Skip to main content

Modified Mincut Supertrees

  • Conference paper
  • First Online:
Algorithms in Bioinformatics (WABI 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2452))

Included in the following conference series:

Abstract

A polynomial time supertree algorithm could play a key role in a divide-and-conquer strategy for assembling the tree of life. To date only a single such method capable of accommodate conflicting input trees has been proposed, the MinCutSupertree algorithm of Semple and Steel. This paper describes this algorithm and its implementation, then illustrates some weaknesses of the method. A modification to the algorithm that avoids some of these problems is proposed. The paper concludes by discussing some practical problems in supertree construction.

I thank David Bryant, James Cotton, Mike Steel, Joe Thorley, and three anonymous referees for their helpful comments on the manuscript. Computational resources were provided by a grant from the Wolfson Foundation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sanderson, M. J., Purvis, A., Henze, C.: Phylogenetic supertrees: assembling the trees of life Trends Ecol. Evol. 13 (1998) 105–109

    Google Scholar 

  2. Steel, M., Dress, A., Böcker, S.: Simple but fundamental limitations on supertree and consensus tree methods. Syst. Biol 49 (2000) 363–368

    Article  Google Scholar 

  3. Baum, B.R.: Combining trees as a way of combining data sets for phylogenetic inference, and the desirability of combining gene trees. Taxon 41 (1992) 3–10

    Article  Google Scholar 

  4. Ragan, M.A.: Phylogenetic inference based on matrix representation of trees. Mol. Phylogen. Evol. 1 (1992) 53–58

    Article  Google Scholar 

  5. Graham, R.L., Foulds, L.R.: Unlikelihood that minimal phylogenies for a realistic biological study can be constructed in reasonable computational time. Math. Biosci. 60 (1982) 133–142

    Article  MATH  MathSciNet  Google Scholar 

  6. Chen, D., Eulenstein, O., Fernández-Baca, D., Sanderson, M.: Supertrees by flipping. Technical Report TR02-01, Department of Computer Science, Iowa State University (2001)

    Google Scholar 

  7. Semple, C., Steel, M.: A supertree method for rooted trees. Disc. Appl. Math. 105 (2000) 147–158

    Article  MATH  MathSciNet  Google Scholar 

  8. Piel, W.: Phyloinformatics and tree networks In:Wu, C.H., Wang, P., Wang, J.T.L. (eds.): Computational Biology and Genome Informatics. World Scientific Press (2001)

    Google Scholar 

  9. Adams, E.N.: N-trees as nestings: complexity, similarity, and consensus. J. Classif. 3 (1986) 299–317

    Article  MATH  Google Scholar 

  10. Aho, A.V., Sagiv, Y., Szymanski, T.G., Ullman, J.D.: Inferring a tree from lowest common ancestors with an application to the optimization of relational expressions. SIAM J. Comput. 10 (1981) 405–421

    Article  MATH  MathSciNet  Google Scholar 

  11. Bryant, D., Steel, M.: Extension operations on sets of leaf-labelled trees. Adv. Appl. Math. 16 (1995) 425–453

    Article  MATH  MathSciNet  Google Scholar 

  12. Ng, M. P., Wormald, N. C.: Reconstruction of rooted trees from subtrees. Disc. Appl. Math. 69 (1996) 19–31

    Article  MATH  MathSciNet  Google Scholar 

  13. Picard, J.-C., Queyranne, M.: On the structure of all minimum cuts in a network and applications. Math. Prog. Study 13 (1980) 8–16

    MATH  MathSciNet  Google Scholar 

  14. Stoer, M., Wagner, F.: A simple min cut algorithm. J. ACM 44 (1997) 585–591

    Article  MATH  MathSciNet  Google Scholar 

  15. Maddison, W. P.: Reconstructing character evolution on polytomous cladograms. Cladistics 5 (1989) 365–377

    Google Scholar 

  16. Slowinski, J.B. Molecular polytomies. Mol. Phylogen.Evol. 19 (2001) 114–120

    Article  Google Scholar 

  17. Steel, M.: The complexity of reconstructing trees from qualitative characters and subtrees. J. Classif. 9 (1992) 91–116

    Article  MATH  MathSciNet  Google Scholar 

  18. Nelson, G., Platnick, N.I. Multiple branching in cladograms: two interpretations. Syst. Zool. 29 (1980) 86–91

    Article  Google Scholar 

  19. Wilkinson, M., Thorley, J.L., Littlewood, D.T.J., Bray, R.A.: Towards a phylogenetic supertree of Platyhelminthes? In: Littlewood, D.T.J., Bray, R.A. (eds.): Interrelationships of the Platyhelminthes. Taylor and Francis, London (2001) 292–301

    Google Scholar 

  20. Joshi, A.K.: An introduction to tree adjoining grammars In: Manaster-Ramer, A. (ed.): Mathematics of Language. John Benjamins Publishing Co., Amsterdam (1987) 87–115

    Google Scholar 

  21. de Queiroz, K., Gauthier, J.: Phylogenetic taxonomy. Ann. Rev. Ecol. Syst. 23 (1992) 449–480

    Article  Google Scholar 

  22. Page, R.D.M.: Extracting species trees from complex gene trees: reconciled trees and vertebrate phylogeny. Mol. Phylogen. Evol. 14 (2000) 89–106

    Article  Google Scholar 

  23. Constantinescu, M., Sanko., D.: Tree enumeration modulo a consensus. J. Classif. 3 (1986) 349–356

    Article  MATH  Google Scholar 

  24. Day, W.H.E.: The role of complexity in comparing classifications. Math. Biosci. 66 (1983) 97–114

    Article  MATH  MathSciNet  Google Scholar 

  25. Steel, M.A., Warnow, T.: Kaikoura tree theorems: Computing the maximum agreement subtree. Info. Proc. Letters 48 (1993) 77–82

    Google Scholar 

  26. Farach, M., Przytycka, T.M. and Thorup, M.: On the agreement of many trees. Info. Proc. Letters 55 (1995) 297–301

    Google Scholar 

  27. Swofford, D.L.: When are phylogeny estimates from molecular and morphological data incongruent? In: Miyamoto, M. M., Cracraft, J. (eds.): Phylogenetic analysis of DNA sequences. Oxford University Press, New York (1991) 295–333

    Google Scholar 

  28. Ganapathysaravanabavan, G. and Warnow, T.: Finding a maximum compatible tree for a bounded number of trees with bounded degree is solvable in polynomial time. In: Gascuel, O., and Moret, B.M.E. Moret (eds.): Proceedings of the First International Workshop on Algorithms in Bioinformatics (WABI 2001) (Lecture Notes in Computer Science 2149) (2001) 156–163

    Google Scholar 

  29. Day, W.H.E.: Analysis of quartet dissimilarity measures between undirected phylogenetic trees. Syst. Zool. 35 (1986) 325–333

    Article  Google Scholar 

  30. Douchette, C.R.: An efficient algorithm to compute quartet dissimilarity measures. BSc(Hons) dissertation. Department of Computer Science, Memorial University, Newfoundland, Canada (1985)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Page, R.D. (2002). Modified Mincut Supertrees. In: Guigó, R., Gusfield, D. (eds) Algorithms in Bioinformatics. WABI 2002. Lecture Notes in Computer Science, vol 2452. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45784-4_41

Download citation

  • DOI: https://doi.org/10.1007/3-540-45784-4_41

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44211-0

  • Online ISBN: 978-3-540-45784-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics