Skip to main content
Log in

Adsorption and photocatalysis removal of fulvic acid by TiO2–graphene composites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The adsorption and photocatalysis of natural organic matter, fulvic acid (FA), by TiO2–graphene (T–G) composites under UV254 was investigated in this study. A one-step solvothermal reaction of graphene oxide (GO) and titanium(IV) butoxide (Ti(OBu)4) in an ethanol solvent was used to prepare T–G composites. During the solvothermal process, both of the reduction of GO and depositing of T nanoparticles were achieved. Field-emission scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy were applied to investigate the morphologies and structures of the as-prepared samples. Results from this study indicated that the as-prepared T–G composites exhibited great adsorptivity and photocatalytic activity of FA. Two removal mechanisms have been identified as significant for FA aqueous interacting with T–G composites: surface adsorption and photocatalytic degradation. It is revealed that the photocatalytic degradation of FA is correlated to surface adsorption, an effective surface adsorption resulting in a quick degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Wang S-G, Sun X-F, Liu X-W, Gong W-X, Gao B-Y, Bao N (2008) Chem Eng J 142:239

    Article  CAS  Google Scholar 

  2. Uyguner-Demirel CS, Bekbolet M (2011) Chemosphere 84:1009

    Article  PubMed  CAS  Google Scholar 

  3. Baghoth SA, Sharma SK, Amy GL (2011) Water Res 45:797

    Article  PubMed  CAS  Google Scholar 

  4. Elkins KM, Nelson DJ (2001) J Inorg Biochem 87:81

    Article  PubMed  CAS  Google Scholar 

  5. Krasner SW, Weinberg HS, Richardson SD, Pastor SJ, Chinn R, Sclimenti MJ, Onstad GD, Thruston AD Jr (2006) Environ Sci Technol 40:7175

    Article  PubMed  CAS  ADS  Google Scholar 

  6. Singer PC (2006) J Am Water Works Assoc 98:73

    CAS  Google Scholar 

  7. Matilainen A, Vepsalainen M, Sillanpaa M (2010) Adv Colloid Interface Sci 159:189

    Article  PubMed  CAS  Google Scholar 

  8. Uyak V, Toroz I (2007) J Hazard Mater 141:320

    Article  PubMed  CAS  Google Scholar 

  9. Bolto B, Dixon D, Eldridge R (2004) React Funct Polym 60:171

    Article  CAS  Google Scholar 

  10. Schafer AI, Fane AG, Waite TD (2001) Water Res 35:1509

    Article  PubMed  CAS  Google Scholar 

  11. Karanfil T, Kitis M, Kilduff JE, Wigton A (1999) Environ Sci Technol 33:3225

    Article  CAS  ADS  Google Scholar 

  12. Matilainen A, Vieno M, Tuhkanen T (2006) Environ Int 32:324

    Article  PubMed  CAS  Google Scholar 

  13. Matilainen A, Sillanpaa M (2010) Chemosphere 80:351

    Article  PubMed  CAS  Google Scholar 

  14. Liu S, Lim M, Fabris R, Chow C, Drikas M, Amal R (2008) Environ Sci Technol 42:6218

    Article  PubMed  CAS  ADS  Google Scholar 

  15. Schmitt-Kopplin P, Hertkorn N, Schulten HR, Kettrup A (1998) Environ Sci Technol 32:2531

    Article  CAS  ADS  Google Scholar 

  16. Xue G, Liu HH, Chen QY, Hills C, Tyrer M, Innocent F (2011) J Hazard Mater 186:765

    Article  PubMed  CAS  Google Scholar 

  17. Portjanskaja E, Stepanova K, Klauson D, Preis S (2009) Catal Today 144:26

    Article  CAS  Google Scholar 

  18. Selcuk H, Bekbolet M (2008) Chemosphere 73:854

    Article  PubMed  CAS  Google Scholar 

  19. Murray CA, Goslan EH, Parsons SA (2007) J Environ Eng Sci 6:311

    Article  CAS  Google Scholar 

  20. Fujishima A, Honda K (1972) Nature 238:37

    Article  PubMed  CAS  ADS  Google Scholar 

  21. Chen X, Mao SS (2007) Chem Rev 7:2891

    Article  Google Scholar 

  22. Dong F, Wang HQ, Wu ZB (2009) J Phys Chem C 113:16717

    Article  CAS  Google Scholar 

  23. Peter LM, Wijayantha KGU, Riley DJ, Waggett JP (2003) J Phys Chem B 107:8378

    Article  CAS  Google Scholar 

  24. Xing M-Y, Li W-K, Wu Y-M, Zhang J-L, Gong X-Q (2011) J Phys Chem C 115:7858

    Article  CAS  Google Scholar 

  25. Xing MY, Wu YM, Zhang JL, Chen F (2010) Nanoscale 2:1233

    Article  PubMed  CAS  ADS  Google Scholar 

  26. Gopal NO, Lo HH, Ke SC (2008) J Am Chem Soc 130:2760

    Article  PubMed  CAS  Google Scholar 

  27. Klymenko NA, Kozyatnyk IP, Savchyna LA (2010) Water Res 44:5316

    Article  PubMed  CAS  Google Scholar 

  28. Cooke DJ, Eder D, Elliott JA (2010) J Phys Chem C 114:2462

    Article  CAS  Google Scholar 

  29. Wang H, Wang H-L, Jiang W-F, Li Z-Q (2009) Water Res 43:204

    Article  PubMed  CAS  Google Scholar 

  30. Williams G, Seger B, Kamat PV (2008) ACS Nano 2:1487

    Article  PubMed  CAS  Google Scholar 

  31. Du J (2010) ACS Nano 5:590

    Article  PubMed  Google Scholar 

  32. Li N, Liu G, Zhen C, Li F, Zhang L, Cheng H-M (2011) Adv Funct Mater 21:1717

    Article  CAS  Google Scholar 

  33. Rao CNR, Sood AK, Subrahmanyam KS, Govindaraj A (2009) Angew Chem Int Ed 48:7752

    Article  CAS  Google Scholar 

  34. Bolotin KI, Sikes KJ, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer HL (2008) Solid State Commun 146:351

    Article  CAS  ADS  Google Scholar 

  35. Geim AK, Novoselov KS (2007) Nat Mater 6:183

    Article  PubMed  CAS  ADS  Google Scholar 

  36. Xiang Q, Yu J, Jaroniec M (2012) Chem Soc Rev 41:782

    Article  PubMed  CAS  Google Scholar 

  37. An X, Yu JC (2011) RSC Adv 1:1426

    Article  CAS  Google Scholar 

  38. Zhang H, Lv X, Li Y, Wang Y (2010) ACS Nano 4:380

    Article  PubMed  CAS  Google Scholar 

  39. Peining Z, Nair AS, Shengjie P, Shengyuan Y, Ramakrishna S (2012) ACS Appl Mater Interfaces 4:581

    Article  PubMed  CAS  Google Scholar 

  40. He Z, Guai G, Liu J, Guo C, Loo JS, Li CM, Tan TT (2011) Nanoscale 3:4613

    Article  PubMed  CAS  ADS  Google Scholar 

  41. Xiangbo M, Dongsheng G, Jian L, Ruying L, Xueliang S (2011) Nanotechnology 22:165602

    Article  Google Scholar 

  42. Zhang X (2010) J Mater Chem 10:2801

    Article  Google Scholar 

  43. Liang Y, Wang H, Casalongue HS, Chen Z, Dai H (2010) Nano Res 3:701

    Article  CAS  Google Scholar 

  44. Zhao D, Sheng G, Chen C, Wang X (2012) Appl Catal B 111:303

    Article  Google Scholar 

  45. Haijiao Z, Panpan X, Guidong D, Zhiwen C, Kokyo O, Dengyu P, Zheng J (2011) Nano Res 4:274

    Article  Google Scholar 

  46. Liang YT, Vijayan BK, Gray KA, Hersam MC (2011) Nano Lett 11:2865

    Article  PubMed  CAS  Google Scholar 

  47. Jiang B, Tian C, Zhou W, Wang J, Xie Y, Pan Q, Ren Z, Dong Y, Fu D, Han J, Fu H (2011) Chem Eur J 17:8379

    Article  PubMed  CAS  Google Scholar 

  48. Wojtoniszak M, Zielinska B, Chen X, Kalenczuk RJ, Borowiak-Palen E (2012) J Mater Sci 47:3185. doi:10.1007/s10853-011-6153-9

    Article  CAS  ADS  Google Scholar 

  49. Rourke JP, Pandey PA, Moore JJ, Bates M, Kinloch IA, Young RJ, Wilson NR (2011) Angew Chem Int Ed Engl 50:3173

    Article  PubMed  CAS  Google Scholar 

  50. Thomas HR, Vallés C, Young RJ, Kinloch IA, Wilson NR, Rourke JP (2013) J Mater Chem C 1:338

    Article  CAS  Google Scholar 

  51. Tang Y-B, Lee C-S, Xu J, Liu Z-T, Chen Z-H, He Z, Cao Y-L, Yuan G, Song H, Chen L, Luo L, Cheng H-M, Zhang W-J, Bello I, Lee S-T (2010) ACS Nano 4:3482

    Article  PubMed  CAS  Google Scholar 

  52. Wang P, Zhai Y, Wang D (2011) Nanoscale 3:1640

    Article  PubMed  CAS  ADS  Google Scholar 

  53. Sun L, Zhao Z, Zhou Y, Liu L (2012) Nanoscale 4:613

    Article  PubMed  CAS  ADS  Google Scholar 

  54. Abate G, dos Santos LBO, Colombo SM, Masini JC (2006) Appl Clay Sci 32:261

    Article  CAS  Google Scholar 

  55. Li J, Zhang SW, Chen CL, Zhao GX, Yang X, Li JX, Wang XK (2012) ACS Appl Mater Interfaces 4:4991

    Article  PubMed  CAS  Google Scholar 

  56. Vreysen S, Maes A (2006) Appl Clay Sci 32:283

    Article  CAS  Google Scholar 

  57. Li A, Zhao X, Liu H, Qu J (2011) Water Res 45:6131

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Sciences Foundation of China (51202052, 91023030), the International Scientific and Technological Cooperation Project of Anhui Province (10080703017) and Joint Research Projects in Yangtze River Delta (11495810100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Cheng Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, Q., Zhong, YH., Chen, X. et al. Adsorption and photocatalysis removal of fulvic acid by TiO2–graphene composites. J Mater Sci 49, 1066–1075 (2014). https://doi.org/10.1007/s10853-013-7784-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7784-9

Keywords

Navigation