Skip to main content

Mechanical Ventilation in the Operating Room

  • Chapter
  • First Online:
Pediatric and Neonatal Mechanical Ventilation
  • 4991 Accesses

Abstract

During the provision of general anesthesia, some type of support of ventilatory function is generally necessary given the depressant effects of the various anesthetic and opioid agents that are administered to provide amnesia and analgesia. Furthermore, for major thoracic or abdominal procedures, neuromuscular blocking agents are frequently administered, thereby necessitating full control of ventilation. As with ventilation outside of the operating room (OR), variation options exist for respiratory support during the provision of general anesthesia including volume- or pressure-limited modalities or more recently the use of pressure support ventilation to augment spontaneous ventilation. Given the limitations of commercially available OR ventilators, critically ill patients may require the use of sophisticated ICU ventilators in the OR setting. In such instances, as the inhalational anesthetic agents cannot generally and easily be administered through such ventilators, general anesthesia is provided by intravenous anesthetic agents (total intravenous anesthesia or TIVA). This chapter reviews the basics of anesthesia breathing systems, options for ventilator support during anesthetic care, and special situations in the operating including the administration of adjunctive agents (helium, nitric oxide, nitrogen, and carbon dioxide) as well as the use of one-lung ventilation (OLV) during thoracic surgical procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aubin P, Vischoff D, Haig M et al (1999) Management of an infant with diffuse bullous pulmonary lesions using high frequency oscillatory ventilation. Can J Anaesth 46:970–974

    Article  CAS  PubMed  Google Scholar 

  • Ayre P (1937) Endotracheal anesthesia for babies with special reference to hare-lip and cleft palate operations. Anesth Analg 16:330–333

    Article  Google Scholar 

  • Bain JA, Spoerel WE (1973) Flow requirements for a modified Mapleson D system during controlled ventilation. Can Anaesth Soc J 20:629–636

    Article  CAS  PubMed  Google Scholar 

  • Barach A, Eckman M (1935) The use of helium as a new therapeutic gas. Anesth Analg 14:210–215

    CAS  Google Scholar 

  • Barach A, Eckman M (1936) The effects of inhalation of helium mixed with oxygen on the mechanics of respiration. J Clin Invest 15:47–61

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Baum J, Sachs G, Driesch C et al (1995) Carbon monoxide generation in carbon dioxide absorbents. Anesth Analg 81:144–146

    CAS  PubMed  Google Scholar 

  • Benumof JF, Augustine SD, Gibbons JA (1987) Halothane and isoflurane only slightly impair arterial oxygenation during one-lung ventilation in patients undergoing thoracotomy. Anesthesiology 67:910–914

    Article  CAS  PubMed  Google Scholar 

  • Berkenbosch JW, Grueber RE, Graff GR, Tobias JD (2004) Patterns of helium-oxygen (heliox) use in the critical care environment. J Intensive Care Med 19:335–344

    Article  PubMed  Google Scholar 

  • Berry PD, Sessler DI, Larsen MD (1999) Severe carbon monoxide poisoning during desflurane anesthesia. Anesthesiology 90:613–615

    Article  CAS  PubMed  Google Scholar 

  • Castro BA, Freedman A, Craig WL et al (2004) Explosion within an anesthesia machine: Baralyme®, high fresh gas flows, and sevoflurane concentration. Anesthesiology 101:537–539

    Article  CAS  PubMed  Google Scholar 

  • Conway CM (1985) Anaesthetic breathing systems. Br J Anaesth 57:649–657

    Article  CAS  PubMed  Google Scholar 

  • Cotter T, Russo P, Tobias JD (2004) Intraoperative jet ventilation during aortic coarctation repair in an infant. J Intensive Care Med 18:207–209

    Google Scholar 

  • Davis DA, Russo PA, Greenspan JS et al (1994) High-frequency jet ventilation versus conventional ventilation in infants undergoing Blalock-Taussig shunts. Ann Thorac Surg 57:846–849

    Article  CAS  PubMed  Google Scholar 

  • Dietrich CC, Tobias JD (2003) Intraoperative administration of nitric oxide. J Intensive Care Med 18:146–149

    Article  PubMed  Google Scholar 

  • Duncan PG (1979) Efficacy of helium-oxygen mixtures in the management of severe viral and post-intubation croup. Can Anaesth Soc J 26:206–221

    Article  CAS  PubMed  Google Scholar 

  • Fang ZX, Eger EI II, Laster MJ et al (1995) Carbon monoxide production from degradation of desflurane, enflurane, isoflurane, halo-thane, and sevoflurane by soda lime and Baralyme®. Anesth Analg 80:1187–1193

    CAS  PubMed  Google Scholar 

  • Fatheree RS, Leighton BL (2004) Acute respiratory distress syndrome after an exothermic Baralyme®-sevoflurane reaction. Anesthesiology 101:531–533

    Article  CAS  PubMed  Google Scholar 

  • Frink EJ Jr, Malan TP, Morgan SE et al (1992) Quantification of the degradation products of sevoflurane in two CO2 absorbents during low-flow anesthesia in surgical patients. Anesthesiology 77:1064–1069

    Article  PubMed  Google Scholar 

  • Hammer GB (2004) Single lung ventilation in infants and children. Pediatr Anesth 14:98–102

    Article  Google Scholar 

  • Hunt HE (1955) Resistance in respiratory valves and canisters. Anesthesiology 16:190–194

    Article  CAS  PubMed  Google Scholar 

  • Jobes D, Nicolson S, Steven J et al (1992) Carbon dioxide prevents pulmonary overcirculation in hypoplastic left heart syndrome. Ann Thorac Surg 54:150–151

    Article  CAS  PubMed  Google Scholar 

  • Kain ML, Nunn JF (1967) Fresh gas flow and rebreathing in the Magill circuit with spontaneous respiration. Proc R Soc Med 60:749–750

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kain ML, Nunn JF (1968) Fresh gas economics of the Magill system. Anesthesiology 29:964–974

    Article  CAS  PubMed  Google Scholar 

  • Laster M, Roth P, Eger EI II (2004) Fires from the interaction of anesthetics with desiccated absorbent. Anesth Analg 99:769–774

    Article  CAS  PubMed  Google Scholar 

  • Manthous CA, Morgan S, Pohlman A, Hall JB (1997) Heliox in the treatment of airflow obstruction: a critical review of the literature. Respir Care 42:1034–1042

    Google Scholar 

  • Mapleson WW (1954) The elimination of rebreathing in various semi-closed anesthetic systems. Br J Anaesth 26:323–332

    Article  CAS  PubMed  Google Scholar 

  • Maragakis LL, Cosgrove SE, Martinez EA et al (2009) Intraoperative fraction of inspired oxygen is a modifiable risk factor for surgical site infection after spinal surgery. Anesthesiology 110:556–562

    Article  PubMed  Google Scholar 

  • Mazze RI (1992) The safety of sevoflurane in humans. Anesthesiology 77:1062–1066

    Article  CAS  PubMed  Google Scholar 

  • Meliones JN, Bove E, Dekeon MK et al (1991) High-frequency jet ventilation improves cardiac function after the Fontan procedure. Circulation 84:364–368

    Google Scholar 

  • Meyhoff CS, Wetterslev J, Jorgensen LN et al (2009) Effect of high perioperative oxygen fraction on surgical site infection and pulmonary complications after abdominal surgery: the PROXI randomized clinical trial. JAMA 302:1543–1550

    Article  CAS  PubMed  Google Scholar 

  • Michael JG, Bocklage T, Tobias JD (1999) Helium administration during mechanical ventilation in children with respiratory failure. J Intensive Care Med 14:140–147

    Google Scholar 

  • Miguet D, Claris O, Lapillonne A et al (1994) Preoperative stabilization using high frequency oscillatory ventilation in the management of congenital diaphragmatic hernia. Crit Care Med 22:S77–S82

    Article  CAS  PubMed  Google Scholar 

  • Miller DM (1988) Breathing systems for use in anaesthesia. Evaluation using a physical lung model and classification. Br J Anaesth 60:555–564

    Article  CAS  PubMed  Google Scholar 

  • Morio M, Fujii K, Satoh N et al (1992) Reaction of sevoflurane and its degradation products with soda lime. Toxicity of the byproducts. Anesthesiology 77:1155–1164

    Article  CAS  PubMed  Google Scholar 

  • Moutafis M, Dalibon N, Colchem A, Fischler M (1999) Improving oxygenation during bronchopulmonary lavage using nitric oxide inhalation and almitrine infusion. Anesth Analg 89:302–304

    CAS  PubMed  Google Scholar 

  • Moyers J (1953) A nomenclature for methods of inhalation anesthesia. Anesthesiology 14:609–611

    Article  CAS  PubMed  Google Scholar 

  • Nakano S, Tashiro C, Nishimura M et al (1991) Perioperative use of high-frequency oscillation immediately after birth in two neonates with congenital cystic adenomatoid malformation. Anesthesiology 74:939–941

    Article  CAS  PubMed  Google Scholar 

  • Norman J, Adams AP, Freedman S, Sykes MK (1967) Rebreathing with the Magill circuit. Br J Anaesth 39:517–520

    CAS  PubMed  Google Scholar 

  • Norwood WI (1991) Hypoplastic left heart syndrome. Ann Thorac Surg 52:688–695

    Article  PubMed  Google Scholar 

  • Obara H, Maekawa N, Iwai S et al (1988) Reconstruction of the trachea in children with tracheal stenosis by using jet ventilation. Anesthesiology 68:441–443

    Article  CAS  PubMed  Google Scholar 

  • Ramamoorthy C, Tabbutt S, Kurth D et al (2002) Effects of inspired hypoxic and hypercapnic gas mixtures on cerebral oxygen saturation in neonates with univentricular heart defects. Anesthesiology 96:283–288

    Article  PubMed  Google Scholar 

  • Schur MS, Maccioli GA, Azizkhan RG et al (1988) High frequency ventilation in the management of congenital tracheal stenosis. Anesthesiology 68:441–443

    Article  Google Scholar 

  • Schuster S, Weilemann LS, Kelbel C, Schinzel H, Meyer J (1991) Inverse ration ventilation improves pulmonary gas exchange and systemic oxygen transport in patients with congestive heart failure. Clin Intensive Care 2:148–153

    Google Scholar 

  • Sheikh E, Maguire DP, Gratch D (2009) Autotriggering during pressure support ventilation due to cardiogenic oscillations. Anesth Analg 109:470–472

    Article  PubMed  Google Scholar 

  • Soliman MG, Laberge R (1978) The use of the Bain circuit in spontaneously breathing paediatric patients. Can Anaesth Soc J 25:276–281

    Article  CAS  PubMed  Google Scholar 

  • Sykes MK (1959) Rebreathing during controlled respiration with the Magill attachment. Br J Anaesth 31:247–257

    Article  CAS  PubMed  Google Scholar 

  • Sykes MK (1968) Rebreathing circuits. Br J Anaesth 40:666–674

    Article  Google Scholar 

  • Talab HF, Zabani IA, Abdelrahman HS et al (2009) Intraoperative ventilatory strategies for prevention of pulmonary atelectasis in obese patients undergoing laparoscopic bariatric surgery. Anesth Analg 109:1511–1516

    Article  PubMed  Google Scholar 

  • Tobias JD (1997) Helium: applications in the practice of anesthesia and critical care. Am J Anesthesiol 24:194–200

    Google Scholar 

  • Tobias JD (2001) Thoracic surgery in children. Curr Opin Anaesthesiol 14:77–85

    Article  CAS  PubMed  Google Scholar 

  • Tobias JD, Burd RS (2001) Anaesthetic management and high frequency oscillatory ventilation. Paediatr Anaesth 11:483–487

    Article  CAS  PubMed  Google Scholar 

  • Tobias JD, Grueber RE (2000) Nitric oxide administration using an operating room ventilator. Am J Anesth 27:137–139

    Google Scholar 

  • Unzueta MC, Casas JI, Moral MV (2007) Pressure controlled versus volume controlled ventilation during one-lung ventilation for thoracic surgery. Anesth Analg 104:1029–1033

    Article  PubMed  Google Scholar 

  • Versichelen LF, Bouche MP, Rolly G et al (2001) Only carbon dioxide absorbents free of both NaOH and KOH do not generate compound A during in vitro closed system sevoflurane: evaluation of five absorbents. Anesthesiology 95:750–755

    Article  CAS  PubMed  Google Scholar 

  • Wang JYY, Russell GN, Page RD et al (2000) A comparison of the effects of desflurane and isoflurane on arterial oxygenation during one-lung ventilation. Anaesthesia 55:163–183

    Article  Google Scholar 

  • Willis BA, Pender JW, Mapleson WW (1975) Rebreathing in a T-piece: volunteer and theoretical studies of the Jackson-Rees modification of the Ayre’s t-piece during spontaneous respiration. Br J Anaesth 47:1239–1246

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Previte JP, Adler E et al (2004) Spontaneous ignition, explosion, and fire with sevoflurane and barium hydroxide lime. Anesthesiology 101:534–537

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph D. Tobias MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tobias, J.D. (2015). Mechanical Ventilation in the Operating Room. In: Rimensberger, P. (eds) Pediatric and Neonatal Mechanical Ventilation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01219-8_65

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01219-8_65

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01218-1

  • Online ISBN: 978-3-642-01219-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics