Skip to main content

Molecular Imaging of Targets and Therapeutics in Tumour Angiogenesis

  • Chapter
Tumor Angiogenesis

Abstract

Various quantitative imaging techniques are now frequently used as biomarkers in the evaluation of novel anti-angiogenic and vascular disrupting compounds in clinical trials. Positron emission tomography (PET) techniques have been utilised in a small number of studies to evaluate changes in specific molecular pathways following administration of angiogenesis inhibitors, and can also quantify changes in perfusion and vascular volume. However, technical considerations have, to date, limited the widespread application of PET. Dynamic contrast-enhanced imaging biomarkers have shown evidence of therapeutic effect, dose-dependent response and change in progressionfree survival in some trials. However, image acquisition and analysis methods in computed tomography and magnetic resonance techniques are complex and solely reflect changes in physiological processes, rather than measurement of therapeutic effects on specific molecular pathways. In this regard, all imaging modalities require further development and validation before they can be accepted as surrogate endpoints. In this chapter we review the critical issues that influence data acquisition, image analysis and application of PET, MRI and CT imaging techniques in the assessment of angiogenesis targets and therapeutics. Finally the current clinical trial findings and important areas for future development are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Alpert NM, Eriksson L, Chang JY et al (1984) Strategy for the measurement of regional cerebral blood flow using short-lived tracers and emission tomography. J Cereb Blood Flow Metab 4:28–34

    PubMed  CAS  Google Scholar 

  • American Cancer Society (2005) Cancer facts and figures. American Cancer Society, Atlanta

    Google Scholar 

  • Anderson H, Price P (2002) Clinical measurement of blood flow in tumours using positron emission tomography: a review. Nucl Med Commun 23:131–138

    Article  PubMed  CAS  Google Scholar 

  • Anderson H, Yap JT, Wells P et al (2003a) Measurement of renal tumour and normal tissue perfusion using positron emission tomography in a phase II clinical trial of razoxane. Br J Cancer 89:262–267

    Article  PubMed  CAS  Google Scholar 

  • Anderson H, Yap JT, Miller MP, Robbins A, Jones T, Price PM (2003b) Assessment of pharmacodynamic vascular response in a phase I trial of combretastatin A4 phosphate. J Clin Oncol 21:2823–2830

    Article  PubMed  CAS  Google Scholar 

  • Aronen HJ, Gazit IE, Louis DN et al (1994) Cerebral blood volume maps of gliomas: comparison with tumor grade and histologic findings. Radiology 191:41–51

    PubMed  CAS  Google Scholar 

  • Barentsz JO, Jager GJ, van Vierzen PB et al (1996) Staging urinary bladder cancer after transurethral biopsy: value of fast dynamic contrast-enhanced MR imaging. Radiology 201:185–193

    PubMed  CAS  Google Scholar 

  • Blomley MJ, Coulden R, Dawson P et al (1995) Liver perfusion studied with ultrafast CT. J Comput Assist Tomogr 19:424–433

    CAS  Google Scholar 

  • Brix G, Semmler W, Port R, Schad LR, Layer G, Lorenz WJ (1991) Pharmacokinetic parameters in CNS Gd-DTPA enhanced MR imaging. J Comput Assist Tomogr 15:621–628

    Article  PubMed  CAS  Google Scholar 

  • Buckley DL (2002) Uncertainty in the analysis of tracer kinetics using dynamic contrast-enhanced T1-weighted MRI. Magn Reson Med 47:601–606

    Article  PubMed  Google Scholar 

  • Buckley DL, Parker GJM (2005) Measuring contrast agent concentration in T1-weighted dynamic contrast-enhanced MRI. In: Jackson A, Buckley DL, Parker GJM (eds) Dynamic contrast-enhanced magnetic resonance imaging in oncology. Springer, Berlin Heidelberg New York, pp 69–79

    Chapter  Google Scholar 

  • Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407:249–257

    Article  PubMed  CAS  Google Scholar 

  • Checkley D, Tessier JJ, Kendrew J, Waterton JC, Wedge SR (2003) Use of dynamic contrast-enhanced MRI to evaluate acute treatment with ZD6474, a VEGF signalling inhibitor, in PC-3 prostate tumours. Br J Cancer 89:1889–1895

    Article  PubMed  CAS  Google Scholar 

  • Chen X, Liu S, Hou Y et al (2004) MicroPET imaging of breast cancer alphav-integrin expression with 64Cu-labeled dimeric RGD peptides. Mol Imaging Biol 6:350–359

    Article  PubMed  Google Scholar 

  • Collins JM (2003) Functional imaging in phase I studies: decorations or decision making? J Clin Oncol 21:2807–2809

    Article  PubMed  Google Scholar 

  • Conrad C, Friedman H, Reardon D et al (2004) A phase I/ II trial of single-agent PTK 787/ZK 222584 (PTK/ZK), a novel, oral angiogenesis inhibitor, in patients with recurrent glioblastoma multiforme (GBM). J Clin Oncol (Meetings Abstracts) 22(14S):1512

    Google Scholar 

  • Daniel BL, Yen YF, Glover GH et al (1998) Breast disease: dynamic spiral MR imaging. Radiology 209:499–509

    PubMed  CAS  Google Scholar 

  • Department of Health (2004) The NHS cancer plan and the new NHS: providing a patient-centred service. Department of Health, London

    Google Scholar 

  • Dowlati A, Robertson K, Cooney M et al (2002) A phase I pharmacokinetic and translational study of the novel vascular targeting agent combretastatin A-4 phosphate on a single-dose intravenous schedule in patients with advanced cancer. Cancer Res 62:3408–3416

    PubMed  CAS  Google Scholar 

  • Drevs J, Medinger M, Mross K et al (2005) Phase I clinical evaluation of AZD2171, a highly potent VEGF receptor tyrosine kinase inhibitor, in patients with advanced tumors J Clin Oncol (Meetings Abstracts) 23:3002

    Google Scholar 

  • Dugdale PE, Miles KA, Bunce I, Kelley BB, Leggett DA (1999) CT measurement of perfusion and permeability within lymphoma masses and its ability to assess grade, activity, and chemotherapeutic response. J Comput Assist Tomogr 23:540–547

    Article  PubMed  CAS  Google Scholar 

  • Eder JP Jr, Supko JG, Clark JW et al (2002) Phase I clinical trial of recombinant human endostatin administered as a short intravenous infusion repeated daily. J Clin Oncol 20:3772–3784

    Article  PubMed  CAS  Google Scholar 

  • Evelhoch JL (1999) Key factors in the acquisition of contrast kinetic data for oncology. J Magn Reson Imaging 10:254–259

    Article  PubMed  CAS  Google Scholar 

  • Evelhoch JL, LoRusso PM, He Z et al (2004) Magnetic resonance imaging measurements of the response of murine and human tumors to the vascular-targeting agent ZD6126. Clin Cancer Res 10:3650–3657

    Article  PubMed  CAS  Google Scholar 

  • Fidler IJ (2001) Angiogenic heterogeneity: regulation of neoplastic angiogenesis by the organ microenvironment. J Natl Cancer Inst 93:1040–1041

    Article  PubMed  CAS  Google Scholar 

  • Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285:1182–1186

    Article  PubMed  CAS  Google Scholar 

  • Fritz-Hansen T, Rostrup E, Larsson HB, Sondergaard L, Ring P, Henriksen O (1996) Measurement of the arterial concentration of Gd-DTPA using MRI: a step toward quantitative perfusion imaging. Magn Reson Med 36:225–231

    Article  PubMed  CAS  Google Scholar 

  • Galbraith SM, Rustin GJ, Lodge MA et al (2002a) Effects of 5,6-dimethylxanthenone-4-acetic acid on human tumor microcirculation assessed by dynamic contrast-enhanced magnetic resonance imaging. J Clin Oncol 20:3826–3840

    Article  PubMed  CAS  Google Scholar 

  • Galbraith SM, Lodge MA, Taylor NJ et al (2002b) Reproducibility of dynamic contrast-enhanced MRI in human muscle and tumours: comparison of quantitative and semiquantitative analysis. NMR Biomed 15:132–142

    Article  PubMed  Google Scholar 

  • Galbraith SM, Maxwell RJ, Lodge MA et al (2003) Combretastatin A4 phosphate has tumor antivascular activity in rat and man as demonstrated by dynamic magnetic resonance imaging. J Clin Oncol 21:2831–2842

    Article  PubMed  CAS  Google Scholar 

  • Gilles R, Guinebretiere JM, Shapeero LG et al (1993) Assessment of breast cancer recurrence with contrast-enhanced subtraction MR imaging: preliminary results in 26 patients. Radiology 188:473–478

    PubMed  CAS  Google Scholar 

  • Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    Article  PubMed  CAS  Google Scholar 

  • Harvey CJ, Blomley MJ, Dawson P et al (2001) Functional CT imaging of the acute hyperemic response to radiation therapy of the prostate gland: early experience. J Comput Assist Tomogr 25:43–49

    Article  PubMed  CAS  Google Scholar 

  • Hayes C, Padhani AR, Leach MO (2002) Assessing changes in tumour vascular function using dynamic contrastenhanced magnetic resonance imaging. NMR Biomed 15:154–163

    Article  PubMed  Google Scholar 

  • Hecht J, Trarbach T, Jaeger E et al (2005) A randomized, double-blind, placebo-controlled, phase III study in patients (Pts) with metastatic adenocarcinoma of the colon or rectum receiving first-line chemotherapy with oxaliplatin/5-fluorouracil/leucovorin and PTK787/ZK 222584 or placebo (CONFIRM-1). J Clin Oncol (Meetings Abstracts) 23:3

    Google Scholar 

  • Henderson E, Rutt BK, Lee TY (1998) Temporal sampling requirements for the tracer kinetics modeling of breast disease. Magn Reson Imaging 16:1057–1073

    Article  PubMed  CAS  Google Scholar 

  • Herbst RS, Mullani NA, Davis DW et al (2002) Development of biologic markers of response and assessment of antiangiogenic activity in a clinical trial of human recombinant endostatin. J Clin Oncol 20:3804–3814

    Article  PubMed  CAS  Google Scholar 

  • Hurwitz H, Fehrenbacher L, Novotny W et al (2004) Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 350:2335–2342

    Article  PubMed  CAS  Google Scholar 

  • Jackson A (2003) Imaging microvascular structure with contrast enhanced MRI. Br J Radiol 76:S159–173

    Article  PubMed  Google Scholar 

  • Jackson A (2004) Analysis of dynamic contrast enhanced MRI. Br J Radiol 77:S154–S166

    Article  PubMed  Google Scholar 

  • Jackson A, Jayson GC, Li KL et al (2003) Reproducibility of quantitative dynamic contrast-enhanced MRI in newly presenting glioma. Br J Radiol 76:153–162

    Article  PubMed  CAS  Google Scholar 

  • Jayson GC, Parker GJ, Mullamitha S et al (2005) Blockade of platelet-derived growth factor receptor-beta by CDP860, a humanized, PEGylated di-Fab’, leads to fluid accumulation and is associated with increased tumor vascularized volume. J Clin Oncol 23:973–981

    Article  PubMed  CAS  Google Scholar 

  • Jayson GC, Waterton JC (2005) Applications of dynamic contrast-enhanced MRI in oncology drug development. In: Jackson A, Buckley D, Parker G (eds) Dynamic contrast-enhanced magnetic resonance imaging in oncology. Springer, Berlin Heidelberg New York, pp 281–297

    Chapter  Google Scholar 

  • Jayson GC, Zweit J, Jackson A et al (2002) Molecular imaging and biological evaluation of HuMV833 anti-VEGF antibody: implications for trial design of antiangiogenic antibodies. J Natl Cancer Inst 94:1484–1493

    PubMed  CAS  Google Scholar 

  • Johnson DH, Fehrenbacher L, Novotny WF et al (2004) Randomized phase II trial comparing bevacizumab plus carboplatin and paclitaxel with carboplatin and paclitaxel alone in previously untreated locally advanced or metastatic non-small-cell lung cancer. J Clin Oncol 22:2184–2191

    Article  PubMed  CAS  Google Scholar 

  • Kelloff GJ, Krohn KA, Larson SM et al (2005) The progress and promise of molecular imaging probes in oncologic drug development. Clin Cancer Res 11:7967–7985

    Article  PubMed  CAS  Google Scholar 

  • Knopp EA, Cha S, Johnson G et al (1999) Glial neoplasms: dynamic contrast-enhanced T2*-weighted MR imaging. Radiology 211:791–798

    PubMed  CAS  Google Scholar 

  • Koehne C, Bajetta E, Lin E et al (2006) Results of an interim analysis of a multinational randomized, double-blind, phase III study in patients (pts) with previously treated metastatic colorectal cancer (mCRC) receiving FOLFOX4 and PTK787/ZK 222584 (PTK/ZK) or placebo (CONFIRM 2). J Clin Oncol (Meetings Abstracts) 24:3508

    Google Scholar 

  • Kurdziel K, Bacharach S, Carrasquillo J et al (2000) Using PET 18F-FDG, 11CO, and 150-water for monitoring prostate cancer during a phase II anti-angiogenic drug trial with thalidomide. Clin Positron Imaging 3:144

    Article  PubMed  Google Scholar 

  • Kvistad KA, Lundgren S, Fjosne HE, Smenes E, Smethurst HB, Haraldseth O (1999) Differentiating benign and malignant breast lesions with T2*-weighted first pass perfusion imaging. Acta Radiol 40:45–51

    Article  PubMed  CAS  Google Scholar 

  • Laking GR, Price PM (2003) Positron emission tomographic imaging of angiogenesis and vascular function. Br J Radiol 76:S50–S59

    Article  PubMed  Google Scholar 

  • Lankester KJ, Taylor NJ, Stirling JJ et al (2005) Effects of platinum/taxane based chemotherapy on acute perfusion in human pelvic tumours measured by dynamic MRI. Br J Cancer 93:979–985

    Article  PubMed  CAS  Google Scholar 

  • Lara PN Jr, Quinn DI, Margolin K et al (2003) SU5416 plus interferon alpha in advanced renal cell carcinoma: a phase II California Cancer Consortium Study with biological and imaging correlates of angiogenesis inhibition. Clin Cancer Res 9:4772–4781

    PubMed  CAS  Google Scholar 

  • Larsson HB, Stubgaard M, Frederiksen JL, Jensen M, Henriksen O, Paulson OB (1990) Quantitation of blood-brain barrier defect by magnetic resonance imaging and gadolinium-DTPA in patients with multiple sclerosis and brain tumors. Magn Reson Med 16:117–131

    Google Scholar 

  • Leach MO, Brindle KM, Evelhoch JL et al (2005) The assessment of antiangiogenic and antivascular therapies in early-stage clinical trials using magnetic resonance imaging: issues and recommendations. Br J Cancer 92:1599–1610

    Article  PubMed  CAS  Google Scholar 

  • Li KL, Zhu XP, Waterton J, Jackson A (2000) Improved 3D quantitative mapping of blood volume and endothelial permeability in brain tumors. J Magn Reson Imaging 12:347–357

    Article  PubMed  CAS  Google Scholar 

  • Liu G, Rugo HS, Wilding G et al (2005) Dynamic contrastenhanced magnetic resonance imaging as a pharmacodynamic measure of response after acute dosing of AG013736, an oral angiogenesis inhibitor, in patients with advanced solid tumors: results from a phase I study. J Clin Oncol 23:5464–5473

    Article  PubMed  CAS  Google Scholar 

  • Logan TF, Jadali F, Egorin MJ et al (2002) Decreased tumor blood flow as measured by positron emission tomography in cancer patients treated with interleukin-1 and carboplatin on a phase I trial. Cancer Chemother Pharmacol 50:433–444

    Article  PubMed  CAS  Google Scholar 

  • Mayr NA, Yuh WT, Magnotta VA et al (1996) Tumor perfusion studies using fast magnetic resonance imaging technique in advanced cervical cancer: a new noninvasive predictive assay. Int J Radiat Oncol Biol Phys 36:623–633

    Article  PubMed  CAS  Google Scholar 

  • McKeage MJ, Fong P, Jeffery M et al (2006) 5,6-Dimethylxanthenone-4-acetic acid in the treatment of refractory tumors: a phase I safety study of a vascular disrupting agent. Clin Cancer Res 12:1776-1784

    Google Scholar 

  • McNeel DG, Eickhoff J, Lee FT et al (2005) Phase I trial of a monoclonal antibody specific for alphavbeta3 integrin (MEDI-522) in patients with advanced malignancies, including an assessment of effect on tumor perfusion. Clin Cancer Res 11:7851–7860

    Article  PubMed  CAS  Google Scholar 

  • Medved M, Karczmar G, Yang C et al (2004) Semiquantitative analysis of dynamic contrast enhanced MRI in cancer patients: variability and changes in tumor tissue over time. J Magn Reson Imaging 20:122–128

    Article  PubMed  Google Scholar 

  • Miles KA (1999) Tumour angiogenesis and its relation to contrast enhancement on computed tomography: a review. Eur J Radiol 30:198–205

    Article  PubMed  CAS  Google Scholar 

  • Miles KA (2003) Perfusion CT for the assessment of tumour vascularity: which protocol? Br J Radiol 76:S36–S42

    Article  PubMed  Google Scholar 

  • Miles KA, Griffiths MR (2003) Perfusion CT: a worthwhile enhancement? Br J Radiol 76:220–231

    Article  PubMed  CAS  Google Scholar 

  • Miles KA, Griffiths MR, Fuentes MA (2001) Standardized perfusion value: universal CT contrast enhancement scale that correlates with FDG PET in lung nodules. Radiology 220:548–553

    PubMed  CAS  Google Scholar 

  • Miller JC, Pien HH, Sahani D, Sorensen AG, Thrall JH (2005) Imaging angiogenesis: applications and potential for drug development. J Natl Cancer Inst 97:172–187

    PubMed  CAS  Google Scholar 

  • Miller KD, Chap LI, Holmes FA et al (2005) Randomized phase III trial of capecitabine compared with bevacizumab plus capecitabine in patients with previously treated metastatic breast cancer. J Clin Oncol 23:792–799

    Article  PubMed  CAS  Google Scholar 

  • Morgan B, Thomas AL, Drevs J et al (2003) Dynamic contrast-enhanced magnetic resonance imaging as a biomarker for the pharmacological response of PTK787/ZK 222584, an inhibitor of the vascular endothelial growth factor receptor tyrosine kinases, in patients with advanced colorectal cancer and liver metastases: results from two phase I studies. J Clin Oncol 21:3955–3964

    Article  PubMed  CAS  Google Scholar 

  • Mross K, Drevs J, Muller M et al (2005a) Phase I clinical and pharmacokinetic study of PTK/ZK, a multiple VEGF receptor inhibitor, in patients with liver metastases from solid tumours. Eur J Cancer 41:1291–1299

    Article  PubMed  CAS  Google Scholar 

  • Mross K, Gmehling D, Frost A et al (2005b) A clinical Phase I, pharmacokinetic (PK), and pharmacodynamic study of twice daily BIBF 1120 in advanced cancer patients J Clin Oncol (Meetings Abstracts) 23:3031

    Google Scholar 

  • O’Connor JP, Jackson A, Parker GJ, Jayson GC (2007) DCEMRI biomarkers in the clinical evaluation of antiangiogenic and vascular disrupting agents. Br J Cancer 96:189–195

    Article  PubMed  CAS  Google Scholar 

  • O’Donnell A, Padhani A, Hayes C et al (2005) A Phase I study of the angiogenesis inhibitor SU5416 (semaxanib) in solid tumours, incorporating dynamic contrast MR pharmacodynamic end points. Br J Cancer 93:876–883

    Article  PubMed  CAS  Google Scholar 

  • O’Dwyer PJ, Rosen M, Gallagher M, Schwartz B, Flaherty KT (2005) Pharmacodynamic study of BAY 43–9006 in patients with metastatic renal cell carcinoma. J Clin Oncol (Meetings Abstracts) 23:3005

    Google Scholar 

  • Office of National Statistics (2005) Cancer statistics registrations. HMSO, London

    Google Scholar 

  • Padhani AR, Hayes C, Assersohn L et al (2006) Prediction of clinicopathologic response of breast cancer to primary chemotherapy at contrast-enhanced MR imaging: initial clinical results. Radiology 239:361–374

    Article  PubMed  Google Scholar 

  • Padhani AR, Taylor NJ, d’Arcy JA et al (2006) Dynamic MRI evaluation of the triple receptor tyrosine kinase inhibitor BIBF 1120 in patients with advanced solid tumours. Proc Int Soc Mag Res Med 14:765

    Google Scholar 

  • Parker GJM, Buckley DL (2005) Tracer kinetic modelling for T1-weighted DCE-MRI. In: Jackson A, Buckley DL, Parker GJM (eds) Dynamic contrast-enhanced magnetic resonance imaging in oncology. Springer, Berlin Heidelberg New York, pp 81–92

    Chapter  Google Scholar 

  • Parkin DM, Bray F, Ferlay J, Pisani P (2005) Global cancer statistics, 2002. CA Cancer J Clin 55:74–108

    Article  PubMed  Google Scholar 

  • Platt JF, Francis IR, Ellis JH, Reige KA (1997) Liver metastases: early detection based on abnormal contrast material enhancement at dual-phase helical CT. Radiology 205:49–53

    PubMed  CAS  Google Scholar 

  • St. Lawrence KS, Lee TY (1998) An adiabatic approximation to the tissue homogeneity model for water exchange in the brain. I. Theoretical derivation. J Cereb Blood Flow Metab 18:1365–1377

    Article  PubMed  CAS  Google Scholar 

  • Stevenson JP, Rosen M, Sun W et al (2003) Phase I trial of the antivascular agent combretastatin A4 phosphate on a 5day schedule to patients with cancer: magnetic resonance imaging evidence for altered tumor blood flow. J Clin Oncol 21:4428–4438

    Article  PubMed  CAS  Google Scholar 

  • Tarantola G, Zito F, Gerundini P (2003) PET instrumentation and reconstruction algorithms in whole-body applications. J Nucl Med 44:756–769

    PubMed  Google Scholar 

  • Therasse P, Arbuck SG, Eisenhauer EA et al (2000) New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst 92:205–216

    Article  PubMed  CAS  Google Scholar 

  • Thomas AL, Morgan B, Horsfield MA et al (2005) Phase I study of the safety, tolerability, pharmacokinetics, and pharmacodynamics of PTK787/ZK 222584 administered twice daily in patients with advanced cancer. J Clin Oncol 23:4162–4171

    Article  PubMed  CAS  Google Scholar 

  • Thomas JP, Arzoomanian RZ, Alberti D et al (2003) Phase I pharmacokinetic and pharmacodynamic study of recombinant human endostatin in patients with advanced solid tumors. J Clin Oncol 21:223–231

    Article  PubMed  CAS  Google Scholar 

  • Tofts PS (1997) Modeling tracer kinetics in dynamic Gd-DTPA MR imaging. J Magn Reson Imaging 7:91–101

    Article  PubMed  CAS  Google Scholar 

  • Tofts PS, Kermode AG (1991) Measurement of the blood-brain barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental concepts. Magn Reson Med 17:357–367

    Article  PubMed  CAS  Google Scholar 

  • Tofts PS, Brix G, Buckley DL et al (1999) Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging 10:223–232

    Article  PubMed  CAS  Google Scholar 

  • Van Beers BE, Leconte I, Materne R, Smith AM, Jamart J, Horsmans Y (2001) Hepatic perfusion parameters in chronic liver disease: dynamic CT measurements correlated with disease severity. AJR Am J Roentgenol 176:667-673 Walker-Samuel S, Taylor NJ, Padhani AR, Leach MO, Collins DJ (2006) The effect of heterogeneous tumour enhancement on the assessment of response to treatment. Proc Int Soc Mag Res Med 14:761

    Google Scholar 

  • Watson Y, Cheung S, Roberts C et al (2006) Prognostic power of DCE-MRI heterogeneity analysis in patients with advanced solid tumors. Proc Int Soc Mag Res Med 14:755

    Google Scholar 

  • Wedam SB, Low JA, Yang SX et al (2006) Antiangiogenic and antitumor effects of bevacizumab in patients with inflammatory and locally advanced breast cancer. J Clin Oncol 24:769–777

    Article  PubMed  CAS  Google Scholar 

  • Weinmann HJ, Laniado M, Mutzel W (1984) Pharmacokinetics of GdDTPA/dimeglumine after intravenous injection into healthy volunteers. Physiol Chem Phys Med NMR 16:167–172

    PubMed  CAS  Google Scholar 

  • Willett CG, Boucher Y, di Tomaso E et al (2004) Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nat Med 10:145–147

    Article  PubMed  CAS  Google Scholar 

  • Wilson CB, Lammertsma AA, McKenzie CG, Sikora K, Jones T (1992) Measurements of blood flow and exchanging water space in breast tumors using positron emission tomography: a rapid and noninvasive dynamic method. Cancer Res 52:1592–1597

    PubMed  CAS  Google Scholar 

  • Workman P, Aboagye EO, Chung YL et al (2006) Minimally invasive pharmacokinetic and pharmacodynamic technologies in hypothesis-testing clinical trials of innovative therapies. J Natl Cancer Inst 98:580–598

    Article  PubMed  CAS  Google Scholar 

  • Xiong HQ, Herbst R, Faria SC et al (2004) A phase I surrogate endpoint study of SU6668 in patients with solid tumors. Invest New Drugs 22:459–466

    Article  PubMed  CAS  Google Scholar 

  • Yamashita K, Matsunobe S, Tsuda T et al (1995) Solitary pulmonary nodule: preliminary study of evaluation with incremental dynamic CT. Radiology 194:399–405

    PubMed  CAS  Google Scholar 

  • Yang JC (2004) Bevacizumab for patients with metastatic renal cancer: an update. Clin Cancer Res 10:6367S–6370S

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

O’Connor, J.P.B., Rosa, D.D., Jackson, A., Jayson, G.C. (2008). Molecular Imaging of Targets and Therapeutics in Tumour Angiogenesis. In: Marmé, D., Fusenig, N. (eds) Tumor Angiogenesis. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-33177-3_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-33177-3_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33176-6

  • Online ISBN: 978-3-540-33177-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics