Skip to main content

Genomics Approaches to Mining Barley Germplasm Collections

  • Chapter
  • First Online:
The Barley Genome

Part of the book series: Compendium of Plant Genomes ((CPG))

Abstract

Barley has been diversified during the long process of evolution. The genetic diversity that was lost during domestication and crop improvement can be introduced from various collections with extant wild relatives of barley being a particularly rich source. Thousands of diverse accessions of cultivated and wild barley have been collected, preserved in ex situ collections, phenotyped for various traits, genotyped with molecular markers, and catalogued in databases. Such attributes make these collections readily accessible for germplasm mining. High-throughput sequencing methods for assessing intraspecific diversity have become available recently through the implementation of exome sequencing and genotype-by-sequencing in barley. These methods enable the systematic collection of molecular passport data of entire collections to inform genebank management decisions. They can also guide the selection of core collections for further in-depth studies linking phenotype and genotype. Finally, the joint analysis of genetic data and information on collection sites of accession can give insights about the population structure, dispersal, and evolutionary history of the crop.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ames N, Dreiseitl A, Steffenson BJ, Muehlbauer GJ (2015) Mining wild barley for powdery mildew resistance. Plant Pathol 64:1396–1406

    Article  CAS  Google Scholar 

  • Arora S, Steuernagel B, Chandramohan S, Long Y, Matny O, Johnson R, Enk J, Periyannan S, Md Hatta M, Athiyannan N, Cheema J, Yu G, Kangara N, Ghosh S, Szabo LJ, Poland J, Bariana H, Jones JDG, Bentley AR, Ayliffe M, Olson E, Xu SS, Steffenson BJ, Lagudah E, Wulff BBH (2018) Resistance gene discovery and cloning by sequence capture and association genetics. bioRxiv. https://doi.org/10.1101/248146

  • Bayer MM, Rapazote-Flores P, Ganal M, Hedley PE, Macaulay M, Plieske J, Ramsay L, Russell J, Shaw PD, Thomas W, Waugh R (2017) Development and evaluation of a Barley 50k iSelect SNP Array. Front Plant Sci. https://doi.org/10.3389/fpls.2017.01792

    Article  PubMed  PubMed Central  Google Scholar 

  • Berger GL, Liu S, Hall MD, Brooks WS, Chao S, Muehlbauer GJ et al (2013) Marker-trait associations in Virginia Tech winter barley identified using genome-wide mapping. Theor Appl Genet 126:693–710. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23139143

  • Comadran J, Kilian Benjamin, Russell Joanne, Ramsay Luke, Stein Nils, Ganal Martin, Shaw Paul et al (2012) Natural variation in a homolog of Antirrhinum CENTRORADIALIS contributed to spring growth habit and environmental adaptation in cultivated barley. Nat Genet 44(12):1388–1392

    Article  CAS  PubMed  Google Scholar 

  • Cuesta-Marcos A, Szucs P, Close TJ, Filichkin T, Muehlbauer GJ, Smith KP et al (2010) Genome-wide SNPs and re-sequencing of growth habit and inflorescence genes in barley: implications for association mapping in germplasm arrays varying in size and structure. BMC Genom 11:707

    Article  CAS  Google Scholar 

  • Davey JW, Hohenlohe PA, Etter PD, Boone JQ, Catchen JM, Blaxter ML (2011) Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet 12(7):499–510. https://doi.org/10.1038/nrg3012

    Article  PubMed  CAS  Google Scholar 

  • Dawson IK, Russell J, Powell W, Steffenson B, Thomas WTB, Waugh R (2015) Barley: a translational model for adaptation to climate change. New Phytol 206:913–931

    Article  PubMed  Google Scholar 

  • Dempewolf H, Baute G, Anderson J, Kilian B, Smith C, Guarino L (2017) Past and future use of wild relatives in crop breeding. Crop Sci 57:1070–1082

    Article  Google Scholar 

  • Diwan N, McIntosh MS, Bauchan GR (1995) Methods of developing a core collection of annual Medicago species. Theor Appl Genet 90:755–761

    Article  CAS  PubMed  Google Scholar 

  • Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6(5):e19379. https://doi.org/10.1371/journal.pone.0019379

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Endresen DTF, Street K, Mackay M, Bari A, de Pauw E (2011) Predictive association between biotic stress traits and eco-geographic data for wheat and barley landraces. Crop Sci 51:2036–2055

    Article  Google Scholar 

  • Escribano P, Viruel MA, Hormaza JI (2008) Comparison of different methods to construct a core germplasm collection in woody perennial species with simple sequence repeat markers. A case study in cherimoya (Annona cherimola, Annonaceae), an underutilized subtropical fruit tree species. Ann Appl Biol 153:25–32

    Google Scholar 

  • Evans J, Kim J, Childs KL, Vaillancourt B, Crisovan E, Nandety A, Gerhardt DJ, Richmond TA, Jeddeloh JA, Kaeppler SM, Casler MD, Buell CR (2014) Nucleotide polymorphism and copy number variant detection using exome capture and next-generation sequencing in the polyploid grass Panicum virgatum. Plant J Cell Mol Biol 79(6):993–1008. https://doi.org/10.1111/tpj.12601

    Article  CAS  Google Scholar 

  • FAO (2010) The second report on the state of the world’s plant genetic resources for food and agriculture. Commission on Genetic Resources for Food and Agriculture, Food and Agriculture Organization of the United Nations, Rome, 399 p. http://www.fao.org/docrep/013/i1500e/i1500e00.htm

  • Fu YB, Horbach C (2012) Genetic diversity in a core subset of wild barley germplasm. Diversity 4:239–257

    Article  CAS  Google Scholar 

  • Gore MA, Chia JM, Elshire RJ, Sun Q, Ersoz ES, Hurwitz BL, Peiffer JA, McMullen MD, Grills GS, Ross-Ibarra J, Ware DH, Buckler ES (2009) A first-generation haplotype map of maize. Science 326(5956):1115–1117. https://doi.org/10.1126/science.1177837

    Article  PubMed  CAS  Google Scholar 

  • Gouesnard B (2001) MSTRAT: an algorithm for building germplasm core collections by maximizing allelic or phenotypic richness. J Hered 92:93–94

    Article  CAS  PubMed  Google Scholar 

  • Gutiérrez L, Cuesta-Marcos A, Castro AJ, von Zitzewitz J, Schmitt M, Hayes PM (2011) Association mapping of malting quality quantitative trait loci in winter barley: positive signals from small germplasm arrays. Plant Genome J 4:256

    Article  Google Scholar 

  • Hamblin MT, Close TJ, Bhat PR, Chao S, Kling JG, Abraham KJ et al (2010) Population structure and linkage disequilibrium in U.S. barley germplasm: implications for association mapping. Crop Sci 50:556–566

    Article  CAS  Google Scholar 

  • Hodges E, Xuan Z, Balija V, Kramer M, Molla MN, Smith SW, Middle CM, Rodesch MJ, Albert TJ, Hannon GJ, McCombie WR (2007) Genome-wide in situ exon capture for selective resequencing. Nat Genet 39(12):1522–1527. https://doi.org/10.1038/ng.2007.42

    Article  PubMed  CAS  Google Scholar 

  • Huang X, Han B (2013) Natural variations and genome-wide association studies in crop plants. Annu Rev Plant Biol. https://doi.org/10.1146/annurev-arplant-050213-035715

    Article  PubMed  Google Scholar 

  • Huang X, Wei X, Sang T, Zhao Q, Feng Q, Zhao Y, Li C, Zhu C, Lu T, Zhang Z, Li M, Fan D, Guo Y, Wang A, Wang L, Deng L, Li W, Lu Y, Weng Q, Liu K, Huang T, Zhou T, Jing Y, Li W, Lin Z, Buckler ES, Qian Q, Zhang QF, Li J, Han B (2010) Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet 42(11):961–967. https://doi.org/10.1038/ng.695

    Article  PubMed  CAS  Google Scholar 

  • International Barley Genome Sequencing Consortium (2012) A physical, genetic and functional sequence assembly of the barley genome. Nature 491(7426):711–716. https://doi.org/10.1038/nature11543

    Article  CAS  Google Scholar 

  • Jakob SS, Rödder D, Engler JO, Shaaf S, Ozkan H, Blattner FR et al (2014) Evolutionary history of wild barley (Hordeum vulgare subsp. spontaneum) analyzed using multilocus sequence data and paleodistribution modeling. Genome Biol Evol 6:685–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jordan KW, Wang S, Lun Y, Gardiner LJ, MacLachlan R, Hucl P, Wiebe K, Wong D, Forrest KL, Consortium I, Sharpe AG, Sidebottom CH, Hall N, Toomajian C, Close T, Dubcovsky J, Akhunova A, Talbert L, Bansal UK, Bariana HS, Hayden MJ, Pozniak C, Jeddeloh JA, Hall A, Akhunov E (2015) A haplotype map of allohexaploid wheat reveals distinct patterns of selection on homoeoloe genomes. Genome Biol 16:48. https://doi.org/10.1186/s13059-015-0606-4

  • Knapp M, Hofreiter M (2010) Next generation sequencing of ancient DNA: requirements, strategies and perspectives. Genes (Basel) 1(2):227–243. https://doi.org/10.3390/genes1020227

    Article  CAS  Google Scholar 

  • Knüpffer H (2009) Triticeae genetic resources in ex situ Genebank Collections. In: Feuillet C, Muehlbauer GJ (eds) Genetics and genomics of the triticeae. Springer, New York, pp 31–79

    Google Scholar 

  • Knüpffer H, van Hintum THJL (2003) Summarised diversity—the barley core collection. In: von Bothmer R, van Hintum TH, Knüpffer H, Sato K (eds) Diversity in barley (Hordeum vulgare). Elsevier Science B.V., Amsterdam, The Netherlands, pp 250–258

    Google Scholar 

  • Lu F, Romay MC, Glaubitz JC, Bradbury PJ, Elshire RJ, Wang T, Li Y, Li Y, Semagn K, Zhang X, Hernandez AG, Mikel MA, Soifer I, Barad O, Buckler ES (2015) High-resolution genetic mapping of maize pan-genome sequence anchors. Nat Commun 6:6914. https://doi.org/10.1038/ncomms7914

    Article  PubMed  CAS  Google Scholar 

  • Mackay MC, Street KS (2004) Focused identification of germplasm strategy—FIGS. In: Rebetzke GJ, Black CK, Panozzo JK (eds) Proceedings of the 54th Australian cereal chemistry conference and the 11th wheat breeders’ assembly. Royal Australian Chemical Institute, Melbourne, Australia, pp 138–141

    Google Scholar 

  • Mascher M, Richmond TA, Gerhardt DJ, Himmelbach A, Clissold L, Sampath D, Ayling S, Steuernagel B, Pfeifer M, D’Ascenzo M, Akhunov ED, Hedley PE, Gonzales AM, Morrell PL, Kilian B, Blattner FR, Scholz U, Mayer KF, Flavell AJ, Muehlbauer GJ, Waugh R, Jeddeloh JA, Stein N (2013a) Barley whole exome capture: a tool for genomic research in the genus Hordeum and beyond. Plant J Cell Mol Biol 76(3):494–505. https://doi.org/10.1111/tpj.12294

    Article  CAS  Google Scholar 

  • Mascher M, Wu S, Amand PS, Stein N, Poland J (2013b) Application of genotyping-by-sequencing on semiconductor sequencing platforms: a comparison of genetic and reference-based marker ordering in barley. PLoS ONE 8(10):e76925. https://doi.org/10.1371/journal.pone.0076925

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mascher M, Schuenemann VJ, Davidovich U, Marom N, Himmelbach A, Hubner S, Korol A, David M, Reiter E, Riehl S, Schreiber M, Vohr SH, Green RE, Dawson IK, Russell J, Kilian B, Muehlbauer GJ, Waugh R, Fahima T, Krause J, Weiss E, Stein N (2016) Genomic analysis of 6,000-year-old cultivated grain illuminates the domestication history of barley. Nat Genet 48(9):1089–1093. https://doi.org/10.1038/ng.3611

    Article  PubMed  CAS  Google Scholar 

  • Massman J, Cooper B, Horsley R, Neate S, Dill-Macky R, Chao S et al (2011) Genome-wide association mapping of Fusarium head blight resistance in contemporary barley breeding germplasm. Mol Breed 27:439–454

    Article  Google Scholar 

  • Maurer A, Draba V, Jiang Y, Schnaithmann F, Sharma R, Schumann E, Kilian B, Reif JC, Pillen K (2015) Modelling the genetic architecture of flowering time control in barley through nested association mapping. BMC Genomic 16:290

    Article  CAS  Google Scholar 

  • McCouch S, Baute GJ, Bradeen J, Bramel P, Bretting PK, Buckler E, Burke JM, Charest D, Cloutier S, Cole G, Dempewolf H, Dingkuhn M, Feuillet C, Gepts P, Grattapaglia D, Guarino L, Jackson S, Knapp S, Langridge P, Lawton-Rauh A, Lijua Q, Lusty C, Michael T, Myles S, Naito K, Nelson RL, Pontarollo R, Richards CM, Rieseberg L, Ross-Ibarra J, Rounsley S, Hamilton RS, Schurr U, Stein N, Tomooka N, van der Knaap E, van Tassel D, Toll J, Valls J, Varshney RK, Ward J, Waugh R, Wenzl P, Zamir D (2013) Agriculture: feeding the future. Nature 499(7456):23–24. https://doi.org/10.1038/499023a

    Article  PubMed  CAS  Google Scholar 

  • Middleton CP, Senerchia N, Stein N, Akhunov ED, Keller B, Wicker T et al (2014) Sequencing of chloroplast genomes from wheat, barley, rye and their relatives provides a detailed insight into the evolution of the Triticeae tribe. PLoS ONE 9:e85761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montenegro JD, Golicz AA, Bayer PE, Hurgobin B, Lee H, Chan CKK, Visendi P, Lai K, Doležel J, Batley J, Edwards D (2017) The pangenome of hexaploid bread wheat. Plant J 90:1007–1013. https://doi.org/10.1111/tpj.13515

    Article  PubMed  CAS  Google Scholar 

  • Moragues M, Comadran J, Waugh R, Milne I, Flavell AJ, Russell JR (2010) Effects of ascertainment bias and marker number on estimations of barley diversity from high throughput SNP genotype data Theor. Appl. Genet. 120:1525–1534

    Article  CAS  Google Scholar 

  • Morris GP, Ramu P, Deshpande SP, Hash CT, Shah T, Upadhyaya HD, Riera-Lizarazu O, Brown PJ, Acharya CB, Mitchell SE, Harriman J, Glaubitz JC, Buckler ES, Kresovich S (2013) Population genomic and genome-wide association studies of agroclimatic traits in sorghum. Proc Natl Acad Sci USA 110(2):453–458. https://doi.org/10.1073/pnas.1215985110

    Article  PubMed  Google Scholar 

  • Muñoz-Amatriaín M, Cuesta-Marcos A, Endelman JB, Comadran J, Bonman JM, Bockelman HE et al (2014) The USDA barley core collection: genetic diversity, population structure, and potential for genome-wide association studies. PLoS ONE 9:e94688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newton AC, Flavell AJ, George TS, Leat P, Mullholland B, Ramsay L et al (2011) Crops that feed the world 4. Barley: a resilient crop? Strengths and weaknesses in the context of food security. Food Secur 3:141–178. Available at: http://link.springer.com/10.1007/s12571-011-0126-3. Accessed 23 Mar 2014

  • Ng SB, Turner EH, Robertson PD, Flygare SD, Bigham AW, Lee C, Shaffer T, Wong M, Bhattacharjee A, Eichler EE, Bamshad M, Nickerson DA, Shendure J (2009) Targeted capture and massively parallel sequencing of 12 human exomes. Nature 461(7261):272–276. https://doi.org/10.1038/nature08250

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nice LM, Steffenson BJ, Brown-Guedira GL, Akhunov ED, Liu C, Kono TJY et al (2016) Development and genetic characterization of an advanced backcross-nested association mapping (AB-NAM) population of wild x cultivated barley. Genetics 203:1453–1467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nielsen R, Paul JS, Albrechtsen A, Song YS (2011) Genotype and SNP calling from next-generation sequencing data. Nat Rev Genet 12(6):443–451. https://doi.org/10.1038/nrg2986

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oppermann M, Weise S, Dittmann C, Knupffer H (2015) GBIS: the information system of the German Genebank. Database (Oxford) 2015:bav021. https://doi.org/10.1093/database/bav021

  • Pasam RK, Sharma R, Malosetti M, van Eeuwijk FA, Haseneyer G et al (2012) Genome-wide association studies for agronomical traits in a world-wide spring barley collection. BMC Plant Biol 12:16

    Article  PubMed  PubMed Central  Google Scholar 

  • Pasam RK, Sharma R, Walther A, Özkan H, Graner A, Kilian B (2014) Genetic diversity and population structure in a legacy collection of spring barley landraces adapted to a wide range of climates. PLoS ONE 9:e116164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pauli D, Muehlbauer G, Smith K, Cooper B (2014) Association mapping of agronomic QTLs in US Spring barley breeding germplasm. Plant Genome 7. https://doi.org/10.3835/plantgenome2013.11.0037

  • Pillen K, Zacharias A, Leon J (2004) Comparative AB-QTL analysis in barley using a single exotic donor of Hordeum vulgare ssp. spontaneum. Theor Appl Genet 108:1591–1601

    Article  CAS  PubMed  Google Scholar 

  • Poland JA, Rife TW (2012) Genotyping-by-sequencing for plant breeding and genetics. Plant Genome 5(3):92–102. https://doi.org/10.3835/plantgenome2012.05.0005

    Article  CAS  Google Scholar 

  • Poland JA, Brown PJ, Sorrells ME, Jannink J-L (2012) Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS ONE 7(2):e32253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pourkheirandish M, Hensel G, Kilian B, Senthil N, Chen G, Sameri M, Azhaguvel P, Sakuma S, Dhanagond S, Sharma R, Mascher M, Himmelbach A, Gottwald S, Nair SK, Tagiri A, Yukuhiro F, Nagamura Y, Kanamori H, Matsumoto T, Willcox G, Middleton CP, Wicker T, Walther A, Waugh R, Fincher GB, Stein N, Kumlehn J, Sato K, Komatsuda T (2015) Evolution of the grain dispersal system in barley. Cell 162(3):527–539. https://doi.org/10.1016/j.cell.2015.07.002

    Article  PubMed  CAS  Google Scholar 

  • Romay MC, Millard MJ, Glaubitz JC, Peiffer JA, Swarts KL, Casstevens TM, Elshire RJ, Acharya CB, Mitchell SE, Flint-Garcia SA, McMullen MD, Holland JB, Buckler ES, Gardner CA (2013) Comprehensive genotyping of the USA national maize inbred seed bank. Genome Biol 14(6):R55. https://doi.org/10.1186/gb-2013-14-6-r55

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rostoks N, Ramsay L, MacKenzie K, Cardle L, Bhat PR, Roose ML et al (2006) Recent history of artificial outcrossing facilitates whole-genome association mapping in elite inbred crop varieties. Proc Natl Acad Sci USA 103:18656–18661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roy JK, Smith KP, Muehlbauer GJ, Chao S, Close TJ, Steffenson BJ (2010) Association mapping of spot blotch resistance in wild barley. Mol Breed 26:243–256

    Article  PubMed  PubMed Central  Google Scholar 

  • Russell J, Mascher M, Dawson IK, Kyriakidis S, Calixto C, Freund F, Bayer M, Milne I, Marshall-Griffiths T, Heinen S (2016a) Exome sequencing of geographically diverse barley landraces and wild relatives gives insights into environmental adaptation. Nat Genet 48:1024–1030

    Article  CAS  PubMed  Google Scholar 

  • Russell J, Mascher M, Dawson IK, Kyriakidis S, Calixto C, Freund F, Bayer M, Milne I, Marshall-Griffiths T, Heinen S, Hofstad A, Sharma R, Himmelbach A, Knauft M, van Zonneveld M, Brown JWS, Schmid KJ, Kilian B, Muehlbauer G, Stein N, Waugh R (2016b) Adaptation of barley to different environments revealed in the exomes of a range-wide collection of landraces and wild relatives. Nat Genetics

    Google Scholar 

  • Saade S, Maurer A, Shahid M, Oakey H, Schmöckel SM, Negrão S et al (2016) Yield-related salinity tolerance traits identified in a nested association mapping (NAM) population of wild barley. Sci Rep 6:1–9

    Article  CAS  Google Scholar 

  • Sallam AH, Tyagi P, Gina Brown-Guedira G, Muehlbauer GJ, Hulse A, Steffenson BJ (2017) Genome-wide association mapping of stem rust resistance in Hordeum vulgare subsp. spontaneum. G3 Genes Genomes Genet 7:3491–3507

    Google Scholar 

  • Sato K, Takeda K (2009) An application of high-throughput SNP genotyping for barley genome mapping and characterization of recombinant chromosome substitution lines. Theor Appl Genet 119:613–619

    Article  CAS  PubMed  Google Scholar 

  • Sato K, Yamane M, Yamaji N, Kanamori H, Tagiri A, Schwerdt JG et al (2016) Alanine aminotransferase controls seed dormancy in barley. Nat Commun 7:11625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmalenbach I, Korber N, Pillen K (2008) Selecting a set of wild barley introgression lines and verification of QTL effects for resistance to powdery mildew and leaf rust. Theor Appl Genet 117:1093–1106

    Article  PubMed  Google Scholar 

  • Schnaithmann F, Kopahnke D, Pillen K (2014) A first step toward the development of a barley NAM population and its utilization to detect qtls conferring leaf rust seedling resistance. Theor Appl Genet 127:1513–1525

    Article  PubMed  Google Scholar 

  • Steffenson BJ, Olivera P, Roy JK, Jin Y, Smith KP, Muehlbauer GJ (2007) A walk on the wild side: mining wild wheat and barley collections for rust resistance genes. Aust J Agric Res 58:532–534

    Article  Google Scholar 

  • Taketa S, Amano S, Tsujino Y, Sato T, Saisho D, Kakeda K, Nomura M, Suzuki T, Matsumoto T, Sato K, Kanamori H, Kawasaki S, Takeda K (2008) Barley grain with adhering hulls is controlled by an ERF family transcription factor gene regulating a lipid biosynthesis pathway. Proc Natl Acad Sci USA 105(10):4062–4067. https://doi.org/10.1073/pnas.0711034105

    Article  PubMed  PubMed Central  Google Scholar 

  • Tanksley SD, McCouch SR (1997) Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277:1063–1066

    Article  CAS  PubMed  Google Scholar 

  • Tondelli A, Xu X, Moragues M et al (2013) Structural and temporal variation in genetic diversity of European spring two-row barley cultivars and association mapping of quantitative traits. Plant Genome 6:0. https://doi.org/10.3835/plantgenome2013.03.0007

  • Ullrich SE (2011) Significance, adaptation, production and trade of barley. In: Steven E. Ullrich (ed) Barley: production, improvement, and uses. Wiley-Blackwell, Ames, IA, pp 3–13

    Google Scholar 

  • von Bothmer R, Sato K, Komatsuda T, Yasuda S, Fischbeck G (2003) The domestication of cultivated barley. In: von Bothmer R, van Hintum Th, Knüpffer H, Sato K (eds) Diversity in Barley (Hordeum vulgare). Elsevier Science B.V., Amsterdam, The Netherlands, pp 9–27

    Google Scholar 

  • von Korff M, Wang H, Leon J, Pillen K (2004) Development of candidate introgression lines using an exotic barley accession (Hordeum vulgare ssp. spontaneum) as donor. Theor Appl Genet 109:1736–1745

    Article  CAS  Google Scholar 

  • Wendler N, Mascher M, Himmelbach A, Johnston P, Pickering R, Stein N (2015) Bulbosum to go: a toolbox to utilize Hordeum vulgare/bulbosum introgressions for breeding and beyond. Mol Plant 8:1507–1519

    Article  CAS  PubMed  Google Scholar 

  • Wenzl P, Carling J, Kudrna D, Jaccoud D, Huttner E, Kleinhofs A, Kilian A (2004) Diversity arrays technology (DArT) for whole-genome profiling of barley. Proc Natl Acad Sci USA 101(26):9915–9920. https://doi.org/10.1073/pnas.0401076101

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wu D, Sato K, Ma JF (2015) Genome-wide association mapping of cadmium accumulation in different organs of barley. New Phytol 208:817–829. https://doi.org/10.1111/nph.13512

    Article  PubMed  CAS  Google Scholar 

  • Yang J, Jiang H, Yeh CT, Yu J, Jeddeloh JA, Nettleton D, Schnable PS (2015) Extreme-phenotype genome-wide association study (XP-GWAS): a method for identifying trait-associated variants by sequencing pools of individuals selected from a diversity panel. The Plant journal: for cell and molecular biology 84(3):587–596. https://doi.org/10.1111/tpj.13029

    Article  CAS  Google Scholar 

  • Yu J, Holland JB, McMullen MD, Buckler ES (2008) Genetic design and statistical power of nested association mapping in maize. Genetics 178:539–551. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2206100&tool=pmcentrez&rendertype=abstract. Accessed 10 May 2015

  • Zhou H, Steffenson B (2013a) Genome-wide association mapping reveals genetic architecture of durable spot blotch resistance in US barley breeding germplasm. Mol Breed 32:139–154

    Article  CAS  Google Scholar 

  • Zhou H, Steffenson BJ (2013b) Association mapping of Septoria speckled leaf blotch resistance in U.S. barley breeding germplasm. Phytopathology 103:600–9. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23342987

  • Zhou H, Muehlbauer G, Steffenson B (2012) Population structure and linkage disequilibrium in elite barley breeding germplasm from the United States. J Zhejiang Univ Sci B 13:438–451. Available at: http://www.springerlink.com/index/10.1631/jzus.B1200003. Accessed 23 Mar 2014

  • Zhou H, Steffenson BJ, Muehlbauer G, Wanyera R, Njau P, Ndeda S (2014) Association mapping of stem rust race TTKSK resistance in US barley breeding germplasm. Theor Appl Genet 127:1293–1304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zohary D, Hoph M, Weiss E (2012) Domestication of plants in the old world: the origin and spread of domesticated plants in Southwest Asia, Europe, and the Mediterranean Basin, 4th edn. Oxford University Press Inc., New York

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian Steffenson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mascher, M., Sato, K., Steffenson, B. (2018). Genomics Approaches to Mining Barley Germplasm Collections. In: Stein, N., Muehlbauer, G. (eds) The Barley Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-319-92528-8_11

Download citation

Publish with us

Policies and ethics