functional diversity of microbial communities: a quantitative approach. Soil Biology & Biochemistry, 26, 1101–1108.

    Article  Google Scholar 

Download references

Acknowledgments

Financial support for this work from SINOPEC Company and technology support from Moscow State University are hereby gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi De-qing.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De-qing, S., Jian, Z., Zhao-long, G. et al. Bioremediation of Oil Sludge in Shengli Oilfield. Water Air Soil Pollut 185, 177–184 (2007). https://doi.org/10.1007/s11270-007-9440-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-007-9440-y

Keywords

Navigation