Skip to main content

Random-Phase Approximation

  • Chapter
  • First Online:
Dynamic Spin-Fluctuation Theory of Metallic Magnetism

Abstract

The random-phase approximation (RPA) has been widely used for studying linear responses to external perturbations and describing elementary excitations.

The next approximation... goes under a wide variety of names (random phase approximation, independent-pair approximation, self-consistent field approximation, time-dependent Hartree–Fock approximation, etc.); in fact, there are almost as many names as there are ways of deriving the answer. We shall arbitrarily refer to it as the random phase approximation, or RPA. (D. Pines, Elementary Excitations in Solids, Benjamin, New York, 1964)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Use of the complex field rather than real one \(\mathbf{H}(\mathbf{r},t) =\hat{ \mathbf{z}}H_{z}(\mathbf{q})\,\cos (\mathbf{qr})\cos \omega t\) (see, e.g. [5]) largely simplifies the derivation.

  2. 2.

    Poles of χ −+(q, ω) give an equation that corresponds to the spin waves precessing in the opposite direction.

  3. 3.

    This simple form of the spin-wave spectrum is in good agreement with neutron scattering experiments (see, e.g. [18]).

  4. 4.

    These singularities are called the branch cuts (for details, see Appendix A.2.4).

References

  1. D. Pines, Elementary Excitations in Solids (Benjamin, New York, 1964)

    MATH  Google Scholar 

  2. P. Nozieres, Theory of Interacting Fermi Systems (Benjamin, New York, 1964)

    MATH  Google Scholar 

  3. D.J. Kim, New Perspectives in Magnetism of Metals (Kluwer/Plenum, New York, 1999)

    Book  Google Scholar 

  4. H. Bruus, K. Flensberg, Many-Body Quantum Theory in Condensed Matter Physics, 3rd edn. (Oxford University Press, Oxford, 2004)

    Google Scholar 

  5. R.M. White, Quantum Theory of Magnetism, 3rd edn. (Springer, Berlin, 2007)

    Book  Google Scholar 

  6. P.A. Wollf, Phys. Rev. 120, 814 (1960)

    Article  ADS  Google Scholar 

  7. T. Izuyama, D.J. Kim, R. Kubo, J. Phys. Soc. Jpn. 18(7), 1025 (1963)

    Article  ADS  Google Scholar 

  8. D.J. Kim, B.B. Schwartz, H.C. Praddaude, Phys. Rev. B 7, 205 (1973)

    Article  ADS  Google Scholar 

  9. J.F. Cooke, J.W. Lynn, H.L. Davis, Phys. Rev. B 21, 4118 (1980)

    Article  ADS  Google Scholar 

  10. J. Callaway, A.K. Chatterjee, S.P. Singhal, A. Ziegler, Phys. Rev. B 28, 3818 (1983)

    Article  ADS  Google Scholar 

  11. D. Mattis, The Theory of Magnetism (Springer, Berlin, 1981)

    Book  Google Scholar 

  12. K. Yosida, Theory of Magnetism, 2nd edn. (Springer, Berlin, 1998)

    MATH  Google Scholar 

  13. P. Mohn, Magnetism in the Solid State, 2nd edn. (Springer, Berlin, 2006)

    Google Scholar 

  14. F. Bloch, Z. Physik 61, 206 (1930)

    Article  ADS  Google Scholar 

  15. F. Bloch, Z. Physik 74, 295 (1932)

    Article  ADS  Google Scholar 

  16. T. Moriya, A. Kawabata, J. Phys. Soc. Jpn. 35(3), 669 (1973)

    Article  ADS  Google Scholar 

  17. N.B. Melnikov, B.I. Reser, Theor. Math. Phys. 181(2), 1435 (2014)

    Article  Google Scholar 

  18. H.A. Mook, in Spin Waves and Magnetic Excitations 1, ed. by A.S. Borovik-Romanov, S.K. Sinha (Elsevier, Amsterdam, 1988), pp. 425–478

    Google Scholar 

  19. L.D. Landau, E.M. Lifshitz, Statistical Physics, Course on Theoretical Physics, vol. 5, 3rd edn. (Pergamon, Oxford, 1985)

    Google Scholar 

  20. C. Kittel, Introduction to Solid State Physics, 8th edn. (Wiley, New York, 2005)

    MATH  Google Scholar 

  21. Y. Kakehashi, Modern Theory of Magnetism in Metals and Alloys (Springer, Berlin, 2012)

    Google Scholar 

  22. J.A. Hertz, M.A. Klenin, Physica B&C 91B, 49 (1977)

    Article  ADS  Google Scholar 

  23. P. Buczek, A. Ernst, L.M. Sandratskii, Phys. Rev. B 84, 174418 (2011)

    Article  ADS  Google Scholar 

  24. J.W. Lynn, Phys. Rev. B 11, 2624 (1975)

    Article  ADS  Google Scholar 

  25. H.A. Mook, J.W. Lynn, R.M. Nicklow, Phys. Rev. Lett. 30, 556 (1973)

    Article  ADS  Google Scholar 

  26. J. Hubbard, in Physics of Transition Metals 1980 (Inst. Phys. Conf. Ser., No. 55), ed. by P. Rhodes (IOP, Bristol, 1981), pp. 669–687

    Google Scholar 

  27. J. Wicksted, G. Shirane, P. Böni, Phys. Rev. B 30, 3655 (1984)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Melnikov, N.B., Reser, B.I. (2018). Random-Phase Approximation. In: Dynamic Spin-Fluctuation Theory of Metallic Magnetism. Springer, Cham. https://doi.org/10.1007/978-3-319-92974-3_5

Download citation

Publish with us

Policies and ethics