Skip to main content

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Brix G, Semmler W, Port R, Schad LR, Layer G, Lorenz WJ (1991) Pharmacokinetic parameters in CNS Gd-DTPA enhanced MR imaging. J Comput Assist Tomogr 15:621–628

    PubMed  Google Scholar 

  • Buckley DL (2002) Uncertainty in the analysis of tracer kinetics using dynamic contrast-enhanced T1-weighted MRI. Magnetic Resonance in Medicine 47(3):601–606

    Article  PubMed  Google Scholar 

  • Buckley DL, Roberts C, Parker GJ, Logue JP, Hutchinson CH (2003) In vivo determination of the microvascular characteristics of prostate cancer using dynamic contrast-enhanced MRI. 11th Meeting of the International Society for Magnetic Resonance in Medicine:461

    Google Scholar 

  • Crone C (1963) The permeability of capillaries in various organs as determined by use of the ‘indicator diffusion’ method. Acta Physiol Scand 58:292–305

    PubMed  Google Scholar 

  • Daldrup HE, Shames DM, Husseini W, Wendland MF, Okuhata Y, Brasch RC (1998) Quantification of the extraction fraction for gadopentetate across breast cancer capillaries. Magn Reson Med 40:537–543

    PubMed  Google Scholar 

  • Degani H, Gusis V, Weinstein D, Fields S, Strano S (1997) Mapping pathophysiological features of breast tumors by MRI at high spatial resolution. Nat Med 3:780–782

    Article  PubMed  Google Scholar 

  • Evelhoch JL (1999) Key factors in the acquisition of contrast kinetic data for oncology. J Magn Reson Imaging 10:254–259

    Article  PubMed  Google Scholar 

  • Evelhoch JL, LoRusso P, DelProposto Z, Stark K, Latif Z, Morton P, Waterton J, Wheeler C, Barge A (2002) Dynamic contrast-enhanced MRI evaluation of the effects of ZD6126 on tumour vasculature in a phase I clinical trial. Proceedings of the Annual Meeting of the ISMRM:2095

    Google Scholar 

  • Folkman J (1990) What is the evidence that tumors are angiogenesis dependent?. J Natl Cancer Inst 82:4–6

    PubMed  Google Scholar 

  • Folkman J (1995) Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1:27–31

    PubMed  Google Scholar 

  • Fritz-Hansen T, Rostrup E, Søndergaard L, Ring PB, Amtorp O, Larsson HB (1998) Capillary transfer constant of Gd-DTPA in the myocardium at rest and during vasodilation assessed by MRI. Magn Reson Med 40:922–929

    PubMed  Google Scholar 

  • Hatabu H, Tadamura E, Levin DL, Chen Q, Li W, Kim D, Prasad PV, Edelman RR (1999) Quantitative assessment of pulmonary perfusion with dynamic contrast-enhanced MRI. Magn Reson Med 42:1033–1038

    Article  PubMed  Google Scholar 

  • Hayes C, Padhani AR, Leach MO (2002) Assessing changes in tumour vascular function using dynamic contrast-enhanced magnetic resonance imaging. NMR Biomed 15:154–163

    Article  PubMed  Google Scholar 

  • Henderson E, Rutt BK, Lee TY (1998) Temporal sampling requirements for the tracer kinetics modeling of breast disease. Magn Reson Imaging 16:1057–1073

    PubMed  Google Scholar 

  • Henderson E, Sykes J, Drost D, Weinmann HJ, Rutt BK, Lee TY (2000) Simultaneous MRI measurement of blood flow, blood volume, and capillary permeability in mammary tumors using two different contrast agents. J Magn Reson Imaging 12:991–1003

    Article  PubMed  Google Scholar 

  • Jackson A, Haroon H, Zhu XP, Li KL, Thacker NA, Jayson G (2002) Breath-hold perfusion and permeability mapping of hepatic malignancies using magnetic resonance imaging and a first-pass leakage profile model. NMR Biomed 15:164–173

    Article  PubMed  Google Scholar 

  • Johnson JA, Wilson TA (1966) A model for capillary exchange. Am J Physiol 210:1299–1303

    PubMed  Google Scholar 

  • Kety SS (1951) The theory and applications of the exchange of inert gas at the lungs and tissues. Pharmacol Rev 3:1–41

    PubMed  Google Scholar 

  • Koh TS, Zeman V, Darko J, Lee TY, Milosevic MF, Haider M, Warde P, Yeung IW (2001) The inclusion of capillary distribution in the adiabatic tissue homogeneity model of blood flow. Phys Med Biol 46:1519–1538

    Article  PubMed  Google Scholar 

  • Larsson HBW, Stubgaard M, Fredricksen JL, Jensen M, Henriksen O, Paulson OB (1990) Quantitation of blood-brain barrier defect by magnetic resonance imaging and gadolinium-DTPA in patients with multiple sclerosis and brain lesions. Magnetic Resonance in Medicine 16:117–131

    PubMed  Google Scholar 

  • Li KL, Zhu XP, Waterton J, Jackson A (2000) Improved 3D quantitative mapping of blood volume and endothelial permeability in brain tumors. J Magn Reson Imaging 12:347–357

    Article  PubMed  Google Scholar 

  • Liney GP, Gibbs P, Hayes C, Leach MO, Turnbull LW (1999) Dynamic contrast-enhanced MRI in the differentiation of breast tumors: user-defined versus semi-automated region-of-interest analysis. J Magn Reson Imaging 10(6):945–949

    Article  PubMed  Google Scholar 

  • Mattiello, J and Evelhoch JL (1991) Relative volume-average murine tumor blood flow measurement via deuterium nuclear magnetic resonance spectroscopy. Magn Reson Med 18(2):320–334

    PubMed  Google Scholar 

  • Mayr NA, Yuh WT, Arnholt JC, Ehrhardt JC, Sorosky JI, Magnotta VA, Berbaum KS, Zhen W, Paulino AC, Oberley LW, Sood AK, Buatti JM (2000) Pixel analysis of MR perfusion imaging in predicting radiation therapy outcome in cervical cancer. J Magn Reson Imaging 12:1027–1033

    PubMed  Google Scholar 

  • Mitchell DG (1997) MR imaging contrast agents—what's in a name?. J Magn Reson Imaging 7:1–4

    PubMed  Google Scholar 

  • Ohno Y, Hatabu H, Higashimo T, Takenaka D, Watanabe H, Nishimura Y, Yoshimura M, Sugimura K (2004) Dynamic perfusion MRI versus perfusion scintigraphy: prediction of postoperative lung function in patients with lung cancer. American Journal of Roentgenology 182:73–78

    PubMed  Google Scholar 

  • Parker GJM (1997) Monitoring contrast agent kinetics using dynamic MRI: Quantitative and qualitative analysis. Institute of Cancer Research

    Google Scholar 

  • Parker GJM, Tanner SF, Leach MO (1996) Pitfalls in the measurement of tissue permeability over short time-scales using multi-compartment models with a low temporal resolution blood input function. 4th Meeting of the International Society for Magnetic Resonance in Medicine: 1582

    Google Scholar 

  • Parker GJ, Clark D, Watson Y, Buckley DL, Berrisford C, Anderson H, Jackson A, Waterton JC (2003) T1-weighted DCE-MRI applied to lung tumours: Pre-processing and modelling. 11th Meeting of the International Society for Magnetic Resonance in Medicine:1255

    Google Scholar 

  • Parker GJ, Jackson A, Waterton JC, Buckley DL (2003) Automated arterial input function extraction for T1-weighted DCE-MRI. 11th Meeting of the International Society for Magnetic Resonance in Medicine:1264

    Google Scholar 

  • Patlak CS, Blasberg RG, Fenstermacher JD (1983) Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab 3:1–7

    PubMed  Google Scholar 

  • Renkin EM (1959) Transport of potassium-42 from blood to tissue in isolated mammalian skeletal muscles. Am J Physiol 197:1205–1210

    PubMed  Google Scholar 

  • Roberts TP (1997) Physiologic measurements by contrast-enhanced MR imaging: expectations and limitations. J Magn Reson Imaging 7:82–90

    PubMed  Google Scholar 

  • Sha'afi RI (1981) Permeability for water and other polar molecules. Membrane Transport:29–60

    Google Scholar 

  • St Lawrence KS, Lee T-Y (1998) An adiabatic approximation to the tissue homogeneity model for water exchange in the brain: 1. Theoretical derivation. J Cereb Blood Flow Metab 18:1365–1377

    Article  PubMed  Google Scholar 

  • Su MY, Jao JC, Nalcioglu O (1994) Measurement of vascular volume fraction and blood-tissue permeability constants with a pharmacokinetic model: studies in rat muscle tumors with dynamic Gd-DTPA enhanced MRI. Magn Reson Med 32:714–724

    PubMed  Google Scholar 

  • Tofts PS (1997) Modeling tracer kinetics in dynamic Gd-DTPA MR imaging. J Magn Reson Imaging 7:91–101

    PubMed  Google Scholar 

  • Tofts PS, Kermode AG (1991) Measurement of the blood-brain barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental concepts. Magn Reson Med 17:357–367

    PubMed  Google Scholar 

  • Tofts PS, Berkowitz B, Schnall MD (1995) Quantitative analysis of dynamic Gd-DTPA enhancement in breast tumors using a permeability model. Magn Reson Med 33:564–568

    PubMed  Google Scholar 

  • Tofts PS, Brix G, Buckley DL, Evelhoch JL, Henderson E, Knopp MV, Larsson HBW, Lee T-Y, Mayr NA, Parker GJM, Port RE, Taylor J, Weisskoff RM (1999) Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging 10(3):223–232

    Article  PubMed  Google Scholar 

  • Vonken EP, van Osch MJ, Bakker CJ, Viergever MA (2000) Simultaneous quantitative cerebral perfusion and Gd-DTPA extravasation measurement with dual-echo dynamic susceptibility contrast MRI. Magn Reson Med 43:820–827

    Article  PubMed  Google Scholar 

  • Weinmann H-J, Laniado M, Mützel W (1984) Pharmacokinetics of GdDTPA/dimeglumine after intravenous injection into healthy volunteers. Physiol Chem Phys Med NMR 16:167–172

    PubMed  Google Scholar 

  • Zierler KL (1963) Theory of use of indicators to measure blood flow and extracellular volume and calculation of transcapillary movement of tracers. Circulation Research 7:464–471

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Parker, G.J.M., Buckley, D.L. (2005). Tracer Kinetic Modelling for T1-Weighted DCE-MRI. In: Jackson, A., Buckley, D.L., Parker, G.J.M. (eds) Dynamic Contrast-Enhanced Magnetic Resonance Imaging in Oncology. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26420-5_6

Download citation

  • DOI: https://doi.org/10.1007/3-540-26420-5_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42322-5

  • Online ISBN: 978-3-540-26420-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics