Skip to main content

In Vitro Propagation of Important Rootstocks of Apple for Rapid Cloning and Improvement

  • Chapter
  • First Online:
Biotechnologies of Crop Improvement, Volume 1

Abstract

Micropropagation of apple rootstocks has played an indispensable role in cloning and multiplication of cultivars possessing desired characters such as early maturity, shortened height, etc. It has further added to a dimension of research in apple by providing season-independent multiplication of disease-free rootstocks. Subsequently many studies were conducted to optimize in vitro propagation of selected apple rootstocks with the aim of rapid cloning of disease-free planting material for grafting and also to undertake trait-specific modifications of selected rootstocks to enhance their potential. Work has also been conducted for development of regeneration protocol through shoot organogenesis and somatic embryogenesis. Some studies on development of genetic transformation protocols of selected rootstocks and modification of some important traits has also been reviewed in this article.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott AJ, Whiteley E (1976) Culture of Malus tissues in vitro I. Multiplication of apple plants from isolated shoot apices. Sci Hortic 4:183–189

    Article  Google Scholar 

  • Abdul-Kader AM, Mathe A, Laszloffy K (1991) Aspects of the in vitro technology of apple (Malus sp.) Acta Agron Hung 40:237–251

    Google Scholar 

  • Akin-Idowu PE, Ibitoye DO, Ademoyegun OT (2009) Tissue culture as a plant production technique for horticultural crops. Afr J Biotechnol 8:3782–3788

    Google Scholar 

  • Alvarez R, Nissen SJ, Sutter EG (1989) Relationship between Indole-3-acetic acid levels in apple (Malus pumila mill) rootstocks cultured in vitro and adventitious root formation in the presence of lndole-3-butyric acid. Plant Physiol 89:439–443

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Amiri EM, Elahinia A (2011) Optimization of medium composition for apple rootstocks. Afr J Biotechnol 10:3594–3601

    CAS  Google Scholar 

  • Arias M, Carbonell J, Agusti M (2005) Endogenous free polyamines and their role in fruit set of low and high parthenocarpic ability citrus cultivars. J Plant Physiol 162:845–853

    Article  PubMed  CAS  Google Scholar 

  • Babbar SB, Jain R, Walia N (2005) Guar gum as a gelling agent for plant tissue culture media. In: In Vitro Cell Dev Biol Plant, vol 41, pp 258–261

    Google Scholar 

  • Bahmani R, Karami O, Gholami M (2009a) Influence of carbon sources and their concentrations on rooting and hyperhydricity of apple rootstock MM.106. World Appl Sci J 6:1513–1517

    CAS  Google Scholar 

  • Bahmani R, Karami O, Gholami M (2009b) The effect of carbon source and concentration on in vitro shoot proliferation of MM.106 apple rootstock. Fruit veg cereal Sci. Biotech 3:35–37

    Google Scholar 

  • Bahmani R, Gholami M, Mozafari AA, Alivaisi R (2012) Effect of salinity on in vitro shoot proliferation and rooting of apple rootstock MM.106. World Appl Sci J 17:292–295

    CAS  Google Scholar 

  • Baraldi R, Fasolo Fabbri Malavasi F, Predieri S, Castagneto M (1991) Effect of potassium humate on apple cv. ‘Golden delicious’ cultured in vitro. Plant Cell Tissue Org Cult 24:187–191

    Article  CAS  Google Scholar 

  • Bartish IV, Korkhovoi VI (1997) The composition of nutrient medium and the efficiency of shoot induction in vitro from apple leaf explants. Russ J Plant Physiol 44:381–385

    CAS  Google Scholar 

  • Belfanti E, Dilworth ES, Tartarini S, Patocchi A, Barbieri M, Zhu J, Vinatzer BA, Gianfranceschi L, Gessler C, Sansavini S (2003) The HcrVf2 gene from a wild apple confers scab resistance to a transgenic cultivated variety. PNAS 101:886–890

    Article  CAS  Google Scholar 

  • Bhatt A, Kansal S, Chauhan RS, Sood H (2012) Low cost tissue culture procedures for micropropagation of apple rootstocks. International journal of plant. Dev Biol 6:67–72

    Google Scholar 

  • Biedermann IEC (1987) Factors affecting establishment and development of Magnolia hybrids in vitro. Acta Hortic 212:625–629

    Article  Google Scholar 

  • Block R, Lankes C (1996) Massnahmen gegen die Verbräunung bei der in-vitro-Etablierung der Apfelunterlage M9. Gartenbauwissenschaft 61:11–17

    CAS  Google Scholar 

  • Bolar JP, Norelli JL, Aldwinckle HS (1998) An efficient method for rooting and acclimation of micropropagated apple cultivars. Hortscience 33:1251–1252

    Google Scholar 

  • Bommineni VR, Mathews H, Samuel SB, Kramer M, Wagner DR (2001) A new method for rapid in vitro propagation of apple and pear. Hortscience 36:1102–1106

    CAS  Google Scholar 

  • Boudabous M, Mars M, Marzougui N, Ferchichi A (2010) Micropropagation of apple (Malus domestica L. cultivar Douce de Djerba) through in vitro culture of axillary buds. Acta Bot Gallica 157:513–524

    Article  CAS  Google Scholar 

  • Bulgakov VP (2008) Functions of rol genes in plant secondary metabolism. Biotechnol Adv 26:318–324

    Article  PubMed  CAS  Google Scholar 

  • Camargo JT, Fortes GR, Silva JB, Centellas AQ, Oliveira MF (1998) Evaluation of BAP concentrations for callogenesis/organogenesis in apical and basal internodes of the apple rootstock cv. Marubakaido (Malus prunifolia). Agropecu Clima Temperado 1:129–136

    Google Scholar 

  • Chakrabarty D, Hahn EJ, Yoon YJ, Paek KY (2003) Micropropagation of apple rootstock M.9 EMLA using bioreactor. J Hortic Sci Biotechnol 78:605–609

    Article  CAS  Google Scholar 

  • Cheng TY (1978) Propagating woody plants through tissue culture. Am Nurserym 15:7–14

    Google Scholar 

  • Cheng M, Hu T, Layton J, Liu CN, Fry JE (2003) Desiccation of plant tissues post-Agrobacterium infection enhances T-DNA delivery and increases stable transformation efficiency in wheat. In Vitro Cell Dev Biol Plant 39(6):594–604

    Article  CAS  Google Scholar 

  • Chong C, Taper CD (1972) Malus tissue cultures. I. Sorbitol (Dglucitol) as a carbon source for callus initiation and growth. Can J Bot 50:1399–1404

    Article  CAS  Google Scholar 

  • Ciccoti AM, Bisognin C, Battocletti I, Salvadori A, Herdemertens M, Jarausch W (2008) Micropropagation of apple proliferation-resistant apomictic Malus sieboldii genotypes. Agron Res 6:445–458

    Google Scholar 

  • Ciccotti AM, Bisognin C, Battocletti I, Salvadori A, Herdemertens M, Wallbraun M, Jarausch W (2009) Micropropagation of Malus sieboldii hybrids resistant to apple proliferation disease. Acta Hortic 839:35–42

    Article  CAS  Google Scholar 

  • Custodio L, Loucao MA, Romano A (2004) Influence of sugars on in vitro rooting and acclimatization of carob tree. Biol Plant 48(3):469–472

    Article  CAS  Google Scholar 

  • Dalal MA, Das B, Sharma AK, Mir MA, Sounduri AS (2006) In vitro cloning of apple (Malus domestica Borkh) employing forced shoot tip cultures of M9 rootstock. IJBT 5:543–550

    CAS  Google Scholar 

  • Damiano C, Monticelli S, La Starza SR, Gentile A, Frattarelli A (2003). Temperate fruit plant propagation through temporary immersion. XXVI Int Horticul Congress: Biotechnology in Horticultural Crop Improvement: Achievements, Opportunities and Limitations 1(56), ISBN 9066052589, ISSN 0567-7572

    Google Scholar 

  • De Bondt A, Eggermont K, Druart P, De Vil M, Vanderleyden J, Broekaert WF (1994) Agrobacterium-mediated transformation of apple (Malus x domestica Borkh.): an assessment of factors affecting gene transfer efficiency during early transformation steps. Plant Cell Rep 13:587–593

    Article  PubMed  Google Scholar 

  • De Bondt A, Eggermont K, Penninckx I, Goderis I, Broekaert WF (1996) Agrobacterium-mediated transformation of apple (Malus x domestica Borkh.): an assessment of factors affecting regeneration of transgenic plants. Plant Cell Rep 15:549–554

    Article  PubMed  Google Scholar 

  • De klerk GJ, Hanecakova J, Jasik J (2001) The role of cytokinins in rooting of stem slices cut from apple microcuttings. Plant Biosyst 135:79–84

    Article  Google Scholar 

  • Degenhardt J, Poppe A, Montag J, Szankowski I (2006) The use of the phosphomannose-isomerase/mannose selection system to recover transgenic apple plants. Plant Cell Rep 25:1149–1156

    Article  PubMed  CAS  Google Scholar 

  • Diagny G, Paul H, Sangwan RS, Sangwan-Norreel BS (1996) Factors influencing secondary somatic embryogenesis in Malus x domestica Borkh. (cv ‘Gloster 69’). Plant Cell Rep 16:153–157

    Article  Google Scholar 

  • Dobranski J, da Silva JAT (2010) Micropropagation of apple – a review. Biotechnol Adv 28:462–488

    Article  CAS  Google Scholar 

  • Dobranski J, Hudak I, Tabori K, Benczur EJ, Galli Z, Kiss E (2002) How can different cytokinins influence the process of shoot regeneration from apple leaves in ´Royal Gala´ and ´M.26′. Acta Hortic 725:191–196

    Google Scholar 

  • Dobranszki J, da Silva JAT (2011) Adventitious shoot regeneration from leaf thin cell layers in apple. Sci Hort 127:460–463

    Article  Google Scholar 

  • Dobranszki J, Magyar-Tabori K, Jambor-Benczur E, Lazanyi J (2000) New in vitro micrografting method for apple by sticking. Intl. J Hort Sci 6:79–83

    Google Scholar 

  • Driver JA, Kuniyuki AH (1984) In vitro propagation of paradox walnut rootstock. Hortic Sci 19:507–509

    Google Scholar 

  • Druart P (1990) Improvement of somatic embryogenesis of the cherry dwarf rootstock Inmil/GM9 by the use of different carbon sources. Acta Hort 280:125–129

    Article  Google Scholar 

  • Dunstan DI, Turner KE, Lazaroff WR (1985) Propagation in vitro of the apple rootstock M4: effect of phytohormones on shoot quality. Plant Cell Tissue Organ Cult 4:55–60

    Article  CAS  Google Scholar 

  • Endo S, Sugita K, Sakai M, Matsunaga E, Ebinuma H (2001) The isopentyl transferase gene is effective as a selectable marker gene for plant transformation in tobacco (Nicotiana tabacum cv. Petite Havana SR1). Plant Cell Rep 20:60–69

    Article  CAS  PubMed  Google Scholar 

  • Eudes F, Acharya S, Laroche A, Selinger LB, Cheng (2003) A novel method to induce direct somatic embryogenesis and regeneration of fertile green cereal plants. Plant Cell Tissue Organ Cult 73:147–157

    Article  CAS  Google Scholar 

  • Evaldson I (1985) Induction, growth and differentiation of callus stem segments of in vitro cultured apple shoots (Malus domestica Borkh). Swed J Agri Res 14:119–122

    Google Scholar 

  • Fallahi E, Michael Colt W, Fallahi B, Chun IJ (2002) The importance of apple rootstocks on tree growth, yield, fruit quality, leaf nutrition and photosynthesis with an emphasis on ‘Fuji’. Hort. Technology 12:38–44

    Google Scholar 

  • Famiani F, Ferradini N, Staffolani, Standardi A (1994) Effect of leaf excision time and age, BA concentration and dark treatments on in vitro shoot regeneration of M26 apple rootstock. J Hortic Sci 69:679–685

    Article  Google Scholar 

  • FAOSTAT (2013) www.fao.org/faostat/en/#data/QC/visualize

    Google Scholar 

  • FAOSTAT (2014) www.fao.org/faostat/en/#data/QC

    Google Scholar 

  • Fasolo F, Zimmerman RH, Fordham I (1989) Adventitious shoot formation on excised leaves of in vitro grown shoots of apple cultivars. Plant Cell Tissue Organ Cult 16:75–87

    Article  CAS  Google Scholar 

  • Ferradini N, Famiani F, Proietti P, Stanica F (1996) Influence of growth regulators and light on in vitro shoot regeneration in M26 apple rootstock. J HorticSci 71:859–865

    CAS  Google Scholar 

  • Flachowsky H, Szankowski I, Waidmann S, Peil A, Trankner C, Hanke MV (2012) The MdTFL1 gene of apple (Malus × domestica Borkh.) reduces vegetative growth and generation time. Tree Physiol 32:1288–1301

    Article  PubMed  CAS  Google Scholar 

  • Fujii T, Nito N (1972) Studies on the compatibility of grafting of fruit trees. Callus fusion between root stock and scion. J Jpn Soc Hortic Sci 41:1–10

    Article  Google Scholar 

  • George EF, Davies W (2008) Effects of the physical environment. In: George EF, Hall MA, De Klerk GJ (eds) Plant propagation by tissue culture, 3rd edn. Springer, Dordrecht, pp 423–464

    Google Scholar 

  • George EF, Debergh PC (2008) Micropropagation: uses and methods. In: George EF, Hall MA, De Klerk GJ (eds) Plant propagation by tissue culture, 3rd edn. Springer, Dordrecht, pp 29–64

    Google Scholar 

  • Ghanbari A (2014) Impacts of plant growth regulators and culture media on in vitro propagation of three apple (Malus domestica Borkh.) rootstocks. IJGPB 3(1):11–20

    Google Scholar 

  • Grant NJ, Hammatt N (1999) Increased shoot and root production during micropropagation of cherry and apple rootstocks: effect of subculture frequency. Tree Physiol 19:899–903

    Article  PubMed  CAS  Google Scholar 

  • Greenwood MS, Hutchison KW (1993) Maturation as developmental process. In: Clonal forestry: genetics, biotechnology and application. Springer-Verlag, New York, pp 14–33

    Chapter  Google Scholar 

  • Gupta N (2011) Development of in vitro regeneration protocol for apple rootstock M7 and M9. M.Sc. Thesis, Thapar University Patiala

    Google Scholar 

  • Hackett WP (1985) Juvenility, maturation and rejuvenation in woody plants. Hortic Rev 7:109–115

    Google Scholar 

  • Hildebrandt V, Harney PM (1988) Factors affecting the release of phenolic exudate from explants of Pelargonium × hortorum, bailey ‘sprinter scarlet. J Hortic Sci 63:651–657

    Article  Google Scholar 

  • Holefors A, Xue ZT, Welander M (1998) Transformation of the apple rootstock M26 with the rolA gene and its influence on growth. Plant Sci 136:69–78

    Article  CAS  Google Scholar 

  • Hutchinson JF (1984) Factors affecting shoot proliferation and root initiation in organ cultures of the apple. Norther spy. Sci Hortic 22:347–358

    Article  CAS  Google Scholar 

  • Huth W (1978) Kulturvon apfelanzen aus apikalen Meristemen (in German, English summary). Gartenbauwissenschaft 43:163–166

    Google Scholar 

  • Hyae JJ, WooYB, Hee YM, Hwang JH, Youngllk S (1996) Influence of cultivar, light conditions and pretreatment on adventitious shoot regeneration from leaves, internodes and petioles of Malus domestica Borkh in vitro. J Korean Soc Horticult Sci 37:700–703

    Google Scholar 

  • Isutsa DK, Pritts MP, Mudge KW (1998) A protocol for rooting and growing apple rootstock microshoots. Fruit Var J 52:107–116

    Google Scholar 

  • Jaiswal VS, Amin MN (1987) In vitro propagation of guava from shoot cultures of mature trees. J Plant Physiol 130:7–12

    Article  CAS  Google Scholar 

  • James DJ, Passey AJ, Rugini E (1984) Organogenesis in callus derived from stems and leaf tissues of apple and cherry rootstocks. Plant Cell Tissue Organ Cult 3:333–341

    Article  CAS  Google Scholar 

  • James DJ, Passey AJ, Rugini E (1988) Factors affecting high frequency plant regeneration from apple leaf tissues cultured in vitro. J Plant Physiol 132:149–154

    Article  Google Scholar 

  • James DL, Passey AJ, Barbara DJ, Bevan M (1989) Genetic transformation of apple (Malus pumila mill.) using a disarmed Ti-binary vector. Plant Cell Rep 7(8):658–661

    PubMed  CAS  Google Scholar 

  • Jones OP (1967) Effect of benzyladenine on isolated apple shoots. Nature 215:1514–1515

    Article  PubMed  CAS  Google Scholar 

  • Karhu ST (1995) The quality of applied carbohydrates affects the axillary branching of apple microshoots. Bull Rech Agron Gembloux 30:21–27

    CAS  Google Scholar 

  • Karhu ST (1997) Sugar use in relation to shoot induction by sorbitol and cytokinin in apple. J Am Soc Hortic Sci 122:476–480

    CAS  Google Scholar 

  • Karhu ST, Zimmerman RH (1993) Effect of light and coumarin during root initiation of rooting apple cultivars in vitro. Adv Hortic Sci 7:33–36

    Google Scholar 

  • Kaushal N, Modgil M, Thakur M, Sharma DR (2005) In vitro clonal multiplication of an apple rootstock by culture of shoot apices and axillary buds. Indian J Exp Biol 43:561–565

    PubMed  CAS  Google Scholar 

  • Keresa S, Bosnjak AM, Baric M, Jercic IH, Sarcevic H, Bisko A (2012) Efficient axillary shoot proliferation and in vitro rooting of apple cv. ‘Topaz’. Not Bot Horti Agrobo 40(1):113–118

    Article  CAS  Google Scholar 

  • Khilwani B, Kaur A, Ranjan R, Kumar A (2016) Direct somatic embryogenesis and encapsulation of somatic embryos for in vitro conservation of Bacopa monnieri (L.) Wettst. Plant Cell Tissue Organ Cult. https://doi.org/10.1007/s11240-016-1067-5

    Article  CAS  Google Scholar 

  • Korban SS, Connor PAO, Elobeidy A (1992) Effect of Thidiazuron, nafthalen acetic acid, dark incubation and genotype on shoot organogenesis of Malus leaves. J Hort Sci 67:341–349

    Article  CAS  Google Scholar 

  • Kovalchuk I, Lyudvikova Y, Volgina M, Reed BM (2009) Medium, container and genotype all influence in vitro cold storage of apple germplasm. Plant Cell Tissue Organ Cult 96:127–136

    Article  Google Scholar 

  • Kumar A (1996) Studies on in vitro propagation, biochemistry and field evaluation of two economically important plants: Rosa Damascena Mill. And Gladiolus Spp. Ph.D Thesis, Kumaun University, Nanital

    Google Scholar 

  • Kumar K, Rao IU (2012) Morphophysiologicals problems in acclimatization of micropropagated plants in - ex vitro conditions- a reviews. Journal of ornamental and horticultural. Plants 2(4):271–283

    CAS  Google Scholar 

  • Kumar A, Sood A, Palni LMS, Gupta AK (1999) In vitro propagation of Gladiolus hybridus Hort. synergistic effect of heat shock and sucrose on morphogenesis. Plant Cell, Tissue Org Cult 57:105–112

    Article  CAS  Google Scholar 

  • Kumar A, Palni LMS, Nandi SK (2003) The effect of light source and gelling agent on micro propagation of Rosa damascena mill. and Rhynchostylis retusa (L.) Bl. J Hortic Sci Biotechnol 78:786–792

    Article  Google Scholar 

  • Kumar A, Aggarwal D, Gupta P, Reddy MS (2010) Factors affecting in vitro propagation and field establishment of Chlorophytum borivilianum. Biol Plant 54:601–606

    Article  CAS  Google Scholar 

  • Lane WD (1978) Regeneration of apple plants from shoot meristem-tips. Plant Sci Lett 13:282–285

    Article  Google Scholar 

  • Lane WD, Looney NE (1982) A selective tissue culture medium for growth of compact (dwarf) mutants of apple. Theor Appl Genet 61:219–223

    PubMed  CAS  Google Scholar 

  • Lane WD, McDougald JM (1982) Shoot tissue culture of apple: comparative response of five cultivars to cytokinin and auxin. Can J Plant Sci 62:689–694

    Article  CAS  Google Scholar 

  • Lee CH, Hyung NI, Kim SB (1995) Foreign gene transfer using electroporation and transient expression in apple. Acta Hortic 392:179–185

    Google Scholar 

  • Leng P, Su S, Wei F, Yi F, Duan Y (2009) Correlation between browning, total phenolic content, polyphenol oxidase and several antioxidation enzymes during pistachio tissue culture. Acta Hortic 829:127–131

    Article  CAS  Google Scholar 

  • Letham DS (1958) Cultivation of apple fruit tissues in vitro. Nature (London) 182:473–474

    Article  Google Scholar 

  • Li RY, Murthy HN, Kim SK, Paek KY (2001) CO2-enrichment and photosynthetic photon flux affect the growth of in vitro-cultured apple plantlets. J Plant Biol 44:87–91

    Article  CAS  Google Scholar 

  • Linsmayer EM, Skoog F (1965) Organic growth factor requirements of tobacco tissue cultures. Physiol Plant 18:100–127

    Article  Google Scholar 

  • Liu JR, Sink KC, Dennis FG (1983) Plant regeneration from apple seedling explants and callus cultures. Plant Cell Tissue Organ Cult 2:293–304

    Article  CAS  Google Scholar 

  • Liu JH, Nada K, Kurosawa T, Ban Y, Moriguchi T (2009) Potential regulation of apple in vitro shoot growth via modulation of cellular polyamine contents. Sci Hortic 119:423–429

    Article  CAS  Google Scholar 

  • Lucyszyn N, Quoirin M, Anjos A, Sierakowski MR (2005) Blends of agar/galactomannan for Marubakaido apple rootstock shoot proliferation. Polímeros Ciên Tecnol15 15:146–150

    Article  CAS  Google Scholar 

  • Magyar Tabori K, Dobransszki J, da Silva JAT, Bulley SM, Hudak I (2010) The role of cytokinins in shoot organogenesis in apple. Plant Cell Tissue Organ Cult 101:252–267

    Article  CAS  Google Scholar 

  • Magyar-Tabori K, Dobranszki J, Jambor-Benczur E, Lazanyi J (2001) Role of cytokinins in shoot proliferation of apple in vitro. Analele Universitţii din Oradea VII Partea I Fascicula Agricultur Şi Horticultur TOM VII:17–24

    Google Scholar 

  • Magyar-Tabori K, Dobranszki J, Jambor-Benczur E (2002) High in vitro shoot proliferation in the apple cultivar Jonagold induced by benzyladenine analogues. Acta Agron Hung 50:191–195

    Article  CAS  Google Scholar 

  • Magyar-Tabori K, Dobranszki J, Hudak I (2011) Effect of cytokinin content of the regeneration media on in vitro rooting ability of adventitious apple shoots. Sci Hortic 129:910–991

    Article  CAS  Google Scholar 

  • Maheswaran G, Welander M, Hutchinson JF, Graham MW, Richards D (1992) Transformation of apple rootstock M26 with Agrobacterium tumefaciens. J Plant Physiol 139:560–568

    Article  Google Scholar 

  • Malnoy M, Boresjza-Wysocka EE, Norelli JL, Flaishman MA, Gidoni D, Aldwinckle HS (2010) Genetic transformation of apple (Malus x domestica) without use of a selectable marker gene. Tree Genet Genomes 6:423–433

    Article  Google Scholar 

  • Marin JA, Jones OP, Hadlow WCC (1993) Micropropagation of columnar apple trees. J Hortic Sci 68:289–297

    Article  CAS  Google Scholar 

  • Martin GC, Miller AN, Castle LA, Morris JW, Morris RO, Dandekar AM (1990) Feasibility studies using b-glucuronidase as a gene fusion marker in apple, peach and raddish. J Am Soc Hortic Sci 115:686–691

    CAS  Google Scholar 

  • Mehra PN, Saroj S (1979) Callus culture and organogenesis in apple. Journal of. Phytomorphology 29:310–324

    Google Scholar 

  • Mehta M, Ram R, Bhattacharya A (2014) A simple and cost effective liquid culture system for the micropropagaton of two commercially important apple rootstocks. Indian J Exp Biol 52:748–754

    PubMed  Google Scholar 

  • Miki B, McHugh S (2004) Selectable marker genes in transgenic plants: applications, alternatives and biosafety. J Biotechnol 107:193–232

    Article  PubMed  CAS  Google Scholar 

  • M'Kada J, Dorin N, Bigot C (1991) In vitro propagation of Arctostaphylos uvaursi L. Sprengel.: comparison between two methodologies. Plant Cell Tissue Org Cult 24:217–222

    Article  CAS  Google Scholar 

  • Modgil M, Sharma DR, Bhardwaj SV (1999) Micropropagation of apple cv. Tydeman’s early Worcester. Sci Hort 81:179–188

    Article  CAS  Google Scholar 

  • Modgil M, Handa R, Sharma DR, Thakur M (2005) High efficiency shoot regeneration from leaf explants of in vitro grown shoots of apple. Acta Hortic 696:123–128

    Article  CAS  Google Scholar 

  • Modgil M, Sharma T, Thakur M (2009) Commercially feasible protocol for rooting and acclimatization of micropropagated apple rootstocks. Acta Hortic 839:209–214

    Article  CAS  Google Scholar 

  • Mouhtaridou GN, Sotiropoulos TE, Dimassi KN, Therios IN (2004) Effects of boron on growth, and chlorophyll and mineral contents of shoots of the apple rootstock MM106 cultured in vitro. Biol Plant 48:617–619

    Article  CAS  Google Scholar 

  • Muleo R, Morini S (2006) Light quality regulates shoot cluster growth and development of MM 106 apple genotype in in vitro culture. Sci Hortic 108:364–370

    Article  Google Scholar 

  • Muleo R, Morini S (2008) Physiological dissection of blue and red light regulation of apical dominance and branching in M9 apple rootstock growing in vitro. J Plant Physiol 165:1838–1846

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nabeela AB, Darkazanli K, Abdul-Kader AM (2009) Direct organogenesis and plantlet multiplication from leaf explants of in vitro-grown shoots of apple (Malus domestica Borkh.) cv. ‘Golden delicious’ and MM111 rootstock. Fruit Veg Cereal Sci Biotech 3:28–34

    Google Scholar 

  • Nhut DT, Huong NTD, Van Le B, da Silva JT, Fukai S, Tanaka M (2002) The changes in shoot regeneration potential of protocorm-like bodies derived from Lilium longiflorum young stem explants exposed to medium volume, pH, light intensity and sucrose concentration pretreatment. J Hortic Sci Biotechnol 77:79–82

    Article  Google Scholar 

  • Nitsch JP (1959) Culture in vitro de tissus de fruits. Mesocarpe de pomme. Bull Soc Bot Fr 106:420–424

    Article  Google Scholar 

  • Noiraud N, Maurousset L, Lemoine R (2001) Transport of polyols in higher plants. Plant Physiol Biochem 39:717–728

    Article  CAS  Google Scholar 

  • Noiton D, Vine JH, Mullins MG (1992) Effects of serial subculture in vitro on the endogenous levels of indole-3-acetic acid and abscisic acid and rootability in micro-cuttings of ‘Jonathan’ apple. Plant Growth Regul 11:377–383

    Article  CAS  Google Scholar 

  • Norelli JL, Aldwinckle H, Destefano-Beltran L, Jaynes J (1994) Transgenic “Malling 26” apple expressing the attacin E gene has increased resistance to Erwinia amylovora. Euphytica 77:123–128

    Article  CAS  Google Scholar 

  • Norelli JL, Jones AL, Aldwinckle HS (2003) Fire blight management in the twenty-first century. Plant Dis 87:756–765

    Article  PubMed  Google Scholar 

  • Onay A, Jeffree CE (2000) Somatic embryogenesis in pistachio (Pistacia vera L.) In: Jain SM, Gupta PK, Newton RJ (eds) Somatic embryogenesis in woody plants, vol. 6, vol 6. Kluwer Academic Publishers, Dordrecht, pp 361–390

    Chapter  Google Scholar 

  • Ongjanov V (1988) Regeneracija biljaka jabuke kulturom lista in vitro. Regeneration of apple plants by in vitro leaf culture. Jugosl Vocar 22:423–426

    Google Scholar 

  • Ou CQ, Li LG, He P, Zhang ZH (2008) In vitro adventitious shoot regeneration and induction of tetraploid from leaves of Hanfu apple. J Fruit Sci 25:293–297

    CAS  Google Scholar 

  • Pagliarani G, Paris R, Tartarini S, Sansavini S (2009) Cloning and expression of the major allergen genes in apple fruit. J Hortic Sci & Biotechnol 84:176–181

    Article  Google Scholar 

  • Pan MJ, Van Staden J (1998) The use of charcoal in in vitro culture — a review. Plant Growth Regul 26:155–163

    Article  CAS  Google Scholar 

  • Pasqualetto PL, Zimmerman RH, Fordham IJ (1988) The influence of cation and gelling agent concentrations on vitrification of apple cultivars in vitro. Plant Cell Tissue Org Cult 14:31–40

    Article  CAS  Google Scholar 

  • Pawlicki N, Welander M (1995) Influence of carbohydrate source, auxin concentration and time to exposure on adventitious rooting of the apple rootstock Jork 9. Plant Sci 106:167–176

    Article  CAS  Google Scholar 

  • Pereira-Netto AB, Petkowitz CLO, Cruz-Silva CTA, Gazzoni MT, Mello AFP, Silveira JLM (2007) Differential performance of marubakaido apple rootstock grown in culture media containing different agar brands: dynamic rheological analysis. In: In Vitro Cell Dev Biol Plant, vol 43, pp 356–363

    Google Scholar 

  • Pieniazek J, Jankiewiez LS (1966) Development of collateral buds due to Benzylaminopurine in dormant shoots. Bulletin de I' Academie Polonaise des Sciences ClV 14:185–187

    CAS  Google Scholar 

  • Polanco V, Paredas M, Becerra V, Perez E (2010) Advances in apple transformation technology to confer resistance to fungal diseases in apple crops: a Chilean perspective. Chil J Agric Res 70:297–308

    Google Scholar 

  • Pua EC, Chong C (1984) Requirement for sorbitol (D-glucitol) as carbon source for in vitro propagation of Malus robusta no. 5. Can J Bot 62:1545–1549

    Article  CAS  Google Scholar 

  • Pua EC, Chong C, Rousselle GL (1983) In vitro propagation of Ottawa 3 apple rootstock. Can. Plant Sci 63:181–l88

    Google Scholar 

  • Quoirin M, Lepoivre P (1977) Improved media for in vitro culture of Prunus sp. Acta Hortic 78:437–442

    Article  Google Scholar 

  • Rehman UR, James DJ, Caligari PDS (2009) Defining juvenility of M. hupehensis on regeneration of shoot buds and genetic transformation. Pak J Bot 41:2371–2377

    Google Scholar 

  • Rout JR, Lucas WJ (1996) Characterization and manipulation of embryogenic response from in vitro cultured mature inflorescences of rice (Oryza Sativa L.) Planta 198:127–138

    Article  CAS  Google Scholar 

  • Rustaee M, Nazeri S, Ghadimzadeh M, Ali malboob M (2007) Optimizing in vitro regeneration from Iranian native dwarf rootstock of apple (Malus domestica Borkh). Int J Agri Biol 9:775–778

    CAS  Google Scholar 

  • Saad A (1965) The culture of apple callus tissue and its use in studies on phytopathogenicity of Venturia inequalis. Ph.D thesis, Winconson University, Madison, Wisconsin

    Google Scholar 

  • Schaefer S, Medeiro SA, Ramírez JA, Galagovsky LR, Pereira-Netto AB (2002) Brassinosteroid- driven enhancement of the in vitro multiplication rate for the marubakaido apple rootstock [Malus prunifolia (Willd.) Borkh]. Plant Cell Rep 20:1093–1097

    Article  CAS  Google Scholar 

  • Sharma RR, Singh SK (2002) Etiolation reduces phenolic content and polyphenol oxidase activity at the pre-culture stage and in-vitro exudation of phenols from mango explants. Trop Agric 79:94–99

    Google Scholar 

  • Sharma M, Modgil M, Sharma DR (2000) Successful propagation in vitro of apple rootstock MM106 and influence of phloroglucinol. Indian J Exp Biol 38:1236–1240

    PubMed  CAS  Google Scholar 

  • Sharma T, Modgil M, Thakur M (2007) Factors affecting induction and development of in vitro rooting in apple rootstocks. Indian J Exp Biol 45:824–829

    PubMed  CAS  Google Scholar 

  • Sharma P, Jha AB, Dubey RS, Pessarakali M (2012) Reactive oxygen species, oxidative damage, and Antioxidative defense mechanism in plants under stressful conditions. Journal of Botany 2012, Article ID 217037, 26 https://doi.org/10.1155/2012/217037

  • Simmonds J (1983) Direct rooting of micropropagated M26 apple rootstocks. Sci Hort 21:233–241

    Article  Google Scholar 

  • Smolka A, Li XY, Heiket C, Welander M, Zhu LH (2010) Effects of transgenic rootstocks on growth and development of non-transgenic scion cultivars in apple. Transgenic Res 19:933–948

    Article  PubMed  CAS  Google Scholar 

  • Song KJ, Ahn SY, Hwang JH, Shin YU, Park SW, An G (2000) Agrobacterium-mediated transformation of McIntosh Wijcik apple. J Kor Soc. Hort Sci 41:541–544

    CAS  Google Scholar 

  • Soni M, Thakur M, Modgil M (2011) In vitro multiplication of Merton I. 793- an apple rootstock suitable for replantation. IJBT 10:362–368

    CAS  Google Scholar 

  • Sotiropoulos TE, Molassiotis AN, Mouhteridou GI, Papadakis I, Dimassi KN, Therios IN et al (2006) Sucrose and sorbitol effects on shoot growth and proliferation in vitro, nutritional status and peroxidise and catalase isoenzymes of M9 and MM106 (Malus domestica Borkh.) rootstocks. Eur J Hortic Sci 71:114–119

    CAS  Google Scholar 

  • Tabalvandani MH, Yadollahi A, Atashkar D, Kalatejari S, Eftekhari M (2014) Optimized root production during Micropropagation of new Iranian apple hybrid rootstock (AZ X M9): effects of Fe-EDDHA and thiamine. IJABBR 4:297–303

    Google Scholar 

  • Teresa O (1992) Influence of arginine on in vitro rooting of dwarf apple rootstock. Plant Cell Tissue Org Cult 31:9–14

    Article  Google Scholar 

  • Thomas TD (2008) The role of activated charcoal in plant tissue culture. Biotechnol Adv 26:618–631

    Article  PubMed  CAS  Google Scholar 

  • Tisserat B (1979) Propagation of data palm (Phoenix dactylifera L.) in vitro. J Exp Bot 30:1275–1283

    Article  CAS  Google Scholar 

  • Van Nieuwkerk JP, Zimmerman RH, Fordham I (1986) Thidiazuron stimulation of apple shoot proliferation in vitro. Hortscience 21:516–518

    Google Scholar 

  • Varsha, Kumar A (2008) Studies on in vitro propagation of apple rootstock MM111. M.Sc. Thesis, Thapar University Patiala

    Google Scholar 

  • Walkey DG (1972) Production of apple plantlets from axillary bud meristem. Can J Plant Sci 52:1085–1087

    Article  Google Scholar 

  • Wang Z, Stutte GW (1992) The role of carbohydrates in active osmotic adjustment in apple under water stress. J Amer Soc Hort Sct 117:816–823

    CAS  Google Scholar 

  • Wang Q, Tang H, Quan Y, Zhou G (1994) Phenol induced browning and establishment of shoot-tip explants of ‘Fuji’ apple and ‘Jinhua’ pear cultured in vitro. J Hortic Sci 69:833–839

    Article  CAS  Google Scholar 

  • Ward SP, Leyser O (2004) Shoot branching. Curr Opin Plant Biol 7:73–78

    Article  PubMed  CAS  Google Scholar 

  • Webster AD (1997) A review of fruit tree rootstock research and development. Acta Hort (ISHS) 451:53–74

    Article  Google Scholar 

  • Webster CA, Jones OP (1989) Micropropagation of apple rootstock M9: effect of sustained subculture on apparent rejuvenation in vitro. J Hortic Sci 64:421–428

    Article  Google Scholar 

  • Webster CA, Jones OP (1991) Micropropagation of some cold hardy dwarfing rootstocks for apple. J Hortic Sci 66:1–6

    Article  CAS  Google Scholar 

  • Welander M (1985) In vitro shoot and root formation in the apple cultivar Åkerö. Ann Bot 55:249–261

    Article  Google Scholar 

  • Welander M (1988) Plant regeneration from leaf and stem segments of shoots raised in vitro from mature apple trees. J. Plant Physiol 132:738–744

    Article  Google Scholar 

  • Welander M (1989) Regulation of in vitro shoot multiplication in Syringa, Alnus and Malus by different carbon sources. J Hortic Sci 64:361–366

    Article  CAS  Google Scholar 

  • Welander M (2006) In vitro rooting of the apple rootstock M26 in adult and juvenile growth phases and acclimatization of the plantlets. Physiol Plant 58:231–238

    Article  Google Scholar 

  • Welander M, Maheswaran G (1992) Shoot regeneration from leaf explants of dwarfing apple rootstocks. J Plant Physiol 140:223–228

    Article  CAS  Google Scholar 

  • Werner EM, Boe AA (1980) In vitro propagation of Malling 7 apple rootstock. Hortscience 15:509–510

    Google Scholar 

  • Westwood MN (1993) Temperate-zone pomology: physiology and culture, 3rd edn. Timber Press, Portland, OR

    Google Scholar 

  • Wheaton TA, Whitney JD, Castle WS, Muraro RP, Browning HW, Tucker DPH (1995) Citrus Scion and rootstock, topping height, and tree spacing affect tree size, yield, fruit quality, and economic return. J Amer Soc Hort Sci 120:861–870

    Google Scholar 

  • Xu J, Wang Y, Zhan Y, Chai T (2008) Rapid in vitro multiplication and ex vitro rooting of Malus zumi (Matsumura). Acta Physiol Plant 30:129–132

    Article  CAS  Google Scholar 

  • Yaseen M, Ahmed T, Abbasi NA, Hafiz IA (2009) In vitro shoot proliferation competence of apple rootstocks M9 and M26 on different carbon sources. Pak J Bot 41:1781–1795

    CAS  Google Scholar 

  • Yepes LM, Aldwinckle HS (1994) Micropropagation of thirteen Malus cultivars and rootstocks, and effect of antibiotics on proliferation. Plant Growth Regul 15:55–67

    Article  CAS  Google Scholar 

  • Zanandrea I, Bacarin MA, Schmitz DD, Braga EJB, Peters JA (2006) Chlorophyll fluorescence in in vitro cultivated apple. Rev Bras Agroci Pelotas 12:305–308

    Google Scholar 

  • Zhang Z, Sun A, Cong Y, Sheng B, Yao Q, Cheng ZM (2006) Agrobacterium-mediated transformation of the apple rootstock Malus micromalus makino with the rolc gene. In Vitro Cell Dev Biol-Plant 42:491–497

    Article  CAS  Google Scholar 

  • Zhu LH, Holefors A, Ahlman A, Xue ZT, Welander M (2001) Transformation of the apple rootstock M.9/29 with the rolB gene and its influence on rooting and growth. Plant Sci 160:433–439

    Article  PubMed  CAS  Google Scholar 

  • Zhu LH, Li XY, Welander M (2003) Micropropagation of the apple rootstock M26 by temporary immersion system (TIS). Acta Hortic 81:313–318

    Google Scholar 

  • Zhu LH, Li XY, Ahlman A, Xue ZT, Welander M (2004) The use of mannose as a selection agent in transformation of the apple rootstock M.26 via Agrobacterium tumefaciens. Acta Hortic 663:503–506

    Article  CAS  Google Scholar 

  • Zimmerman RH, Fordham IM (1985) Simplified method for rooting apple cultivars in vitro. J Am Soc Hortic Sci 110:34–38

    Google Scholar 

  • Zimmerman RH, Bhardwaj SV, Fordham IM (1995) Use of starch-gelled medium for tissue culture of some fruit crops. Plant Cell Tissue Org Cult 43:207–213

    Google Scholar 

  • Zuo J, Niu QW, Ikeda Y, Chua NH (2002) Marker free transformation increasing transformation frequency by the use of regeneration promoting gene. Curr Opin Biotechnol 13:173–180

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kaur, A., Singh, D., Varsha, Gupta, N., Kumar, A. (2018). In Vitro Propagation of Important Rootstocks of Apple for Rapid Cloning and Improvement. In: Gosal, S., Wani, S. (eds) Biotechnologies of Crop Improvement, Volume 1. Springer, Cham. https://doi.org/10.1007/978-3-319-78283-6_6

Download citation

Publish with us

Policies and ethics