Skip to main content

New Perspectives on Gene Family Evolution: Losses in Reconciliation and a Link with Supertrees

  • Conference paper
Research in Computational Molecular Biology (RECOMB 2009)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 5541))

Abstract

Reconciliation between a set of gene trees and a species tree is the most commonly used approach to infer the duplication and loss events in the evolution of gene families, given a species tree. When a species tree is not known, a natural algorithmic problem is to infer a species tree such that the corresponding reconciliation minimizes the number of duplications and/or losses. In this paper, we clarify several theoretical questions and study various algorithmic issues related to these two problems. (1) For a given gene tree T and species tree S, we show that there is a single history explaining T and consistent with S that minimizes gene losses, and that this history also minimizes the number of duplications. We describe a simple linear-time and space algorithm to compute this parsimonious history, that is not based on the Lowest Common Ancestor (LCA) mapping approach; (2) We show that the problem of computing a species tree that minimizes the number of gene duplications, given a set of gene trees, is in fact a slight variant of a supertree problem; (3) We show that deciding if a set of gene trees can be explained using only apparent duplications can be done efficiently, as well as computing a parsimonious species tree for such gene trees. We also characterize gene trees that can be explained using only apparent duplications in terms of compatible triplets of leaves.

Both authors are supported by grants from NSERC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aho, A.V., Sagiv, Y., Szymanski, T.G., Ullman, J.D.: Inferring a tree from lowest common ancestors with an application to the optimization of relational expressions. SIAM J. Comput. 10, 405–421 (1981)

    Article  Google Scholar 

  2. Bansal, M.S., Burleigh, J.G., Eulenstein, O., Wehe, A.: Heuristics for the gene-duplication problem: A Θ(n) speed-up for the local search. In: Speed, T., Huang, H. (eds.) RECOMB 2007. LNCS (LNBI), vol. 4453, pp. 238–252. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  3. Arvestad, L., Berglung, A.-C., Lagergren, J., Sennblad, B.: Gene tree reconstruction and orthology analysis based on an integrated model for duplications and sequence evolution. In: RECOMB 2004, pp. 326–335 (2004)

    Google Scholar 

  4. Blomme, T., Vandepoele, K., De Bodt, S., Silmillion, C., Maere, S., van de Peer, Y.: The gain and loss of genes during 600 millions years of vertebrate evolution. Genome Biol. 7, R43 (2006)

    Article  Google Scholar 

  5. Bonizzoni, P., Della Vedova, G., Dondi, R.: Reconciling a gene tree to a species tree under the duplication cost model. Theoret. Comput. Sci. 347, 36–53 (2005)

    Article  Google Scholar 

  6. Bryant, D.: Hunting for trees, building trees and comparing trees: theory and methods in phylogenetic analysis. Ph.D. thesis, Dept. of Math., Univ. of Canterbury, New Zealand (1997)

    Google Scholar 

  7. Chauve, C., Doyon, J.-P., El-Mabrouk, N.: Gene family evolution by duplication, speciation and loss. J. Comput. Biol. 15, 1043–1062 (2008)

    Article  CAS  PubMed  Google Scholar 

  8. Chen, K., Durand, D., Farach-Colton, M.: NOTUNG: a program for dating gene duplications and optimizing gene family trees. J. Comput. Biol. 7, 429–444 (2000)

    Article  CAS  PubMed  Google Scholar 

  9. Constantinescu, M., Sankoff, D.: An efficient algorithm for supertrees. J. Classification 12, 101–112 (1995)

    Article  Google Scholar 

  10. Cotton, J.A., Page, R.D.M.: Rates and patterns of gene duplication and loss in the human genome. Proc. R. Soc. Lond. B 272, 277–283 (2005)

    Article  CAS  Google Scholar 

  11. Demuth, J.P., De Bie, T., Stajich, J., Cristianini, N., Hahn, M.W.: The evolution of mammalian gene families. PLoS ONE 1, e85 (2006)

    Article  Google Scholar 

  12. Doyon, J.-P., Chauve, C., Hamel, S.: Algorithms for exploring the space of gene tree/species tree reconciliations. In: Nelson, C.E., Vialette, S. (eds.) RECOMB-CG 2008. LNCS (LNBI), vol. 5267, pp. 1–13. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  13. Durand, D., Haldórsson, B.V., Vernot, B.: A hybrid micro-macroevolutionary approach to gene tree reconstruction. J. Comput. Biol. 13, 320–3354 (2006)

    Article  CAS  PubMed  Google Scholar 

  14. Eichler, E.E., Sankoff, D.: Structural dynamics of eukaryotic chromosome evolution. Science 301, 793–797 (2003)

    Article  CAS  PubMed  Google Scholar 

  15. Eulenstein, O., Mirkin, B., Vingron, M.: Comparison of annotating duplication, tree mapping, and copying as methods to compare gene trees with species trees. In: Mathematical hierarchies and biology. DIMACS Series Discrete Math. Theoret. Comput. Sci., vol. 37, pp. 71–93 (1997)

    Google Scholar 

  16. Gorecki, P., Tiutyn, J.: DLS-trees: a model of evolutionary scenarios. Theoret. Comput. Sci. 359, 378–399 (2006)

    Article  Google Scholar 

  17. Goodman, M., Czelusniak, J., Moore, G.W., Romero-Herrera, A.E., Matsuda, G.: Fitting the gene lineage into its species lineage, a parsimony strategy illustrated by cladograms constructed from globin sequences. Syst. Zool. 28, 132–163 (1979)

    Article  CAS  Google Scholar 

  18. Hallett, M.T., Lagergren, J.: New algorithms for the duplication-loss model. In: RECOMB 2000, pp. 138–146 (2000)

    Google Scholar 

  19. Hahn, M.W., Han, M.V., Han, S.-G.: Gene family evolution across 12 Drosophilia genomes. PLoS Genet. 3, e197 (2007)

    Article  Google Scholar 

  20. Henzinger, M.R., King, V., Warnow, T.: Constructing a Tree from Homeomorphic Subtrees, with Applications to Computational Evolutionary Biology. Algorithmica 24, 1–13 (1999)

    Article  Google Scholar 

  21. Lynch, M., Conery, J.S.: The evolutionary fate and consequences of duplicate genes. Science 290, 1151–1155 (2000)

    Article  CAS  PubMed  Google Scholar 

  22. Ma, B., Li, M., Zhang, L.: From gene trees to species trees. SIAM J. Comput. 30, 729–752 (2000)

    Article  Google Scholar 

  23. Ohno, S.: Evolution by gene duplication. Springer, Heidelberg (1970)

    Book  Google Scholar 

  24. Page, R.D.M.: Maps between trees and cladistic analysis of historical associations among genes, organisms, and areas. Syst. Biol. 43, 58–77 (1994)

    Google Scholar 

  25. Page, R.D.M., Charleston, M.A.: Reconciled trees and incongruent gene and species trees. Mathematical hierarchies and biology. DIMACS Series Discrete Math. Theoret. Comput. Sci. 37, 57–70 (1997)

    Article  Google Scholar 

  26. Page, R.D.M.: GeneTree: comparing gene and species phylogenies using reconciled trees. Bioinformatics 14, 819–820 (1998)

    Article  CAS  PubMed  Google Scholar 

  27. Page, R.D.M.: Modified mincut supertrees. In: Guigó, R., Gusfield, D. (eds.) WABI 2002. LNCS, vol. 2452, pp. 537–551. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  28. Sanderson, M.J., McMahon, M.M.: Inferring angiosperm phylogeny from EST data with widespread gene duplication. BMC Evol. Biol. 7, S3 (2007)

    Article  Google Scholar 

  29. Semple, C., Steel, M.: A supertree method for rooted trees. Discrete Appl. Math. 105, 147–158 (2000)

    Article  Google Scholar 

  30. Snir, S., Rao, S.: Using max cut to enhance rooted trees consistency. IEEE/ACM Trans. Comput. Biol. and Bioinform. 3, 323–333 (2006)

    Article  Google Scholar 

  31. Steel, M.: The complexity of reconstructing trees from qualitative characters and subtrees. J. Classification 9, 91–116 (1992)

    Article  Google Scholar 

  32. Wapinski, I., Pfeffer, A., Friedman, N., Regev, A.: Natural history and evolutionary principles of gene duplication in fungi. Nature 449, 54–61 (2007)

    Article  CAS  PubMed  Google Scholar 

  33. Zhang, L.X.: On Mirkin-Muchnik-Smith conjecture for comparing molecular phylogenies. J. Comput. Biol. 4, 177–188 (1997)

    Article  CAS  PubMed  Google Scholar 

  34. Zmasek, C.M., Eddy, S.R.: A simple algorithm to infer gene duplication and speciation events on a gene tree. Bioinformatics 17, 821–828 (2001)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chauve, C., El-Mabrouk, N. (2009). New Perspectives on Gene Family Evolution: Losses in Reconciliation and a Link with Supertrees. In: Batzoglou, S. (eds) Research in Computational Molecular Biology. RECOMB 2009. Lecture Notes in Computer Science(), vol 5541. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02008-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02008-7_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02007-0

  • Online ISBN: 978-3-642-02008-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics