Skip to main content

Algorithms for Exploring the Space of Gene Tree/Species Tree Reconciliations

  • Conference paper
Comparative Genomics (RECOMB-CG 2008)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 5267))

Included in the following conference series:

Abstract

We describe algorithms to explore the space of all possible reconciliations between a gene tree and a species tree. We propose an algorithm for generating a random reconciliation, and combinatorial operators and algorithms to explore the space of all possible reconciliations between a gene tree and a species tree in optimal time. We apply these algorithms to simulated data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arvestad, L., Berglund, A.-C., Lagergren, J., Sennblad, B.: Gene tree reconstruction and orthology analysis based on an integrated model for duplications and sequence evolution. In: RECOMB 2004, pp. 326–335 (2004)

    Google Scholar 

  2. Bonizzoni, P., Della Vedova, G., Dondi, R.: Reconciling a gene tree to a species tree under the duplication cost model. Theoret. Comput. Sci. 347, 36–53 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  3. Chang, W.-C., Eulenstein, O.: Reconciling gene trees with apparent polytomies. In: Chen, D.Z., Lee, D.T. (eds.) COCOON 2006. LNCS, vol. 4112, pp. 235–244. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  4. Chauve, C., Doyon, J.-P., El-Mabrouk, N.: Gene family evolution by duplication, speciation and loss. J. Comput. Biol. (to appear, 2008)

    Google Scholar 

  5. Denise, A., Zimmermann, P.: Uniform random generation of decomposable structures using floating-point arithmetic. Theoret. Comput. Sci. 218, 233–248 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  6. Doyon, J.-P., Chauve, C., Hamel, S.: Algorithms for exploring the space of gene tree/species tree reconciliations. IRO Technical Report # 1323 (2008)

    Google Scholar 

  7. Fellows, M.R., Hallett, M.T., Stege, U.: On the multiple gene duplication problem. In: Chwa, K.-Y., H. Ibarra, O. (eds.) ISAAC 1998. LNCS, vol. 1533, pp. 347–356. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  8. Fitch, W.M.: Distinguishing homologous from analogous proteins. Syst. Zool. 19, 99–113 (1970)

    Article  Google Scholar 

  9. Fitch, W.M.: Homology - a personal view on some of the problems. Trends Genet. 16, 227–231 (2000)

    Article  Google Scholar 

  10. Goodman, M., Czelusniak, J., Moore, G.W., Herrera, R.A., Matsuda, G.: Fitting the gene lineage into its species lineage, a parsimony strategy illustrated by cladograms constructed from globin sequences. Syst. Zool. 28, 132–163 (1979)

    Article  Google Scholar 

  11. Górecki, P., Tiuryn, J.: DLS-trees: a model of evolutionary scenarios. Theoret. Comput. Sci. 359, 378–399 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  12. Graur, D., Li, W.-H.: Fundamentals of Molecular Evolution, 2nd edn. Sinauer Associates, Sunderland (1999)

    Google Scholar 

  13. Hahn, M.W., Han, M.V., Han, S.-G.: Gene family evolution across 12 Drosophilia genomes. PLoS Genet. 3, e197 (2007)

    Article  Google Scholar 

  14. Jensen, R.: Orthologs and paralogs - we need to get it right. In: Genome Biology, 2:interactions1002.1–interactions1002.3 (2001)

    Google Scholar 

  15. Ma, B., Li, M., Zhang, L.: From gene trees to species trees. SIAM J. Comput. 30, 729–752 (2001)

    Article  MathSciNet  Google Scholar 

  16. Ma, J., Ratan, A., Zhang, L., Miller, W., Haussler, D.: A heuristic algorithm for reconstructing ancestral gene orders with duplications. In: Tesler, G., Durand, D. (eds.) RECMOB-CG 2007. LNCS (LNBI), vol. 4751, pp. 122–135. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  17. Page, R.D.: Maps between trees and cladistic analysis of historical associations among genes, organisms, and areas. Syst. Biol. 43, 58–77 (1994)

    Article  Google Scholar 

  18. Vernot, B., Stolzer, M., Goldman, A., Durand, D.: Reconciliation with non-binary species tree. In: CSB 2007 pp. 441–452 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Doyon, JP., Chauve, C., Hamel, S. (2008). Algorithms for Exploring the Space of Gene Tree/Species Tree Reconciliations. In: Nelson, C.E., Vialette, S. (eds) Comparative Genomics. RECOMB-CG 2008. Lecture Notes in Computer Science(), vol 5267. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87989-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87989-3_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87988-6

  • Online ISBN: 978-3-540-87989-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics