Skip to main content

The Subpial Granular Layer in the Developing Cerebral Cortex of Rodents

  • Chapter
Mouse Brain Development

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 30))

Abstract

The subpial granular layer (SGL) is a transient layer of small, undifferentiated cells located immediately below the pial surface of the cerebral cortex. It was first described by Ranke (1910) in the marginal zone (MZ), the prospective cortical layer I, of human fetuses around midgestation. While Ranke believed the SGL to be composed mainly of glia, other authors such as Schaffer (1918) and Brun (1965) considered it a predominantly neuronal structure. The neuronal character of most of its constituent cells was later confirmed by Gadisseux et al. (1992) by using immunocytochemistry with neuron-specific antibodies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alcantara S, Ruiz M, D’Arcangelo G, Ezan F, De Lecea L, Curran T, Sotelo C, Soriano E (1998) Regional and cellular patterns of reelin mRNA expression in the forebrain of the developing and adult mouse. J Neurosci 18: 7779–7799

    PubMed  CAS  Google Scholar 

  • Anderson SA, Eisenstat DD, Shi L, Rubenstein JLR (1997) Interneuron migration from basal forebrain to neocortex: Dependence on Dlx genes. Science 278: 474–476

    Google Scholar 

  • Anton ES, Cameron RS, Rakic P (1996) Role of neuron glial junctional domain proteins in the maintenance and termination of neuronal migration across the embryonic cerebral wall. J Neurosci 16: 2283–2293

    PubMed  CAS  Google Scholar 

  • Bayer SA, Altman J (1991) Neocortical development. Raven Press, New York

    Google Scholar 

  • Brun A (1965) The subpial granular layer of the foetal cerebral cortex in man. Its ontogeny and significance in congenital cortical malformations. Acta Pathol Microbiol Scand 179 (Suppl): 1–98

    Google Scholar 

  • Brunstrom JE, Gray-Swain MR, Osborne PA, Pearlman AL (1997) Neuronal heterotopias in the developing cerebral cortex produced by neurotrophin-4. Neuron 18: 505–517

    Article  PubMed  CAS  Google Scholar 

  • Cobas A, Fairén A, Alvarez-Bolado G, Sanchez MP (1991) Prenatal development of the intrinsic neurons of the rat neocortex: a comparative study of the distribution of GABA-immunoreactive cells and the GABAA receptor. Neuroscience 40: 375–397

    Google Scholar 

  • D’Arcangelo G, Miao GG, Chen SC, Soares HD, Morgan JI, Curran T (1995) A protein related to extracellular matrix proteins deleted in the mouse mutant reeler. Nature 374: 719–723

    Article  PubMed  Google Scholar 

  • D’Arcangelo G, Nakajima K, Miyata T, Ogawa M, Mikoshiba K, Curran T (1997) Reelin is a secreted glycoprotein recognized by the CR-50 monoclonal antibody. J Neurosci 17: 23–31

    PubMed  Google Scholar 

  • de Bergeyck V, Naerhuyzen B, Goffinet AM, Lambert de Rouvroit C (1998) A panel of monoclonal antibodies against Reelin, the extracellular matrix protein defective in reeler mutant mice. J Neurosci Meth 82: 17–24

    Article  Google Scholar 

  • De Carlos JA, O’Leary DDM (1992) Growth and targeting of subplate axons and establishment of major cortical pathways. J Neurosci 12: 1194–1211

    PubMed  Google Scholar 

  • De Diego I, Smith-Fernandez A, Fairén A (1994) Cortical cells that migrate beyond area boundaries: characterization of an early neuronal population in the lower intermediate zone of prenatal rats. Eur J Neurosci 6: 983–997

    Article  Google Scholar 

  • Del Rio JA, Soriano E, Ferrer I (1992) Development of GABA-immunoreactivity in the neo-cortex of the mouse. J Comp Neurol 326: 501–526

    Article  PubMed  Google Scholar 

  • Del Rio JA, Martinez A, Fonseca M, Auladell C, Soriano E (1995) Glutamate-like immunoreactivity and fate of Cajal-Retzius cells in the murine cortex as identified with calretinin antibody. Cerebr Cortex 5: 13–21

    Article  Google Scholar 

  • Derer P, Derer M (1990) Cajal-Retzius cell ontogenesis and death in mouse brain visualized with horseradish peroxidase and electron microscopy. Neurosci 36: 839–856

    Article  CAS  Google Scholar 

  • Gadisseux JF, Goffinet AM, Lyon G, Evrard P (1992) The human transient subpial granular layer: An optical, immunohistochemical, and ultrastructural analysis. J Comp Neurol 324: 94–114

    Google Scholar 

  • Ikeda Y, Terashima T (1997) Expression of reelin, the gene responsible for the reeler mutation, in embryonic development and adulthood in the mouse. Dev Dyn 210: 157–172

    Article  PubMed  CAS  Google Scholar 

  • Lambert de Rouvroit C, Goffinet AM (1998) The reeler mouse as a model of brain development. Adv Anat Embryol Cell Biol 150: 1–108

    Article  Google Scholar 

  • Lavdas AA, Grigoriou M, Pachnis V, Parnavelas JG (1998) The medial ganglionic eminence gives rise to a population of early neurons in the developing cerebral cortex. J Neurosci 19: 7881–7888

    Google Scholar 

  • Marin-Padilla M (1972) Prenatal ontogenetic history of the principal neurons of the neocortex of the cat (Felis domestica). A Golgi study. II. Developmental differences and their significances. Z Anat Enwicklungesch 136: 125–142

    Article  CAS  Google Scholar 

  • Marin-Padilla M (1998) Cajal-Retzius cells and the development of the neocortex. Trends Neurosci 21: 64–71

    Article  PubMed  CAS  Google Scholar 

  • Meyer G, Gonzalez-Hernandez T (1993) Developmental changes in layer I of the human neo-cortex during prenatal life: A DiI-tracing and AChE and NADPH-d histochemistry study. J Comp Neurol 338: 317–336

    Google Scholar 

  • Meyer G, Goffinet AM (1998) Prenatal development of Reelin-immunoreactive neurons in the human neocortex. J Comp Neurol 397

    Google Scholar 

  • -40

    Google Scholar 

  • Meyer G, Goffinet AM, Fairén A (1999) What is a Cajal-Retzius cell? A reassessment of a classical cell type based on recent observations in the developing neocortical marginal zone. Cerebr Cortex 9: 765–775

    Google Scholar 

  • Meyer G, Soria JM, Martínez-Galan JR, Martin-Clemente B, Fairén A (1998) Different origins and developmental histories of transient neurons in the marginal zone of the fetal and neonatal rat cortex. J Comp Neurol 397: 493–518

    Article  PubMed  CAS  Google Scholar 

  • Ogawa M, Miyata T, Nakajima K, Yagyu K, Seike M, Ikenaka K, Yamamoto H, Mikoshiba K (1995) The reeler gene-associated antigen on Cajal-Retzius neurons is a crucial molecule for laminar organization of cortical neurons. Neuron 14: 899–912

    Article  PubMed  CAS  Google Scholar 

  • O’Rourke NA, Dailey ME, Smith SJ, McConnell SK (1992) Diverse migratory pathways in the developing cerebral cortex. Science 258: 299–302

    Article  PubMed  Google Scholar 

  • Pesold C, Impagnatiello F, Pisu MG, Uzunov DP, Costa E, Guidotti A, Caruncho HJ (1998) Reelin is preferentially expressed in neurons synthesizing y-aminobutyric acid in cortex and hippocampus of adult rats. Proc Natl Acad Sci USA 95: 3221–3226

    Article  PubMed  CAS  Google Scholar 

  • Raedler E, Raedler A (1978) Autoradiographic study of early ontogenesis in rat neocortex. Anat Embryol 154: 267–284

    Article  PubMed  CAS  Google Scholar 

  • Rakic P (1972) Mode of cell migration to the superficial layers of fetal monkey neocortex. J Comp Neurol 145: 61–84

    Article  PubMed  CAS  Google Scholar 

  • Ranke G (1910) Beiträge zur Kenntnis der normalen und pathologischen Hirnrindenbildung. Zieglers Beitr 47: 51–125

    Google Scholar 

  • Sato Y, Hirata T, Ogawa M, Fujisawa H (1998) Requirement for early-generated neuron recognized by monoclonal antibody Lot 1 in the formation of lateral olfactory tract. J Neurosci 18: 7800–7810

    PubMed  CAS  Google Scholar 

  • Schaffer K (1918) Über normale und pathologische Hirnfurchung. Z Ges Neurol Psychiatr 38: 1–77

    Article  Google Scholar 

  • Schiffmann SN, Bernier B, Goffinet AM (1997) Reelin mRNA expression during mouse brain development. Eur J Neurosci 9: 1055–1071

    Article  PubMed  CAS  Google Scholar 

  • Soria JM, Fairén A (1999) Specific tangential distribution of pioneer neurons in the rat marginal zone define early cortical territories. Cerebr Cortex (submitted)

    Google Scholar 

  • Tamamaki N, Fujimori KE, Takauji (1997) Origin and route of tangentially migrating neurons in the developing neocortical intermediate zone. J Neurosci 17: 8313–8323

    CAS  Google Scholar 

  • Tan SS, Kalloniatis M, Sturm K, Tam PPL, Reese BE, Faulkner-Jones B (1998) Separate progenitors for radial and tangential cell dispersion during development of the cerebral neo-cortex. Neuron 21: 295–304

    Article  PubMed  CAS  Google Scholar 

  • Valverde F, De Carlos JA, López-Mascaraque L (1995) Time of origin and early fate of preplate cells in the cerebral cortex of the rat. Cereb Cortex 5: 412–422

    Article  Google Scholar 

  • Van Eden CG, Mrzljak L, Voorn P, Uylings HBM (1989) Prenatal development of GABA-ergic neurons in the neocortex of the rat. J Comp Neurol 289: 213–227

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Meyer, G., Castro, R., Soria, J.M., Fairén, A. (2000). The Subpial Granular Layer in the Developing Cerebral Cortex of Rodents. In: Goffinet, A.M., Rakic, P. (eds) Mouse Brain Development. Results and Problems in Cell Differentiation, vol 30. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-48002-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-48002-0_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53684-7

  • Online ISBN: 978-3-540-48002-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics