Skip to main content

Laparoscopy and Immunology

  • Chapter
  • First Online:
Minimally Invasive Surgical Oncology

Abstract

Surgery has long been known to cause transient suppression of the immune system. The arrival of minimally invasive surgery brought about a new interest in the immunologic effects of both open and laparoscopic methods. This chapter includes a literature review of surgery’s effect on known components of the immune system such as C-reactive protein (CRP), Interleukin (IL)-6, Tumor Necrosis Factor (TNF)-a, IL-1, Delayed-type Hypersensitivity (DTH) (T-Cell function), systemic monocyte function, Natural Killer Cell Activity, Lymphocytes, and Peritoneal Immunity. Also covered are the investigations into the impact of anesthesia, pneumoperitoneum, and surgery on the immune system including tumor resistance and angiogenesis-related protein changes. Generally, laparoscopic procedures are associated with less severe and, usually, shorter duration alterations than laparotomy and open surgical procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ordemann, J., Jacobi, C.A., Schwenk, W., et al.: Cellular and humoral inflammatory response after laparoscopic and conventional colorectal resections. Surg. Endosc. 15(6), 600–608 (2001)

    Article  PubMed  CAS  Google Scholar 

  2. Schietroma, M., Carlei, F., Mownah, A., et al.: Changes in the blood coagulation, fibrinolysis, and cytokine profile during laparoscopic and open cholecystectomy. Surg. Endosc. 18(7), 1090–1096 (2004)

    Article  PubMed  CAS  Google Scholar 

  3. Wu, F.P., Sietses, C., von Blomberg, B.M., et al.: Systemic and peritoneal inflammatory response after laparoscopic or conventional colon resection in cancer patients: a prospective, randomized trial. Dis. Colon Rectum 46(2), 147–155 (2003)

    Article  PubMed  CAS  Google Scholar 

  4. Bolufer, J.M., Delgado, F., Blanes, F., et al.: Injury in laparoscopic surgery. Surg. Laparosc. Endosc. 5, 318–323 (1995)

    PubMed  CAS  Google Scholar 

  5. Bruce, D.M., Smith, M., Walker, C.B., et al.: Minimal access surgery for cholelithiasis induces an attenuated acute phase response. Am. J. Surg. 178(3), 232–234 (1999)

    Article  PubMed  CAS  Google Scholar 

  6. Dionigi, R., Dominioni, L., Benevento, A., et al.: Effects of surgical trauma of laparoscopic vs. open cholecystectomy. Hepatogastroenterology 41(5), 471–476 (1994)

    PubMed  CAS  Google Scholar 

  7. Grande, M., Tucci, G.F., Adorisio, O., et al.: Systemic acute phase response alter laparoscopic and open cholecystectomy. Surg. Endosc. 16, 313–316 (2002)

    Article  PubMed  CAS  Google Scholar 

  8. Jakeways, M.S., Mitchell, V., Hashim, I.A., et al.: Metabolic and inflammatory responses after open or laparoscopic cholecystectomy. Br. J. Surg. 81(1), 127–131 (1994)

    Article  PubMed  CAS  Google Scholar 

  9. Joris, J., Cigarini, I., Legrand, M., et al.: Metabolic and respiratory changes after cholecystectomy performed via laparotomy or laparoscopy. Br. J. Anaesth. 69(4), 341–345 (1992)

    Article  PubMed  CAS  Google Scholar 

  10. Schietroma, M., Carlei, F., Cappelli, S., et al.: Effects of cholecystectomy (laparoscopic versus open) on PMN-elastase. Hepatogastroenterology 54(74), 342–345 (2007)

    PubMed  CAS  Google Scholar 

  11. Targarona, E.M., Pons, M.J., Balagué, C., et al.: Acute phase is the only significantly reduced component of the injury response after laparoscopic cholecystectomy. World J. Surg. 20(5), 528–533 (1996)

    Article  PubMed  CAS  Google Scholar 

  12. Delgado, S., Lacy, A.M., Filella, X., et al.: Acute phase response in laparoscopic and open colectomy in colon cancer: randomized study. Dis. Colon Rectum 44(5), 638–646 (2001)

    Article  PubMed  CAS  Google Scholar 

  13. Hildebrandt, U., Kessler, K., Plusczyk, T., et al.: Comparison of surgical stress between laparoscopic and open colonic resections. Surg. Endosc. 17(2), 242–246 (2003)

    Article  PubMed  CAS  Google Scholar 

  14. Schwenk, W., Jacobi, C., Mansmann, U., et al.: Inflammatory response after laparoscopic and conventional colorectal resections - results of a prospective randomized trial. Langenbecks Arch. Surg. 385(1), 2–9 (2000)

    Article  PubMed  CAS  Google Scholar 

  15. Targarona, E.M., Gracia, E., Garriga, J., et al.: Prospective randomized trial comparing conventional laparoscopic colectomy with hand-assisted laparoscopic colectomy: applicability, immediate clinical outcome, inflammatory response, and cost. Surg. Endosc. 16(2), 234–239 (2002)

    Article  PubMed  CAS  Google Scholar 

  16. Braga, M., Vignali, A., Zuliani, W., et al.: Metabolic and functional results after laparoscopic colorectal surgery. Dis. Colon Rectum 45(8), 1070–1077 (2002)

    Article  PubMed  Google Scholar 

  17. Sietses, C., Wiezer, M.J., Eijsbouts, Q.A., et al.: A prospective randomized study of the systemic immune response after laparoscopic and conventional Nissen fundoplication. Surgery 126(1), 5–9 (1999)

    Article  PubMed  CAS  Google Scholar 

  18. Nguyen, N.T., Goldman, C.D., Ho, H.S., et al.: Systemic stress response after laparoscopic and open gastric bypass. J. Am. Coll. Surg. 194(5), 557–566 (2002)

    Article  PubMed  Google Scholar 

  19. Hill, A.D., Banwell, P.E., Darzi, A., et al.: Inflammatory markers following laparoscopic and open hernia repair. Surg. Endosc. 9(6), 695–698 (1995)

    Article  PubMed  CAS  Google Scholar 

  20. Baigrie, R.J., Lamont, P.M., Kwiatkowski, D., et al.: Systemic cytokine response after major surgery. Br. J. Surg. 79, 757–760 (1992)

    Article  PubMed  CAS  Google Scholar 

  21. Cruickshank, A.M., Fraser, W.D., Burns, H.J., et al.: Response of serum interleukin-6 in patients undergoing elective surgery of varying severity. Clin. Sci. 79, 161–165 (1990)

    PubMed  CAS  Google Scholar 

  22. Berggren, U., Gordh, T., Grama, D., et al.: Laparoscopic versus open cholecystectomy: hospitalization, sick leave, analgesia, and trauma responses. Br. J. Surg. 81, 1362 (1994)

    Article  PubMed  CAS  Google Scholar 

  23. Goodale, R.L., Beebe, D.S., McNevin, M.P., et al.: Hemodynamic, respiratory, and metabolic effects of laparoscopic cholecystectomy. Am. J. Surg. 166, 533–537 (1993)

    Article  PubMed  CAS  Google Scholar 

  24. Kloosterman, T., von Blomberg, B.M., Borgstein, P., et al.: Unimpaired immune functions after laparoscopic cholecystectomy. Surgery 115(4), 424–428 (1994)

    PubMed  CAS  Google Scholar 

  25. Kuhry, E., Schwenk, W., Gaupset, R., et al.: Long-term outcome of laparoscopic surgery for colorectal cancer: a cochrane systematic review of randomised controlled trials. Cancer Treat. Rev. 34(6), 498–504 (2008)

    Article  PubMed  Google Scholar 

  26. Maruszynski, M., Pojda, Z.: Interleukin 6(IL-6) levels in the monitoring of surgical trauma. A comparison of serum IL-6 concentration in patients treated by cholecystectomy via laparotomy or laparoscopy. Surg. Endosc. 9, 882–885 (1995)

    PubMed  CAS  Google Scholar 

  27. McMahon, A.J., O’Dwyer, P.J., Cruickshank, D.: Comparison of metabolic responses to laparoscopic and mini-laparotomy cholecystectomy. Br. J. Surg. 80, 1255 (1993)

    Article  PubMed  CAS  Google Scholar 

  28. Ueo, H., Honda, M., Adachi, M.: et al Minimal increase in serum interleukin-6 levels during laparoscopic cholecystectomy. Am. J. Surg. 168, 358–360 (1994)

    Article  PubMed  CAS  Google Scholar 

  29. Vander Velpen, G., Penninckx, F., Kerremans, R., et al.: Interleukin 6 and coagulation fibrinolysis fluctuation after laparoscopic and conventional cholecystectomy. Surg. Endosc. 8, 1216 (1994)

    Article  PubMed  CAS  Google Scholar 

  30. Carter, J.J., Whelan, R.L.: The immunologic consequences of laparoscopy in oncology. Surg. Oncol. Clin. N. Am. 10(3), 655–677 (2001)

    PubMed  CAS  Google Scholar 

  31. Harmon, G.D., Senagore, A.J., Kilbride, M.J., et al.: Interleukin-6 response to laparoscopic and open colectomy. Dis. Colon Rectum 37(8), 754–759 (1994)

    Article  PubMed  CAS  Google Scholar 

  32. Kirman, I., Poltaratskaia, N., Cekic, V., et al.: Depletion of circulating insulin-like growth factor binding protein 3 after open surgery is associated with high interleukin-6 levels. Dis. Colon Rectum 47(6), 911–917 (2004)

    Article  PubMed  Google Scholar 

  33. Leung, K.L., Lai, P.B., Ho, R.L., et al.: Systemic cytokine response after laparoscopic-assisted resection of rectosigmoid carcinoma: a prospective randomized trial. Ann. Surg. 231(4), 506–511 (2000)

    Article  PubMed  CAS  Google Scholar 

  34. Nishiguchi, K., Okuda, J., Toyoda, M., et al.: Comparative evaluation of surgical stress of laparoscopic and open surgeries for colorectal carcinoma. Dis. Colon Rectum 44(2), 223–230 (2001)

    Article  PubMed  CAS  Google Scholar 

  35. Wichmann, M.W., Huttl, T.P., Winter, H., et al.: Immunological effects of laparoscopic vs open colorectal surgery. Arch. Surg. 140, 692–697 (2005)

    Article  PubMed  Google Scholar 

  36. Hewitt, P.M., Ip, S.M., Kwok, S.P., et al.: Laparoscopic-assisted vs. open surgery for colorectal cancer: comparative study of immune effects. Dis. Colon Rectum 41(7), 901–909 (1998)

    Article  PubMed  CAS  Google Scholar 

  37. Mehigan, B.J., Hartley, J.E., Drew, P.J., et al.: Changes in T cell subsets, interleukin-6 and C-reactive protein after laparoscopic and open colorectal resection for malignancy. Surg. Endosc. 15(11), 1289–1293 (2001)

    Article  PubMed  CAS  Google Scholar 

  38. Tang, C.L., Eu, K.W., Tai, B.C., et al.: Randomized clinical trial of the effect of open versus laparoscopically assisted colectomy on systemic immunity in patients with colorectal cancer. Br. J. Surg. 88(6), 801–807 (2001)

    Article  PubMed  CAS  Google Scholar 

  39. Collet, D., Vitale, G.C., Reynolds, M., et al.: Peritoneal host defenses are less impaired by laparoscopy than by open operation. Surg. Endosc. 9(10), 1059–1064 (1995)

    Article  PubMed  CAS  Google Scholar 

  40. Jacobi, C.A., Ordemann, J., Zieren, H.U., et al.: Increased systemic inflammation after laparotomy vs. laparoscopy in an animal model of peritonitis. Arch. Surg. 133(3), 258–262 (1998)

    Article  PubMed  CAS  Google Scholar 

  41. Glaser, F., Sannwald, G.A., Buhr, H.J., et al.: General stress response to conventional and laparoscopic cholecystectomy. Ann. Surg. 221(4), 372–380 (1995)

    Article  PubMed  CAS  Google Scholar 

  42. Hammer, J.H., Nielsen, H.J., Moesgaard, F., et al.: Duration of postoperative immunosuppression assessed by repeated delayed type hypersensitivity skin tests. Eur. Surg. Res. 24(3), 133–137 (1992)

    Article  PubMed  CAS  Google Scholar 

  43. Lennard, T.W., Shenton, B.K., Borzotta, A., et al.: The influence of surgical operations on components of the human immune system. Br. J. Surg. 10, 771–776 (1995)

    Google Scholar 

  44. Allendorf, J.D., Bessler, M., Whelan, R.L., et al.: Better preservation of immune function after laparoscopic-assisted versus open bowel resection in a murine model. Dis. Colon Rectum 39, 67–72 (1996)

    Article  Google Scholar 

  45. Trokel, M.J., Bessler, M., Treat, M.R., et al.: Preservation of immune response after laparoscopy. Surg. Endosc. 8, 1385–1387 (1994). discussion 1387–1388

    Article  PubMed  CAS  Google Scholar 

  46. Allendorf, J.D., Bessler, M., Whelan, R.L., et al.: Postoperative immune function varies inversely with the degree of surgical trauma in a murine model. Surg. Endosc. 11(5), 427–430 (1997)

    Article  PubMed  CAS  Google Scholar 

  47. Gitzelmann, C.A., Mendoza-Sagaon, M., Talamini, M.A., et al.: Cell-mediated immune response is better preserved by laparoscopy than laparotomy. Surgery 127(1), 65–71 (2000)

    Article  PubMed  CAS  Google Scholar 

  48. Whelan, R.L., Franklin, M., Holubar, S.D., et al.: Postoperative cell mediated immune response is better preserved after laparoscopic vs open colorectal resection in humans. Surg. Endosc. 17(6), 972–978 (2003)

    Article  PubMed  CAS  Google Scholar 

  49. Kirman, I., Belizon, A., Balik, E., et al.: Perioperative sargramostim (recombinant human GM-CSF) induces an increase in the level of soluble VEGFR1 in colon cancer patients undergoing minimally invasive surgery. Eur. J. Surg. Oncol. 33, 1169–1176 (2007)

    Article  PubMed  CAS  Google Scholar 

  50. Tjandra, J.J., Chan, M.K.: Systematic review on the short-term outcome of laparoscopic resection for colon and rectosigmoid cancer. Colorectal Dis. 8(5), 375–388 (2006)

    Article  PubMed  CAS  Google Scholar 

  51. Eilber, F.R., Morton, D.L.: Impaired immunologic reactivity and recurrence following cancer surgery. Cancer 25(2), 362–367 (1970)

    Article  PubMed  CAS  Google Scholar 

  52. Christou, N.V., Meakins, J.L., Gordon, J., et al.: The delayed hypersensitivity response and host resistance in surgical patients. 20 years later. Ann. Surg. 222(4), 534–546 (1995)

    PubMed  CAS  Google Scholar 

  53. Christou, N.V., Tellado-Rodriguez, J., Chartrand, L., et al.: Estimating mortality risk in preoperative patients using immunologic, nutritional and acute-phase response variables. Ann. Surg. 210(1), 69–77 (1989)

    Article  PubMed  CAS  Google Scholar 

  54. Pietsch, J.B., Meakins, J.L.: Davis & Geck surgical essay. The delayed hypersensitivity response: clinical application in surgery. Can. J. Surg. 20(1), 15–21 (1977)

    PubMed  CAS  Google Scholar 

  55. Appel, S.H., Wellhausen, S.R., Montgomery, R., et al.: Experimental and clinical significance of endotoxin-dependent HLA-DR expression on monocytes. J. Surg. Res. 47(1), 39–44 (1989)

    Article  PubMed  CAS  Google Scholar 

  56. Faist, E., Mewes, A., Strasser, T., et al.: Alteration of monocyte function following major injury. Arch. Surg. 123(3), 287–292 (1988)

    Article  PubMed  CAS  Google Scholar 

  57. Hershman, M.J., Cheadle, W.G., Wellhausen, S.R., et al.: Monocyte HLA-DR antigen expression characterizes clinical outcome in the trauma patient. Br. J. Surg. 77(2), 204–207 (1990)

    Article  PubMed  CAS  Google Scholar 

  58. Cheadle, W.G., Hershman, M.J., Wellhausen, S.R., et al.: HLA-DR antigen expression on peripheral blood monocytes correlates with surgical infection. Am. J. Surg. 161(6), 639–645 (1991)

    Article  PubMed  CAS  Google Scholar 

  59. Decker, D., Schondorf, M., Bidlingmaier, F., et al.: Surgical stress induces a shift in the type-1/type-2 T-helper cell balance, suggesting down-regulation of cell-mediated and up-regulation of antibody-mediated immunity commensurate to the trauma. Surgery 119(3), 316–325 (1996)

    Article  PubMed  CAS  Google Scholar 

  60. Bolla, G., Tuzzato, G.: Immunologic postoperative competence after laparoscopy versus laparotomy. Surg. Endosc. 17(8), 1247–1250 (2003). Epub 2003 June 13

    Article  PubMed  CAS  Google Scholar 

  61. Watson, R.W., Redmond, H.P., McCarthy, J., et al.: Exposure of the peritoneal cavity to air regulates early inflammatory responses to surgery in a murine model. Br. J. Surg. 82(8), 1060–1065 (1995)

    Article  PubMed  CAS  Google Scholar 

  62. Sandoval, B.A., Robinson, A.V., Sulaiman, T.T., et al.: Open versus laparoscopic surgery: a comparison of natural antitumoral cellular immunity in a small animal model. Am. Surg. 62(8), 625–630 (1996). discussion 630-1

    PubMed  CAS  Google Scholar 

  63. Da Costa, M.L., Redmond, P., Bouchier-Hayes, D.J.: The effect of laparotomy and laparoscopy on the establishment of spontaneous tumor metastases. Surgery 124(3), 516–525 (1998)

    Article  PubMed  Google Scholar 

  64. Da Costa, M.L., Redmond, H.P., Bouchier-Hayes, D.J.: Taurolidine improves survival by abrogating the accelerated development and proliferation of solid tumors and development of organ metastases from circulating tumor cells released following surgery. J. Surg. Res. 101(2), 111–119 (2001)

    Article  PubMed  Google Scholar 

  65. Griffith, J.P., Everitt, N.J., Lancaster, F., et al.: Influence of laparoscopic and conventional cholecystectomy upon cell-mediated immunity. Br. J. Surg. 82(5), 677–680 (1995)

    Article  PubMed  CAS  Google Scholar 

  66. Leung, K.L., Tsang, K.S., Ng, M.H., et al.: Lymphocyte subsets and natural killer cell cytotoxicity after laparoscopically assisted resection of rectosigmoid carcinom. Surg. Endosc. 17(8), 1305–1310 (2003)

    Article  PubMed  CAS  Google Scholar 

  67. Pollock, R.E., Lotzová, E., Stanford, S.D.: Mechanism of surgical stress impairment of human perioperative natural killer cell cytotoxicity. Arch. Surg. 126(3), 338–342 (1991)

    Article  PubMed  CAS  Google Scholar 

  68. Ogawa, K., Hirai, M., Katsube, T., et al.: Suppression of cellular immunity by surgical stress. Surgery 127(3), 329–336 (2000)

    Article  PubMed  CAS  Google Scholar 

  69. Walker, C.B., Bruce, D.M., Heys, S.D., et al.: Minimal modulation of lymphocyte and natural killer cell subsets following minimal access surgery. Am. J. Surg. 177(1), 48–54 (1999)

    Article  PubMed  CAS  Google Scholar 

  70. Liang, J.T., Shieh, M.J., Chen, C.N., et al.: Prospective evaluation of laparoscopy-assisted colectomy versus laparotomy with resection for management of complex polyps of the sigmoid colon. World J. Surg. 26(3), 377–383 (2002)

    Article  PubMed  Google Scholar 

  71. Perttilä, J., Salo, M., Ovaska, J., et al.: Immune response after laparoscopic and conventional Nissen fundoplication. Eur. J. Surg. 165(1), 21–28 (1999)

    Article  PubMed  Google Scholar 

  72. Fujii, K., Sonoda, K., Izumi, K., et al.: T lymphocyte subsets and Th1/Th2 balance after laparoscopy-assisted distal gastrectomy. Surg. Endosc. 17(9), 1440–1444 (2003)

    Article  PubMed  CAS  Google Scholar 

  73. Brune, I.B., Wilke, W., Hensler, T., et al.: Downregulation of T helper type 1 immune responseand altered pro-inflammatory and anti-inflammatory T cell cytokine balance followingconventional but not laparoscopic surgery. Am. J. Surg. 177(1), 55–60 (1999)

    Article  PubMed  CAS  Google Scholar 

  74. Brezinschek, R.I., Oppenheimer-Marks, N., Lipsky, P.E.: Activated T cells acquire endothelial cell surface determinants during transendothelial migration. J. Immunol. 162(3), 1677–1684 (1999)

    PubMed  CAS  Google Scholar 

  75. Qing, Z., Sandor, M., Radvany, Z., et al.: Inhibition of antigen-specific T cell trafficking into the central nervous system via blocking PECAM1/CD31 molecule. J. Neuropathol. Exp. Neurol. 60(8), 798–807 (2001)

    PubMed  CAS  Google Scholar 

  76. Kirman, I., Cekic, V., Poltaratskaia, N., et al.: The percentage of CD31+ T cells decreases after open but not laparoscopic surgery. Surg. Endosc. 17(5), 754–757 (2003)

    Article  PubMed  CAS  Google Scholar 

  77. Sylla, P., Nihalani, A., Whelan, R.L.: Microarray analysis of the differential effects of open and laparoscopic surgery on murine splenic T-cells. Surgery 139(1), 92–103 (2006)

    Article  PubMed  Google Scholar 

  78. van Furth, R., Raeburn, J.A., van Zwet, T.I.: Characteristics of human mononuclear phagocytes. Blood 54, 485–500 (1979)

    PubMed  Google Scholar 

  79. Drysdale, B.E., Agarwal, S., Shin, H.S.: Macrophage-mediated tumoricidal activity: mechanisms of activation and cytotoxicity. Prog. Allergy 40, 111–161 (1988)

    PubMed  CAS  Google Scholar 

  80. McMasters, K.M., Cheadle, W.G.: Regulation of macrophage TNF alpha, IL-1 beta, and Ia (I-A alpha) mRNA expression during peritonitis is site dependent. J. Surg. Res. 54(5), 426–430 (1993)

    Article  PubMed  CAS  Google Scholar 

  81. Arya, G., Garcia, V.F.: Hypoxia/reoxygenation affects endotoxin tolerance. J. Surg. Res. 59(1), 13–16 (1995)

    Article  PubMed  CAS  Google Scholar 

  82. Novitsky, Y.W., Czerniach, D.R., Kaban, G.K., et al.: Immunologic effects of hand-assisted surgery on peritoneal macrophages: comparison to open and standard laparoscopic approaches. Surgery 139(1), 39–45 (2006)

    Article  PubMed  Google Scholar 

  83. West, M.A., Hackam, D.J., Baker, J., et al.: Mechanism of decreased in vitro murine macrophage cytokine release after exposure to carbon dioxide: relevance to laparoscopic surgery. Ann. Surg. 226(2), 179–190 (1997)

    Article  PubMed  CAS  Google Scholar 

  84. Jesch, N.K., Kuebler, J.F., Nguyen, H., et al.: Laparoscopy vc minilaparotoomy and full laparotomoy preserves circulatory but not peritoneal and pulmonary immune responses. J. Pediatr. Surg. 41(6), 1085–1092 (2006)

    Article  PubMed  Google Scholar 

  85. Sare, M., Yesilada, O., Gürel, M., et al.: Effects of C02 insufflation on bacterial growth in rats with Escherichia coli-induced experimental peritonitis. Surg. Laparosc. Endosc. 7(1), 38–41 (1997)

    Article  PubMed  CAS  Google Scholar 

  86. McBride, W.T., Armstrong, M.A., McBride, S.J.: Immunomodulation: an important concept in modern anaesthesia. Anaesthesia 51(5), 465–473 (1996)

    Article  PubMed  CAS  Google Scholar 

  87. Brand, J.M., Frohn, C., Luhm, J., et al.: Early alterations in the number of circulating lymphocyte subpopulations and enhanced proinflammatory immune response during opioid-based general anesthesia. Shock 20(3), 213–217 (2003)

    Article  PubMed  Google Scholar 

  88. Crozier, T.A., Müller, J.E., Quittkat, D., et al.: Effect of anaesthesia on the cytokine responses to abdominal surgery. Br. J. Anaesth. 72(3), 280–285 (1994)

    Article  PubMed  CAS  Google Scholar 

  89. Gutt, C.N., Heinz, P., Kaps, W., et al.: The phagocytosis activity during conventional and laparoscopic operations in the rat. A preliminary study. Surg. Endosc. 11(9), 899–901 (1997)

    Article  PubMed  CAS  Google Scholar 

  90. Chekan, E.G., Nataraj, C., Clary, E.M., et al.: Intraperitoneal immunity and pneumoperitoneum. Surg. Endosc. 13(11), 1135–1138 (1999)

    Article  PubMed  CAS  Google Scholar 

  91. Allendorf, J.D., Bessler, M., Kayton, M.L., et al.: Increased tumor establishment and growth after laparotomy vs laparoscopy in a murine model. Arch. Surg. 130(6), 649–653 (1995)

    Article  PubMed  CAS  Google Scholar 

  92. Shiromizu, A., Suematsu, T., Yamaguchi, K., et al.: Effect of laparotomy and laparoscopy on the establishment of lung metastasis in a murine model. Surgery 128(5), 799–805 (2000)

    Article  PubMed  CAS  Google Scholar 

  93. Lee, S.W., Gleason, N., Blanco, I., Asi, Z.K., et al.: Higher colon cancer tumor proliferative index and lower tumor cell death rate in mice undergoing laparotomy versus insufflation. Surg. Endosc. 16(1), 36–39 (2002)

    Article  PubMed  CAS  Google Scholar 

  94. Belizon, A., Balik, E., Horst, P., et al.: Persistent elevation of plasma vascular endothelial growth factor levels during the first month after minimally invasive colorectal resection. Surg. Endosc. 22(2), 287–297 (2008)

    Article  PubMed  CAS  Google Scholar 

  95. Shantha Kumara, H.M.C., Yan, X., Herath, A.C.: Plasma soluble Vascular Adhesion Molecule-1 levels are persistently elevated during the first month after colorectal cancer resection. Accepted for presentation at SAGES WCES 12th Mtg (2010)

    Google Scholar 

  96. Shantha Kumara, H.M.C., Yan, X., Feingold, D.: Plasma Levels of Placental Growth Factor (PLGF), a proangiogenic protein, are elevated for 3 weeks after minimally invasive colorectal cancer resection. Accepted for presentation at SAGES WCES 12th Mtg (2010)

    Google Scholar 

  97. Shantha Kumara, H.M.C., Hoffman, A., Kim, I.Y., et al.: Colorectal resection, both open and laparoscopic-assisted, in patients with benign indications is associated with proangiogenic changes in plasma angiopoietin 1 and 2 levels. Surg. Endosc. 23(2), 409–415 (2009)

    Article  PubMed  CAS  Google Scholar 

  98. Neufeld, G., Cohen, T., Gengrinovitch, S., et al.: Vascular endothelial growth factor (VEGF) and its receptors. FASEB J. 13(1), 9–22 (1999)

    PubMed  CAS  Google Scholar 

  99. Kumara, H.M., Feingold, D., Kalady, M., et al.: Colorectal resection is associated with persistent proangiogenic plasma protein changes: postoperative plasma stimulates in vitro endothelial cell growth, migration, and invasion. Ann. Surg. 249(6), 973–977 (2009)

    Article  PubMed  Google Scholar 

  100. Boni, L., Benevento, A., Rovera, F., et al.: Infective complications in laparoscopic surgery. Surg. Infect. (Larchmt) 7(Suppl 2), S109–S111 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Larry Whelan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Grieco, M.J., Whelan, R.L. (2011). Laparoscopy and Immunology. In: Matteotti, R., Ashley, S. (eds) Minimally Invasive Surgical Oncology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45021-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45021-4_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-45018-4

  • Online ISBN: 978-3-540-45021-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics