Skip to main content

Role of Graphene Oxide Based Nanocomposites in Arsenic Purification from Ground Water

  • Chapter
  • First Online:
Advances in Nanocomposite Materials for Environmental and Energy Harvesting Applications

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

In twenty-first century the major and most concerned environmental challenge faced by the developing countries is providing pure and cost-effective water through shields and decontaminating it from pollutants. The major contaminant in water is arsenic which is seriously a threat to human health and long exposure to arsenic is responsible for causing skin lesions and hyperkeratosis. Graphene oxide and graphene are new carbonaceous nanomaterials. Graphene oxide (GO) nanomaterials have accomplished extensive advancement in effective pollution treatment due to the inherent advantages of large specific surface area, abundant functional groups and their distinctive physicochemical characteristics. Coupling of GO-based nanomaterials with other nanomaterials have been done for removal of pollutants from water. This chapter shows developments in the synthesis of graphene oxides and their composites, and focuses on its applications in the removal of arsenic from arsenic contaminated ground water. Additionally, parameters affecting the efficiency of adsorption have been discussed. Furthermore, the trials for the commercial uses are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

GO:

Graphene oxide

RGO:

Reduced Graphene oxide

As:

Arsenic

M-GO:

Fe3O4-graphene oxide composite

M-rGo:

Fe3O4-reduced graphene oxide composite

M-nOG:

Magnetite/non-oxidative graphene

GO-COOH:

Arboxylic graphene oxide nano-composite

CDs:

β-Cyclodextrins

β-CDs@GO:

β-Cyclodextrins (CDs) functionalized GO

pDADMAC:

Poly (diallyl dimethylammonium chloride

GN-MNP-TNT:

Graphene-doped titanium nano tube

PDOS:

Partial density of states

TDOS:

Total density of states

ZPC:

Zero-point charge

References

  1. Rezakazemi, M., Dashti, A., Harami, H.R., Hajilari, N., Inamuddin: Fouling-resistant membranes for water reuse. Environ. Chem. Lett. 16(3), 715–763 (2018)

    Google Scholar 

  2. Rezakazemi, M., Ghafarinazari, A., Shirazian, S., Khoshsima, A.: Numerical modeling and optimization of wastewater treatment using porous polymeric membranes. PolymEng. Sci. 53, 1272–1278 (2013)

    CAS  Google Scholar 

  3. Rezakazemi, M., Khajeh, A., Mesbah, M.: Membrane filtration of wastewater from gas and oil production. Environ. Chem. Lett. 16, 367–388 (2018)

    Article  CAS  Google Scholar 

  4. Rezakazemi, M., Shirazian, S., Ashrafizadeh, S.N.: Simulation of ammonia removal from industrial wastewater streams by means of a hollow-fiber membrane contactor. Desalination 285, 383–392 (2012)

    Article  CAS  Google Scholar 

  5. Shirazian, S., Rezakazemi, M., Marjani, A., Moradi, S.: Hydrodynamics and mass transfer simulation of wastewater treatment in membrane reactors. Desalination 286, 290–295 (2012)

    Article  CAS  Google Scholar 

  6. Azimi, A., Azari, A., Rezakazemi, M., Ansarpour, M.: Removal of heavy metals from industrial wastewaters: a review. ChemBioEng. Rev. 4, 37–59 (2017)

    Article  Google Scholar 

  7. Tangahu, B.V., Abdullah, S.R.S., Basri, H., Idris, M., Anuar, N., Mukhlisin, M.: A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int. J. Chem. Eng. 20(11), 1–31 (2011)

    Article  Google Scholar 

  8. Abbas, A., et al.: Heavy metal removal from aqueous solution by advanced carbon nanotubes: critical review of adsorption applications. Sep. PurifTechnol. 157, 141–161 (2016)

    Google Scholar 

  9. Vijai Anand, K., Reshma, M., Kannan, M., et al.: Preparation and characterization of calcium oxide nanoparticles from marine molluscan shell waste as nutrient source for plant growth. J. Nanostruct. Chem. 11, 409–422 (2021). https://doi.org/10.1007/s40097-020-00376-4

    Article  CAS  Google Scholar 

  10. Taheri-Ledari, R., Rahimi, J., Maleki, A., Shalan, A.E.: Ultrasound-assisted diversion of nitrobenzene derivatives to their aniline equivalents through a heterogeneous magnetic Ag/Fe3O4-IT nanocomposite catalyst. New J. Chem. 44, 19827–19835 (2020)

    Article  CAS  Google Scholar 

  11. Shalan, A.E., Afifi, M., El-Desoky, M.M., Ahmed, M.K.: Electrospun nanofibrous membranes of cellulose acetate containing hydroxyapatite co-doped with Ag/Fe: morphological features, antibacterial activity and degradation of methylene blue in aqueous solution. New J. Chem. 45, 9212–9220 (2021)

    Article  CAS  Google Scholar 

  12. Shalan, A.E., Mohammed, M.K.A., Govindan, N.: Graphene assisted crystallization and charge extraction for efficient and stable perovskite solar cells free of a hole-transport layer. RSC Adv. 11, 4417–4424 (2021)

    Article  CAS  Google Scholar 

  13. Reddy, B., Dadigala, R., Bandi, R., et al.: Microwave-assisted preparation of a silver nanoparticles/N-doped carbon dots nanocomposite and its application for catalytic reduction of rhodamine B, methyl red and 4-nitrophenol dyes. RSC Adv. 11, 5139–5148 (2021)

    Article  Google Scholar 

  14. El-Shazly, A.N., Rashad, M.M., Abdel-Aal, E.A., et al.: Nanostructured ZnO photocatalysts prepared via surfactant assisted Co-Precipitation method achieving enhanced photocatalytic activity for the degradation of methylene blue dyes. J. Environ. Chem. Eng. 4, 3177–3184 (2016)

    Article  CAS  Google Scholar 

  15. Batool, M., Nazar, M.F., Awan, A., et al.: Bismuth-based heterojunction nanocomposites for photocatalysis and heavy metal detection applications. Nano-struct. Nano-objects 27, 100762 (2021)

    Article  CAS  Google Scholar 

  16. Kao, A.C., Chu, Y.J., Hsu, F.L., Liao, V.H.C.: Removal of arsenic from groundwater by using a native isolated arsenite-oxidizing bacterium. J. ContamHydrol. 155, 1–8 (2013)

    CAS  Google Scholar 

  17. Chaudhry, S.A., Zaidi, Z., Siddiqui, S.I.: Isotherm, kinetic and thermodynamics of arsenic adsorption onto Iron-Zirconium Binary Oxide-Coated Sand (IZBOCS): modelling and process optimization. J. Mol. Liq. 229, 230–240 (2017)

    Article  CAS  Google Scholar 

  18. Ng, J.C., Wang, J., Shraim, A.: Global health problems caused by arsenic from natural sources. Chemosphere 52, 1353–1359 (2003)

    Article  CAS  Google Scholar 

  19. Matschullat, J.: Arsenic in the geosphere—a review. Sci. Total Environ. 249, 297–312 (2000)

    Article  CAS  Google Scholar 

  20. Abdul, K.S., Jayasinghe, S.S., Chandana, E.P., Jayasumana, C., De-Silva, P.M.: Arsenic and human health effects: a review. Environ. ToxicolPharmacol. 40, 828–846 (2015)

    Google Scholar 

  21. Biswas, B.K.: Adsorptive removal of As(V) and As(III) from water by a Zr(IV)-loaded orange waste gel. J. Hazard. Mater. 154, 1066–1074 (2008)

    Article  CAS  Google Scholar 

  22. Siddiqui, S.I., Chaudhry, S.A.: Arsenic removal from water using nano-composites: a review. Cur. Environ. Eng. 4, 81–102 (2017)

    CAS  Google Scholar 

  23. Siddiqui, S.I., Chaudhry, S.A.: Arsenic: toxic effects and remediation. In: Islam, S.U. (ed.) Advanced Materials for Wastewater Treatment, pp. 1–27. Wiley (2017)

    Google Scholar 

  24. Siddiqui, S.I., Chaudhry, S.A.: Iron oxide and its modified forms as an adsorbent for arsenic removal: a comprehensive recent advancement. Process Saf. Environ. Protect. 111, 592–626 (2017)

    Article  CAS  Google Scholar 

  25. Siddiqui, S.I., Chaudhry, S.A.: Removal of arsenic from water through adsorption onto metal oxide-coated material. Mater. Res. Found. 15, 227–276 (2017)

    Article  CAS  Google Scholar 

  26. Watanabe, C.H., et al.: Toxicity assessment of arsenic and cobalt in the presence of aquatic humic substances of different molecular sizes. Ecotoxicol. Environ. Saf. 139, 1–8 (2017)

    Article  CAS  Google Scholar 

  27. Flora, S.J.S.: Arsenic-induced oxidative stress and its reversibility. Free Rad. Biol. Med. 51, 257–281 (2011)

    Article  CAS  Google Scholar 

  28. Kulshrestha, A., Jarouliya, U., Prasad, G.B.K.S., Flora, S.J.S., Bisen, P.S.: Arsenic-induced abnormalities in glucose metabolism: biochemical basis and potential therapeutic and nutritional interventions. World J. Trans. Med. 3, 96–111 (2014)

    Article  Google Scholar 

  29. Chaudhry, S.A., Ahmed, M., Siddiqui, S.I., Ahmed, S.: Fe(III)-Sn(IV) mixed binary oxide-coated sand preparation and its use for the removal of As(III) and As(V) from water: application of isotherm, kinetic and thermodynamics. J. Mol. Liq. 224, 431–441 (2016)

    Article  CAS  Google Scholar 

  30. Anastopoulos, I., Karamesouti, M., Mitropoulos, A.C., Kyzas, G.Z.: A review for coffee adsorbents. J. Mol. Liq. 229, 555–565 (2017)

    Article  CAS  Google Scholar 

  31. Chaudhry, S.A., Khan, T.A., Ali, I.: Adsorptive removal of Pb(II) and Zn(II) from water onto manganese oxide-coated sand: Isotherm, thermodynamic and kinetic studies. Egypt J. Basic Appl. Sci. 3, 287–300 (2016)

    Google Scholar 

  32. Devi, P., Saroha, A.K.: Utilization of sludge-based adsorbents for the removal of various pollutants: a review. Sci. Total Environ. 578, 16–33 (2017)

    Article  CAS  Google Scholar 

  33. Mohan, D., Pittman, C.U., Jr.: Arsenic removal from water/wastewater using adsorbents: a critical review. J. Hazard. Mater. 142, 1–53 (2007)

    Article  CAS  Google Scholar 

  34. Alqadami, A.A., Naushad, M., Abdalla, M.A.: Synthesis and characterization of Fe3O4 @TSC nanocomposite: highly efficient removal of toxic metal ions from aqueous medium. RSC Adv. 6, 22679–22689 (2016)

    Article  CAS  Google Scholar 

  35. Khan, T.A., Chaudhry, S.A., Ali, I.: Equilibrium uptake, isotherm and kinetic studies of Cd (II) adsorption onto iron oxide activated red mud from aqueous solution. J. Mol. Liq. 202, 165–175 (2015)

    Article  CAS  Google Scholar 

  36. Sharma, G., et al.: Fabrication and characterization of chitosan-crosslinked-poly(alginic acid) nanohydro- gel for adsorptive removal of Cr(VI) metal ion from aqueous medium. Int. J. BiolMacromol. 95, 484–493 (2017)

    Article  CAS  Google Scholar 

  37. Gupta, A., Chauhan, V.S., Sankararamakrishnan, N.: Preparation and evaluation of ironchitosan composites for removal of As (III) and As (V) from arsenic contaminated real life groundwater. Water Res. 43, 3862–3870 (2009)

    Article  CAS  Google Scholar 

  38. Han, C., et al.: Synthesis and characterization of mesoporous alumina and their performances for removing arsenic (V). Chem. Eng. J. 217, 1–9 (2013)

    Article  CAS  Google Scholar 

  39. Mondal, P., Balomajumder, C., Mohanty, B.: A laboratory study for the treatment of arsenic, iron, and manganese bearing ground water using Fe3+ impregnated activated carbon: effects of shaking time, pH and temperature. J. Hazard. Mater. 144, 420–426 (2007)

    Article  CAS  Google Scholar 

  40. Maliyekkal, S.M., Philip, L., Pradeep, T.: As(III) removal from drinking water using manganese oxide-coated-alumina: performance evaluation and mechanistic details of surface binding. Chem. Eng. J. 153, 101–107 (2009)

    Article  CAS  Google Scholar 

  41. Ranjan, P., Agrawal, S., Sinha, A., Rao, T.R., Balakrishnan, J., Thakur, A.D.: A low-cost non-explosive synthesis of graphene oxide for scalable applications. Sci. Rep. 8, 12007 (2018)

    Article  CAS  Google Scholar 

  42. Balaprasad, F.: Water soluble graphene synthesis. Chem. Sci. Trans. 10, 500–507 (2012)

    Google Scholar 

  43. Ban, F.Y., Majid, S.R., Huang, N.M., Lim, H.N.: Graphene oxide and its electrochemical performance. Int. J. Electrochem. Sci. 7, 4345–4351 (2012)

    CAS  Google Scholar 

  44. Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6, 183–191 (2007)

    Article  CAS  Google Scholar 

  45. Grzegorz, S., Jaroslaw, S., Joanna, J., Rafal, K., Mariusz, Z.: Graphene oxide vs reduced graphene oxide as saturable absorbers for Er-doped passively mode-locked fiber laser. Opt. Exp. 20, 19463–19473 (2012)

    Article  CAS  Google Scholar 

  46. Ramakrishnan, M.C., Thangavelu, R.R.: Synthesis and characterization of reduced graphene oxide. Adv. Mater. Res. 678, 56–60 (2013)

    Article  CAS  Google Scholar 

  47. Ling, S., Bunshi, F.: Massive production of graphene oxide from expanded graphite. Mater. Lett. 109, 207–210 (2000)

    Google Scholar 

  48. Bai, L., Ma, X.J., Liu, J.F., Sun, X.M., Zhao, D.Y., Evans, D.G.: Rapid separation and purification of nanoparticles in organic density gradients. J. Am. Chem. Soc. 132, 2333–2337 (2010)

    Article  CAS  Google Scholar 

  49. Sansone, V., Pagani, D., Melato, M.: Chronic arsenicals dermatoses from tube-well water in West Bengal during 1983–87. Clin. Cases Miner. Bone Metab. 10, 34–40 (2013)

    Google Scholar 

  50. Sherman, D.M., Randall, S.R.: Surface complexation of arsenic (V) to iron (III) hydroxides: structural mechanism from ab initio molecular geometries and EXAFS spectroscopy. GeochimCosmochim. Acta 67, 575–580 (2003)

    Google Scholar 

  51. Su, H., Ye, Z., Hmidi, N.: High-performance iron oxide–graphene oxide nanocomposite adsorbents for arsenic removal efficient removal of arsenic using graphene-zeolite based composites. Colloids Surf. A PhysicochemEng. Asp 522, 161–172 (2017)

    Article  CAS  Google Scholar 

  52. Zhang, G., Qu, J., Liu, H., Liu, R., Wu, R.: Preparation and evaluation of a novel Fe-Mn binary oxide adsorbent for effective arsenite removal. Water Res. 41, 1921–1928 (2007)

    Article  CAS  Google Scholar 

  53. Peng, W., Li, H., Liu, Y., Song, S.: A review on heavy metal ions adsorption from water by graphene oxide and its composites. J. Mol. Liq. 230, 496–504 (2017)

    Article  CAS  Google Scholar 

  54. Platero, E., Fernandez, M.E., Bonelli, P.R., Cukierman, A.L.: Graphene oxide/alginate beads as adsorbents: influence of the load and the drying method on their physicochemicalmechanical properties and adsorptive performance. J. Colloid Interface Sci. 491, 1–12 (2017)

    Article  CAS  Google Scholar 

  55. Kumar, S., Nair, R.R., Pillai, P.B., Gupta, S.N., Iyengar, M.A.R., Sood, A.K.: Graphene oxide– MnFe2O4 magnetic nano-hybrids for efficient removal of lead and arsenic from water. ACS Appl. Mater. Interfaces 6, 17426–17436 (2014)

    Article  CAS  Google Scholar 

  56. Sheshmani, S., Nematzadeh, M.A., Shokrollahzadeh, S., Ashori, A.: Preparation of grapheme oxide/chitosan/FeOOH nanocomposite for the removal of Pb (II) from aqueous solution. Int. J. BiolMacromol. 80, 475–480 (2015)

    Article  CAS  Google Scholar 

  57. Zhou, Q., Zhong, Y.H., Chen, X., Liu, J.H., Huang, X.J., Wu, Y.C.: Adsorption and photo catalysis removal of fulvic acid by TiO2-graphene composites. J. Mater. Sci. 49, 1066–1075 (2014)

    Article  CAS  Google Scholar 

  58. Ray, S.K., Majumdera, C., Saha, P.: Functionalized reduced graphene oxide (RGO) for removal of fulvic acid contaminant. RSC Adv. 7, 21768–21779 (2017)

    Article  CAS  Google Scholar 

  59. Machida, M., Mochimaru, T., Tatsumoto, H.: Lead(II) adsorption onto the graphene layer of carbonaceous materials in aqueous solution. Carbon 44, 2681–2688 (2006)

    Article  CAS  Google Scholar 

  60. Novoselov, K., et al.: Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)

    Article  CAS  Google Scholar 

  61. Brodie, B.C.: On the atomic weight of graphite. Philos. Trans. Roy. Soc. Lond 149, 249–259 (1859)

    Article  Google Scholar 

  62. Staudenmaier, L.: Verfahrenzurdarstellung der graphits€aure. Ber. Dtsch. Chem. Ges. 31, 1481–1487 (1898)

    Article  CAS  Google Scholar 

  63. Hummers, W.S., Offeman, R.E.: Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339 (1958)

    Article  CAS  Google Scholar 

  64. Fu, F., Wang, Q.: Removal of heavy metal ions from wastewaters: a review. J. Environ. Manage. 92, 407–418 (2011)

    Article  CAS  Google Scholar 

  65. Khatamian, M., Khodakarampoor, N., Oskoui, M.S.: Efficient removal of arsenic using graphene-zeolite based composites. J. Colloid Interface Sci. 498, 433–441 (2017)

    Article  CAS  Google Scholar 

  66. Kumar, S.K., Jiang, S.J.: Chitosan-functionalized graphene oxide: a novel adsorbent an efficient adsorption of arsenic from aqueous solution. J. Environ. Chem. Eng. 4, 1698–1713 (2016)

    Article  CAS  Google Scholar 

  67. Huang, N.M., Lim, H.N., Chia, C.H., Yarmo, M.A., Muhamad, M.R.: Simple room temperature preparation of high-yield large-area graphene oxide. Int. J. Nanomed. 6, 3443–3448 (2011)

    Article  CAS  Google Scholar 

  68. Marcano, D.C., et al.: Improved synthesis of graphene oxide. ACS Nano 4, 4806–4814 (2010)

    Article  CAS  Google Scholar 

  69. Chen, J., Yao, B., Li, C., Shi, G.: An improved Hummers method for eco-friendly synthesis of graphene oxide. Carbon 64, 225–229 (2013)

    Article  CAS  Google Scholar 

  70. Kumari, S., et al.: A Novel Synthesis of the Graphene Oxide-Silver (GO-Ag) Nanocomposite for Unique Physiochemical Applications. ACS Omega 5, 5041–5047 (2020)

    Article  CAS  Google Scholar 

  71. Yang, G., Cao, J., Li, L., Rana, R.K., Zhu, J.J.: Carboxymethyl chitosan-functionalized graphene for label free electrochemical cytosensing. Carbon 51, 124–133 (2013)

    Article  CAS  Google Scholar 

  72. Yu, L., Ma, Y., Ong, C.N., Xie, J., Liu, Y.: Rapid adsorption removal of arsenate by hydrous cerium oxide–graphene composite. RSC Adv. 5, 64983–64990 (2015)

    Article  CAS  Google Scholar 

  73. Xubiao, L., Cheng, W., Shenglian, L., Ruizhi, D., Xinman, T., Guisheng, Z.: Adsorption of As(III) and As(V) from water using magnetite Fe3O4-reduced graphite oxide-MnO2 nano composites. Chem. Eng. J. 187, 45–52 (2012)

    Article  CAS  Google Scholar 

  74. Jin, Z., Zimo, L., Yu, L., Ruiqi, F., Shams, A.B., Xinhua, X.: Adsorption behavior and removal mechanism of arsenic on graphene modified by iron-manganese binary oxide (FeMnOx/RGO) from aqueous solutions. RSC Adv. 5, 67951–67961 (2015)

    Article  CAS  Google Scholar 

  75. Yoon, Y., et al.: Comparative evaluation of magnetite–graphene oxide and magnetite-reduced graphene oxide composite for As(III) and As (V) removal. J. Hazard. Mater. 304, 196–204 (2016)

    Article  CAS  Google Scholar 

  76. Chen, M.L., Sun, Y., Huo, C.B., Liu, C., Wang, J.H.: Akaganeite decorated graphene oxide composite for arsenic adsorption/removal and its pre-concentration at ultra-trace level. Chemosphere 130, 52–58 (2015)

    Article  CAS  Google Scholar 

  77. Yoon, Y., Zheng, M., Ahn, Y.T., Park, W.K., Yang, W.S., Kang, J.W.: Synthesis of magnetite/non-oxidative graphene composites and their application for arsenic removal. Sep. Pure Technol. 178, 40–48 (2017)

    Article  CAS  Google Scholar 

  78. Guo, L., Ye, P., Wang, J., Fu, F., Wu, Z.: Three-dimensional Fe3O4-graphene macroscopic composites for arsenic and arsenate removal. J. Hazard. Mater. 298, 28–35 (2015)

    Article  CAS  Google Scholar 

  79. Dubey, S.P., Nguyen, T.T.M., Kwon, Y.N., Lee, C.: Synthesis and characterization of metal-doped reduced graphene oxide composites, and their application in removal of Escherichia coli, arsenic and 4-nitrophenol. J. Ind. Eng. Chem. 29, 282–288 (2015)

    Article  CAS  Google Scholar 

  80. Arriagada, D.C., Labbe, A.T.: Aluminum and iron doped graphene for adsorption of methylated arsenic pollutants. Appl. Surf. Sci. 386, 84–95 (2016)

    Article  CAS  Google Scholar 

  81. Mishra, A.K., Ramaprabhu, S.: Functionalized graphene sheets for arsenic removal and desalination of sea water. Desalination 282, 39–45 (2011)

    Article  CAS  Google Scholar 

  82. Kumar, S.K., Jiang, S.J.: Synthesis of magnetically separable and recyclable magnetic nanoparticles decorated with b-cyclodextrin functionalized graphene oxide an excellent adsorption of As(V)/(III). J. Mol. Liq. 237, 387–401 (2017)

    Article  CAS  Google Scholar 

  83. Lin, Y.J., Cao, W.Z., Ouyang, T., Chen, B.Y., Chang, C.T.: Developing sustainable graphene-doped titanium nano tube coated to super paramagnetic nanoparticles for arsenic recovery. J. Taiwan Inst. Chem. Eng. 70, 311–318 (2017)

    Article  CAS  Google Scholar 

  84. Yu, S., Wang, X., Tan, X., Wang, X.: Sorption of radionuclides from aqueous systems onto graphene oxide-based materials: a review. Inorg. Chem. Front. 2, 593–612 (2015)

    Article  CAS  Google Scholar 

  85. Yu, S., et al.: Efficient removal of uranium (VI) by layered double hydroxides supported nanoscale zerovalent iron: a combined experimental and spectroscopic studies. Chem. Eng. J. 365, 51–59 (2019)

    Article  CAS  Google Scholar 

  86. Madadrang, C., et al.: Adsorption behavior of EDTA-graphene oxide for Pb(II) removal. ACS. Appl. Mater. Inter. 4, 1186–1193 (2012)

    Article  CAS  Google Scholar 

  87. Gercel, O., Gercel, H.: Adsorption of lead (II) ions from aqueous solutions by activated carbon prepared from biomass plant material of Euphorbia rigida. Chem. Eng. J. 132, 289297 (2007)

    Article  CAS  Google Scholar 

  88. Wang, X., Chen, Z., Yang, S.: Application of graphene oxides for the removal of Pb(II) ions from aqueous solutions: experimental and DFT calculation. J. Mol. Liq. 211, 957–964 (2015)

    Article  CAS  Google Scholar 

  89. Dungang, Gu., Fein, J.B.: Adsorption of metals onto graphene oxide: surface complexation modeling and linear free energy relationships. Colloids Surf. A Physicochem. Eng. Asp. 481, 319–327 (2015)

    Article  CAS  Google Scholar 

  90. Xu, D., Tan, X., Chen, C., Wang, X.: Adsorption of Pb(II) from aqueous solution to MX80 bentonite: effect of pH, ionic strength, foreign ions and temperature. Appl. Clay Sci. 41, 37–46 (2008)

    Article  CAS  Google Scholar 

  91. Lim, J., Mubarak, N., Abdullah, E., Nizamuddin, S., Khalid, M.: Recent trends in the synthesis of graphene and graphene oxide based nanomaterials for removal of heavy metals-a review. J. Ind. Eng. Chem. 66, 29–44 (2018)

    Article  CAS  Google Scholar 

  92. Lim, J., Mubarak, N., Khalid, M., Abdullah, E., Arshid, N.: Novel fabrication of functionalized graphene oxide via magnetite and 1-butyl-3-methylimidazolium tetrafluoroborate. Nano-Struct. Nano-Objects 16, 403–411 (2018)

    Article  CAS  Google Scholar 

  93. Zhao, G., et al.: Removal of Pb(II) ions from aqueous solutions on few-layered graphene oxide nanosheets. Dalton Trans. J. 40, 10945–10952 (2011)

    Article  CAS  Google Scholar 

  94. Wu, Y., et al.: Environmental remediation of heavy metal ions by novel-nanomaterials: a review. Environ. Pollut. 246, 608–620 (2019)

    Article  CAS  Google Scholar 

  95. Gu, P., et al.: Recent advances in layered double hydroxide-based nanomaterials for the removal of radionuclides from aqueous solution. Environ. Pollut. 240, 493–505 (2018)

    Article  CAS  Google Scholar 

  96. Chen, L., Feng, S., Zhao, D., Chen, S., Li, F., Chen, C.: Efficient sorption and reduction of U(VI) on zero-valent iron-polyaniline-graphene aerogel ternary composite. J. Colloid Interf. Sci. 490, 197–206 (2017)

    Article  CAS  Google Scholar 

  97. Ahmaruzzaman, M., Sharma, D.: Adsorption of phenols from wastewater. J. Colloid. Interf. Sci. 287, 14–24 (2005)

    Article  CAS  Google Scholar 

  98. Chen, J., et al.: Highly effective removal of Cu(II) by triethylenetetramine-magnetic reduced graphene oxide composite. Appl. Surf. Sci. 356, 355–363 (2015)

    Article  CAS  Google Scholar 

  99. Gao, Y., Chen, K., Ren, X., Alsaedi, A., Hayat, T., Chen, C.: Exploring the aggregation mechanism of graphene oxide in the presence of radioactive elements: experimental and theoretical studies. Environ. Sci. Technol. 52(21), 12208–12215 (2018)

    Article  CAS  Google Scholar 

  100. Zhao, D., et al.: Amino siloxane oligomer modified graphene oxide composite for the efficient capture of U (VI) and Eu (III) from aqueous solution. ACS Sustain. Chem. Eng. 5, 10290–10297 (2017)

    Article  CAS  Google Scholar 

  101. Zhao, G., Huang, X., Tang, Z., Huang, Q., Niu, F., Wang, X.: Polymer-based nanocomposites for heavy metal ions removal from aqueous solution: a review. Polym. Chem. 9, 3562–3582 (2018)

    Article  CAS  Google Scholar 

  102. Gao, Y., et al.: Graphene oxide interactions with co-existing heavy metal cations: adsorption, colloidal properties and joint toxicity. Environ. Sci. Nano. 5, 362–371 (2018)

    Article  CAS  Google Scholar 

  103. Huang, Z., et al.: Interaction mechanism of uranium (VI) with three-dimensional graphene oxide-chitosan composite: insights from batch experiments, IR, XPS, and EXAFS spectroscopy. Chem. Eng. J. 328, 1066–1074 (2017)

    Article  CAS  Google Scholar 

  104. Hu, B., et al.: Macroscopic and spectroscopic insights into the mutual interaction of graphene oxide, Cu (II), and Mg/Al layered double hydroxides. Chem. Eng. J. 313, 527–534 (2017)

    Article  CAS  Google Scholar 

  105. Siddiqui, S.I., Chaudhry, S.A., Islam, S.U.: Green adsorbents from plant sources for the removal of arsenic: an emerging wastewater treatment technology. In: Islam, S.U. (ed.) In Plant-Based Natural Products: Derivatives and Applications, pp. 193–215. Wiley (2017)

    Google Scholar 

  106. Kumar, A.S.K., Jiang, S.J.: Synthesis of magnetically separable and recyclable magnetic nanoparticles decorated with β-cyclodextrin functionalized graphene oxide an excellent adsorption of As (V)/(III). J. Mol. Liq. 237, 387–401 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

DG, SK, and SM would like to thanks Amity University, Haryana for supporting this work. SM and DG would like to acknowledge the support provided under the DST-FIST Grant No.SR/FST/PS-I/2019/68 of Govt. of India.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ghosh, D., Kumari, S., Majumder, S. (2022). Role of Graphene Oxide Based Nanocomposites in Arsenic Purification from Ground Water. In: Shalan, A.E., Hamdy Makhlouf, A.S., Lanceros‐Méndez, S. (eds) Advances in Nanocomposite Materials for Environmental and Energy Harvesting Applications. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-94319-6_12

Download citation

Publish with us

Policies and ethics