Skip to main content

Removal of Arsenic from Water Using Graphene Oxide Nano-hybrids

  • Chapter
  • First Online:
A New Generation Material Graphene: Applications in Water Technology

Abstract

In 21st century, providing the fresh and affordable water through protects and purifying the water source from pollutants is biggest and most concern environmental challenges. Toxic element particularly arsenic in water is serious matter of threat for human from many developing countries, and long exposure of arsenic is generally associated with skin lesions and hyperkeratosis like adverse effects. Graphene oxide (GO) and its composites have attracted widespread attentions as novel adsorbents for the adsorption of various water pollutants due to their unique physicochemical characteristics. This chapter presents advances made in the synthesis of graphene oxides and their composites, and summarizes the application of these materials as a superior adsorbent for the removal of arsenic from water. The adsorption affinity in terms of contact time, pH, and temperature has been discussed. Competitive ion effect and regeneration are included within the text. Moreover, the challenges for the commercial uses are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdul KS, Jayasinghe SS, Chandana EP, Jayasumana C, De-Silva PM (2015) Arsenic and human health effects: a review. Environ Toxicol Pharmacol 40:828–846

    Article  CAS  Google Scholar 

  • AL-Othman ZA, Ali R, Naushad M, (2012) Hexavalent chromium removal from aqueous medium by activated carbon prepared from peanut shell: Adsorption kinetics, equilibrium and thermodynamic studies. Chem Eng J 184:238–247

    Article  CAS  Google Scholar 

  • Alqadami AA, Naushad M, Abdalla MA et al (2016) Synthesis and characterization of Fe3O4 @TSC nanocomposite: highly efficient removal of toxic metal ions from aqueous medium. RSC Adv 6:22679–22689

    Article  CAS  Google Scholar 

  • Anastopoulos I, Karamesouti M, Mitropoulos AC, Kyzas GZ (2017) A review for coffee adsorbents. J Mol Liq 229:555–565

    Article  CAS  Google Scholar 

  • Arriagada DC, Labbe AT (2016) Aluminum and iron doped graphene for adsorption of methylated arsenic pollutants. Appl Surf Sci 386:84–95

    Article  CAS  Google Scholar 

  • Bai L, Ma XJ, Liu JF, Sun XM, Zhao DY, Evans DG (2010) Rapid separation and purification of nanoparticles in organic density gradients. J Am Chem Soc 132:2333–2337

    Article  CAS  Google Scholar 

  • Bian Y, Bian ZY, Zhang JX, Ding AZ, Liu SL, Wang H (2015) Effect of the oxygen-containing functional group of graphene oxide on the aqueous cadmium ions removal. Appl Surf Sci 329:269–275

    Article  CAS  Google Scholar 

  • Biswas BK, Inoue JI, Inoue K, Ghimire KN, Harada H, Ohto K, Kawakita H (2008) Adsorptive removal of As(V) and As(III) from water by a Zr(IV)-loaded orange waste gel. J Hazard Mater 154:1066–1074

    Article  CAS  Google Scholar 

  • Bowell RJ, Alpers CN, Jamieson HE, Nordstrom DK, Majzlan J (2014) The environmental geochemistry of arsenic—an overview. Rev Mineral Geochem 79:1–16

    Article  Google Scholar 

  • Brodie BC (1859) On atomic weight of graphite. Philos Trans R Soc Lond 149:249–259

    Article  Google Scholar 

  • Carolin F, Kumar PS, Saravanan A, Joshiba GJ, Naushad M (2017) Efficient techniques for the removal of toxic heavy metals from aquatic environment: a review. J Environ Chem Eng 5:2782–2799

    Article  CAS  Google Scholar 

  • Chaudhry SA, Khan TA, Ali I (2017a) Equilibrium, kinetic and thermodynamic studies of Cr(VI) adsorption from aqueous solution onto manganese oxide coated sand grain (MOCSG). J Mol Liq 236:320–330

    Article  CAS  Google Scholar 

  • Chaudhry SA, Khan TA, Ali I (2017b) Zirconium oxide-coated sand based batch and column adsorptive removal of arsenic from water: Isotherm, kinetic and thermodynamic studies. Egypt J Petrol 26:553–563

    Article  Google Scholar 

  • Chaudhry SA, Ahmed M, Siddiqui SI, Ahmed S (2016a) Fe(III)-Sn(IV) mixed binary oxide-coated sand preparation and its use for the removal of As(III) and As(V) from water: application of isotherm, kinetic and thermodynamics. J Mol Liq 224:431–441

    Article  CAS  Google Scholar 

  • Chaudhry SA, Khan TA, Ali I (2016b) Adsorptive removal of Pb(II) and Zn(II) from water onto manganese oxide-coated sand: Isotherm, thermodynamic and kinetic studies. Egypt J Basic App Sci 3:287–300

    Article  Google Scholar 

  • Chaudhry SA, Zaidi Z, Siddiqui SI (2017c) Isotherm, kinetic and thermodynamics of arsenic adsorption onto Iron-Zirconium Binary Oxide-Coated Sand (IZBOCS): modelling and process optimization. J Mol Liq 229:230–240

    Article  CAS  Google Scholar 

  • Chaudhry SA, Siddiqui SI (2017) Arsenic removal from water using nano-composites: a review. Cur Environ Eng. https://doi.org/10.2174/2212717804666161214143715

  • Chen J, Yao B, Li C, Shi G (2013) An improved Hummers method for eco-friendly synthesis of graphene oxide. Carbon 64:225–229

    Article  CAS  Google Scholar 

  • Chen ML, Sun Y, Huo CB, Liu C, Wang JH (2015) Akaganeite decorated graphene oxide composite for arsenic adsorption/removal and its pre-concentration at ultra-trace level. Chemosphere 130:52–58

    Article  CAS  Google Scholar 

  • Devi P, Saroha AK (2017) Utilization of sludge based adsorbents for the removal of various pollutants: a review. Sci Total Environ 578:16–33

    Article  CAS  Google Scholar 

  • Dikilitas M, Karakas S, Ahmad P (2016) Chapter 3: effect of lead on plant and human DNA damages and its impact on the environment. Plant Metal Interact 41–67

    Google Scholar 

  • Dubey SP, Nguyen TTM, Kwon YN, Lee C (2015) Synthesis and characterization of metal-doped reduced graphene oxide composites, and their application in removal of Escherichia coli, arsenic and 4-nitrophenol. J Indus Eng Chem 29:282–288

    Article  CAS  Google Scholar 

  • Fendorf SE, Grossl MJP, Sparks DL (1997) Arsenate and chromate retention mechanisms on goethite surface structure. Environ Technol 31:315–320

    Article  CAS  Google Scholar 

  • Flora SJS (2011) Arsenic-induced oxidative stress and its reversibility. Free Rad Bio Med 51:257–281

    Article  CAS  Google Scholar 

  • Fristachi A, Chaudhry H (2017) Cadmium. In: International encyclopedia of public health (vol 5, 2nd edn), pp 316–319

    Chapter  Google Scholar 

  • Fu D, He Z, Su S, Xu B, Liu Y, Zhao Y (2017) Fabrication of α-FeOOH decorated graphene oxide-carbon nanotubes aerogel and its application in adsorption of arsenic species. J Colloid Interface Sci 505:105–114

    Article  CAS  Google Scholar 

  • Gao TY, Zhou ZY (2000) The simple denitrification and phosphate removal transformation for municipal waste water treatment plant. J Tongji Uni (Sci) 28:324–327

    Google Scholar 

  • Gao W, Majumder M, Alemany LB, Narayanan TN, Ibarra MA, Pradhan BK, Ajayan PM (2011) Engineered graphite oxide materials for application in water purification. ACS Appl Mater Interfaces 3:1821–1826

    Article  CAS  Google Scholar 

  • Guo L, Ye P, Wang J, Fu F, Wu Z (2015) Three-dimensional Fe3O4-graphene macroscopic composites for arsenic and arsenate removal. J Hazard Mater 298:28–35

    Article  CAS  Google Scholar 

  • Gupta A, Chauhan VS, Sankararamakrishnan N (2009) Preparation and evaluation of iron-chitosan composites for removal of As(III) and As(V) from arsenic contaminated real life groundwater. Water Res 43:3862–3870

    Article  CAS  Google Scholar 

  • Ha E, Basu N, O’Reilly SB, Dórea JG, Chan HM (2017) Current progress on understanding the impact of mercury on human health. Environ Res 152:419–433

    Article  CAS  Google Scholar 

  • Han C, Li H, Pu H, Yu H, Deng L, Huang S, Luo Y (2013) Synthesis and characterization of mesoporous alumina and their performances for removing arsenic (V). Chem Eng J 217:1–9

    Article  CAS  Google Scholar 

  • Huang NM, Lim HN, Chia CH, Yarmo MA, Muhamad MR (2011) Simple room-temperature preparation of high-yield large-area graphene oxide. Int J Nanomed 6:3443–3448

    Article  CAS  Google Scholar 

  • Hummers WS Jr, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339

    Article  CAS  Google Scholar 

  • Jin Z, Zimo L, Yu L, Ruiqi F, Shams AB, Xinhua X (2015) Adsorption behavior and removal mechanism of arsenic on graphene modified by iron-manganese binary oxide (FeMnOx/RGO) from aqueous solutions. RSC Adv 5:67951–67961

    Article  CAS  Google Scholar 

  • Johnston SG, Burton ED, Moon EM (2016) Arsenic mobilization is enhanced by thermal transformation of schwertmannite. Environ Sci Technol 50:8010–8019

    Article  CAS  Google Scholar 

  • Kao AC, Chu YJ, Hsu FL, Liao VHC (2013) Removal of arsenic from groundwater by using a native isolated arsenite-oxidizing bacterium. J Contam Hydrol 155:1–8

    Article  CAS  Google Scholar 

  • Khan TA, Chaudhry SA, Ali I (2013) Thermodynamic and kinetic studies of As(V) removal from water by zirconium oxide coated marine sand. Environ Sci Pollut Res 20:5425–5440

    Article  CAS  Google Scholar 

  • Khan TA, Chaudhry SA, Ali I (2015) Equilibrium uptake, isotherm and kinetic studies of Cd(II) adsorption onto iron oxide activated red mud from aqueous solution. J Mol Liq 202:165–175

    Article  CAS  Google Scholar 

  • Khatamian M, Khodakarampoor N, Oskoui MS (2017) Efficient removal of arsenic using graphene-zeolite based composites. J Colloid Interface Sci 498:433–441

    Article  CAS  Google Scholar 

  • Kulshrestha A, Jarouliya U, Prasad GBKS, Flora SJS, Bisen PS (2014) Arsenic-induced abnormalities in glucose metabolism: biochemical basis and potential therapeutic and nutritional interventions. World J Trans Med 3:96–111

    Article  Google Scholar 

  • Kumar S, Nair RR, Pillai PB, Gupta SN, Iyengar MAR, Sood AK (2014) Graphene oxide–MnFe2O4 magnetic nano-hybrids for efficient removal of lead and arsenic from water. ACS Appl Mater Interfaces 6:17426–17436

    Article  CAS  Google Scholar 

  • Kumar SK, Jiang SJ (2016) Chitosan-functionalized graphene oxide: a novel adsorbent an efficient adsorption of arsenic from aqueous solution. J Environ Chem Eng 4:1698–1713

    Article  CAS  Google Scholar 

  • Kumar SK, Jiang SJ (2017) Synthesis of magnetically separable and recyclable magnetic nanoparticles decorated with β-cyclodextrin functionalized graphene oxide an excellent adsorption of As(V)/(III). J Mol Liq 237:387–401

    Article  CAS  Google Scholar 

  • Li P, Du B, Chan HM, Feng X (2015) Human inorganic mercury exposure, renal effects and possible pathways in Wanshan mercury mining area China. Environ Res 140:198–204

    Article  CAS  Google Scholar 

  • Lin YJ, Cao WZ, Ouyang T, Chen BY, Chang CT (2017) Developing sustainable graphene-doped titanium nano tube coated to super paramagnetic nanoparticles for arsenic recovery. J Taiwan Inst Chem Eng 70:311–318

    Article  CAS  Google Scholar 

  • Machida M, Mochimaru T, Tatsumoto H (2006) Lead(II) adsorption onto the graphene layer of carbonaceous materials in aqueous solution. Carbon 44:2681–2688

    Article  CAS  Google Scholar 

  • Maliyekkal SM, Philip L, Pradeep T (2009) As(III) removal from drinking water using manganese oxide-coated-alumina: performance evaluation and mechanistic details of surface binding. Chem Eng J 153:101–107

    Article  CAS  Google Scholar 

  • Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM (2010) Improved synthesis of graphene oxide. ACS Nano 4:4806–4814

    Article  CAS  Google Scholar 

  • Matschullat J (2000) Arsenic in the geosphere—a review. Sci Total Environ 249:297–312

    Article  CAS  Google Scholar 

  • McAllister MJ, Li JL, Adamson DH, Schniepp HC, Abdala AA, Liu J, Alonso MH, Milius DL, Car R, Prud’homme V (2007) Chem Mater 19:4396

    Google Scholar 

  • Mishra AK, Ramaprabhu S (2011) Functionalized graphene sheets for arsenic removal and desalination of sea water. Desalination 282:39–45

    Article  CAS  Google Scholar 

  • Mohan D, Pittman CU Jr (2007) Arsenic removal from water/wastewater using adsorbents-a critical review. J Hazard Mater 142:1–53

    Article  CAS  Google Scholar 

  • Mondal P, Balomajumder C, Mohanty B (2007) A laboratory study for the treatment of arsenic, iron, and manganese bearing ground water using Fe3+ impregnated activated carbon: effects of shaking time, pH and temperature. J Hazard Mater 144:420–426

    Article  CAS  Google Scholar 

  • Naushad M (2014) Surfactant assisted nano-composite cation exchanger: Development, characterization and applications for the removal of toxic Pb2+ from aqueous medium. Chem Eng J 235:100–108

    Article  CAS  Google Scholar 

  • Ng JC, Wang J, Shraim A (2003) Global health problems caused by arsenic from natural sources. Chemosphere 52:1353–1359

    Article  CAS  Google Scholar 

  • Park WK, Yoon Y, Kim S, Yoo S, Do Y, Kang JW, Yoon DH, Yang WS (2016) Feasible water flow filter with facilely functionalized Fe3O4-non-oxidative graphene/CNT composites for arsenic removal. J Environ Chem Eng 4:3246–3252

    Article  CAS  Google Scholar 

  • Peng W, Li H, Liu Y, Song S (2017) A review on heavy metal ions adsorption from water by graphene oxide and its composites. J Mol Liq 230:496–504

    Article  CAS  Google Scholar 

  • Platero E, Fernandez ME, Bonelli PR, Cukierman AL (2017) Graphene oxide/alginate beads as adsorbents: influence of the load and the drying method on their physicochemical-mechanical properties and adsorptive performance. J Colloid Interface Sci 491:1–12

    Article  CAS  Google Scholar 

  • Rasheed H, Kay P, Slack R, Gong YY, Carter A (2017) Human exposure assessment of different arsenic species in household water sources in a high risk arsenic area. Sci Total Environ 584–585:631–641

    Article  CAS  Google Scholar 

  • Ray SK, Majumdera C, Saha P (2017) Functionalized reduced graphene oxide (RGO) for removal of fulvic acid contaminant. RSC Adv 7:21768–21779

    Article  CAS  Google Scholar 

  • Robinson T (2017) Removal of toxic metals during biological treatment of landfill leachates. Waste Manage 63:299–309

    Article  CAS  Google Scholar 

  • Rodríguez J, Mandalunis PM (2016) Effect of cadmium on bone tissue in growing animals. Exp Toxicol Pathol 68:391–397

    Article  CAS  Google Scholar 

  • Roy E, Patra S, Madhuri R, Sharma PK (2016) Europium doped magnetic graphene oxide-MWCNT nanohybrid for estimation and removal of arsenate and arsenite from real water samples. Chem Eng J 299:244–254

    Article  CAS  Google Scholar 

  • Sang JQ, Zhang XH, Wang ZS (2003) Improvement of organics removal by bio-ceramic filtration of raw water with addition of phosphorus. Water Res 37:4711–4718

    Article  CAS  Google Scholar 

  • Sansone V, Pagani D, Melato M (2013) Chronic arsenicals dermatoses from tube-well water in West Bengal during 1983–87. Clin Cases Miner Bone Metab 10:34–40

    Google Scholar 

  • Schniepp HC, Li JL, McAllister MJ, Sai H, Alonso MH, Adamson DH, Prud’homme RK, Car R, Saville DA, Aksay IA (2006) Functionalized graphene sheets derived from splitting graphite oxide. J Phys Chem B 110:8535–8539

    Article  CAS  Google Scholar 

  • Sharma G, Naushad M, Al-Muhtaseb AH, Kumar A, Khan MR, Kalia SS, Bala M, Sharma A (2017) Fabrication and characterization of chitosan-crosslinked-poly(alginic acid) nanohydrogel for adsorptive removal of Cr(VI) metal ion from aqueous medium. Int J Biol Macromol 95:484–493

    Article  CAS  Google Scholar 

  • Sherman DM, Randall SR (2003) Surface complexation of arsenic (V) to iron(III) (hydr)oxides: structural mechanism from ab initio molecular geometries and EXAFS spectroscopy. Geochim Cosmochim Acta 67:575–580

    Article  CAS  Google Scholar 

  • Sheshmani S, Nematzadeh MA, Shokrollahzadeh S, Ashori A (2015) Preparation of grapheme oxide/chitosan/FeOOH nanocomposite for the removal of Pb (II) from aqueous solution. Int J Biol Macromol 80:475–480

    Article  CAS  Google Scholar 

  • Siddiqui SI, Chaudhry SA, Islam SU (2017) Green adsorbents from plant sources for the removal of arsenic: an emerging wastewater treatment technology. In plant-based natural products: derivatives and applications, Ed. Islam SU, John Wiley & Sons, Inc, pp. 193–215

    Chapter  Google Scholar 

  • Siddiqui SI, Chaudhry SA (2017a) Arsenic removal from water using nano-composites: a review. Cur Environ Eng 4:81–102

    Google Scholar 

  • Siddiqui SI, Chaudhry SA (2017b) Arsenic: toxic effects and remediation. In advanced materials for wastewater treatment, Ed. Islam SU, John Wiley & Sons, Inc, pp. 1–27

    Google Scholar 

  • Siddiqui SI, Chaudhry SA (2017c) Iron oxide and its modified forms as an adsorbent for arsenic removal: a comprehensive recent advancement. Process Saf Environ Prot 111:592–626

    Article  CAS  Google Scholar 

  • Siddiqui SI, Chaudhry SA (2017d) Removal of arsenic from water through adsorption onto metal oxide-coated material. Mater Res Found 15:227–276

    Google Scholar 

  • Siddiqui SI, Ravi R, Rathi G, Tara N, Islam SU, Chaudhry SA (2018) Decolorization of textile wastewater using composite materials. In nano materials in the wet processing of textiles, Ed. Islam SU, Butola BS, John Wiley & Sons, Inc, pp. 187–218

    Chapter  Google Scholar 

  • Staudenmaier L (1898) Verfahren zur darstellung der graphitsaure. Ber Dtsch Chem Ges 31:1481–1487

    Article  CAS  Google Scholar 

  • Su H, Ye Z, Hmidi N (2017) High-performance iron oxide–graphene oxide nanocomposite adsorbents for arsenic removal efficient removal of arsenic using graphene-zeolite based composites. Colloids Surf A: Physicochem Eng Asp 522:161–172

    Article  CAS  Google Scholar 

  • Wang H, Yuan X, Wu Y, Huang H, Zeng G, Liu Y, Wang X, Lin N, Qi Y (2013) Adsorption characteristics and behaviors of graphene oxide for Zn (II) removal from aqueous solution. Appl Surf Sci 279:432–440

    Google Scholar 

  • Watanabe CH, Monteiro ASC, Gontijo ESJ, Lira VS, Bueno CDC, Kumar NT, Fracácio R Rosa AH (2017) Toxicity assessment of arsenic and cobalt in the presence of aquatic humic substances of different molecular sizes. Ecotoxicol Environ Saf 139:1–8

    Article  CAS  Google Scholar 

  • Xubiao L, Cheng W, Shenglian L, Ruizhi D, Xinman T, Guisheng Z (2012) Adsorption of As(III) and As(V) from water using magnetite Fe3O4-reduced graphite oxide-MnO2 nano composites. Chem Eng J 187:45–52

    Article  CAS  Google Scholar 

  • Yang G, Cao J, Li L, Rana RK, Zhu JJ (2013) Carboxymethyl chitosan-functionalized graphene for label free electrochemical cytosensing. Carbon 51:124–133

    Article  CAS  Google Scholar 

  • Yoon Y, Park WK, Hwang TM, Yoon DH, Yang WS, Kang JW (2016) Comparative evaluation of magnetite–graphene oxide and magnetite-reduced graphene oxide composite for As(III) and As(V) removal. J Hazard Mater 304:196–204

    Article  CAS  Google Scholar 

  • Yoon Y, Zheng M, Ahn YT, Park WK, Yang WS, Kang JW (2017) Synthesis of magnetite/non-oxidative graphene composites and their application for arsenic removal. Sep Pure Technol 178:40–48

    Article  CAS  Google Scholar 

  • Yu L, Ma Y, Ong CN, Xie J, Liu Y (2015) Rapid adsorption removal of arsenate by hydrous cerium oxide–graphene composite. RSC Adv 5:64983–64990

    Article  CAS  Google Scholar 

  • Zhang G, Qu J, Liu H, Liu R, Wu R (2007) Preparation and evaluation of a novel Fe-Mn binary oxide adsorbent for effective arsenite removal. Water Res 41:1921–1928

    Article  CAS  Google Scholar 

  • Zhou Q, Zhong YH, Chen X, Liu JH, Huang XJ, Wu YC (2014) Adsorption and photo catalysis removal of fulvic acid by TiO2-graphene composites. J Mater Sci 49:1066–1075

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support from the University Grant Commission, UGC, India and Department of Chemistry, Jamia Millia Islamia, New Delhi, India, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saif Ali Chaudhry .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Siddiqui, S.I., Ravi, R., Chaudhry, S.A. (2019). Removal of Arsenic from Water Using Graphene Oxide Nano-hybrids. In: Naushad, M. (eds) A New Generation Material Graphene: Applications in Water Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-75484-0_9

Download citation

Publish with us

Policies and ethics