Skip to main content

Collective Decision-Making

  • Chapter
  • First Online:
Swarm Robotics: A Formal Approach
  • 3096 Accesses

Abstract

We study methods of collective decision-making—an important capability for a swarm to become autonomous.

Collective decision-making is an essential skill for a swarm of robots in order to form an autonomous system also on the macroscopic level. We start with traditional methods to describe decision-making and rational agents. Group decision-making is introduced and we investigate the example of collective motion as a decision-making process. It follows an extensive walk through modeling techniques for collective decision-making, such as urn models, voter model, majority rule, Hegselmann–Krause model, Kuramoto model, Ising model, fiber bundle model, and sociophysics by Serge Galam among other approaches. We conclude with a discussion of hardware implementations of collective decision-making in swarm robotics.

They exist in loose swarms […]. However, they will unite in moments of danger, or to be more precise, in the event of any sudden change that constitutes a threat to their survival

—Stanisław Lem, The Invincible,

But the amoebas are certainly creative on an individual basis. […] A thought is probably only taken into consideration if the impulse behind it is strong enough, that’s to say if enough yrr are trying to introduce it into the collective at the same time.

—Frank Schätzing, The Swarm

the Emperor …was interested in having you advance fictionalized predictions that might stabilize his dynasty …I ask only that you perfect your psychohistorical technique so that mathematically valid predictions, even if only statistical in nature, can be made.

—Isaac Asimov, Foundations

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.bassbasement.org/bassmodel/bassmath.aspx.

References

  1. Arthur, W. B. (1989). Competing technologies, increasing returns, and lock-in by historical events. The Economic Journal, 99(394), 116–131.

    Article  Google Scholar 

  2. Arvin, F., Turgut, A. E., Bazyari, F., Arikan, K. B., Bellotto, N., & Yue, S. (2014). Cue-based aggregation with a mobile robot swarm: A novel fuzzy-based method. Adaptive Behavior, 22(3), 189–206.

    Article  Google Scholar 

  3. Arvin, F., Turgut, A. E., Krajník, T., & Yue, S. (2016). Investigation of cue-based aggregation in static and dynamic environments with a mobile robot swarm. Adaptive Behavior, 24(2), 102–118. https://doi.org/10.1177/1059712316632851

    Article  Google Scholar 

  4. Arvin, F., Turgut, A. E., & Yue, S. (2012). Fuzzy-based aggregation with a mobile robot swarm. In Swarm intelligence (ANTS’12). Lecture notes in computer science (Vol. 7461, pp. 346–347). Berlin: Springer. ISBN 978-3-642-32649-3. https://doi.org/10.1007/978-3-642-32650-9\_39

    Google Scholar 

  5. Axelrod, R. (1997). The dissemination of culture: A model with local convergence and global polarization. Journal of Conflict Resolution, 41(2), 203–226.

    Article  Google Scholar 

  6. Bass, F. M. (1969). A new product growth for model consumer durables. Management Science, 15(5), 215–227.

    Article  MATH  Google Scholar 

  7. Belykh, I., Jeter, R., & Belykh, V. (2017). Foot force models of crowd dynamics on a wobbly bridge. Science Advances, 3(11), e1701512. https://doi.org/10.1126/sciadv.1701512

    Article  Google Scholar 

  8. Berg, B. A., & Billoire, A. (2007). Markov chain Monte Carlo simulations. In B. W. Wah (Ed.), Wiley encyclopedia of computer science and engineering. New York: Wiley. https://dx.doi.org/10.1002/9780470050118.ecse696

    Google Scholar 

  9. Bogacz, R., Brown, E., Moehlis, J., Holmes, P., & Cohen, J. D. (2006). The physics of optimal decision making: A formal analysis of models of performance in two-alternative forced-choice tasks. Psychological Review, 113(4), 700.

    Article  Google Scholar 

  10. Buhl, J., Sumpter, D. J. T., Couzin, I. D., Hale, J. J., Despland, E., Miller, E. R., & Simpson, S. J. (2006). From disorder to order in marching locusts. Science, 312(5778), 1402–1406. https://doi.org/10.1126/science.1125142

    Article  Google Scholar 

  11. Campo, A., Garnier, S., Dédriche, O., Zekkri, M., & Dorigo, M. (2011). Self-organized discrimination of resources. PLoS One, 6(5), e19888.

    Article  Google Scholar 

  12. Castellano, C., Fortunato, S., & Loreto, V. (2009). Statistical physics of social dynamics. Reviews of Modern Physics, 81, 591–646. https://link.aps.org/doi/10.1103/RevModPhys.81.591

    Article  Google Scholar 

  13. Clifford, P., & Sudbury, A. (1973). A model for spatial conflict. Biometrika, 60(3), 581–588. https://doi.org/10.1093/biomet/60.3.581.

    Article  MathSciNet  MATH  Google Scholar 

  14. Couzin, I. D., Ioannou, C. C., Demirel, G., Gross, T., Torney, C. J., Hartnett, A., et al. (2011). Uninformed individuals promote democratic consensus in animal groups. Science, 334(6062), 1578–1580. ISSN 0036-8075. https://doi.org/10.1126/science.1210280. http://science.sciencemag.org/content/334/6062/1578

  15. Couzin, I. D., Krause, J., Franks, N. R., & Levin, S. A. (2005). Effective leadership and decision-making in animal groups on the move. Nature, 433, 513–516.

    Article  Google Scholar 

  16. de Oca, M. M., Ferrante, E., Scheidler, A., Pinciroli, C., Birattari, M., & Dorigo, M. (2011). Majority-rule opinion dynamics with differential latency: A mechanism for self-organized collective decision-making. Swarm Intelligence, 5, 305–327. ISSN 1935-3812. http://dx.doi.org/10.1007/s11721-011-0062-z

    Article  Google Scholar 

  17. Douven, I., & Riegler, A. (2009). Extending the Hegselmann–Krause model I. Logic Journal of IGPL, 18(2), 323–335.

    Article  MathSciNet  Google Scholar 

  18. Dussutour, A., Beekman, M., Nicolis, S. C., & Meyer, B. (2009). Noise improves collective decision-making by ants in dynamic environments. Proceedings of the Royal Society London B, 276, 4353–4361.

    Google Scholar 

  19. Ehrenfest, P., & Ehrenfest, T. (1907). Über zwei bekannte Einwände gegen das Boltzmannsche H-Theorem. Physikalische Zeitschrift, 8, 311–314.

    MATH  Google Scholar 

  20. Eigen, M., & Winkler, R. (1993). Laws of the game: How the principles of nature govern chance. Princeton, NJ: Princeton University Press. ISBN 978-0-691-02566-7.

    Google Scholar 

  21. Franks, N. R., Dornhaus, A., Fitzsimmons, J. P., & Stevens, M. (2003). Speed versus accuracy in collective decision making. Proceedings of the Royal Society of London - Series B: Biological Sciences, 270, 2457–2463.

    Google Scholar 

  22. Galam, S. (1997). Rational group decision making: A random field Ising model at T=0. Physica A, 238(1–4), 66–80.

    Article  Google Scholar 

  23. Galam, S. (2004). Contrarian deterministic effect on opinion dynamics: The “hung elections scenario”. Physica A, 333(1), 453–460. http://dx.doi.org/10.1016/j.physa.2003.10.041

    Article  MathSciNet  Google Scholar 

  24. Galam, S. (2008). Sociophysics: A review of Galam models. International Journal of Modern Physics C, 19(3), 409–440.

    Article  MATH  Google Scholar 

  25. Galam, S., & Moscovici, S. (1995). Towards a theory of collective phenomena. III: Conflicts and forms of power. European Journal of Social Psychology, 25(2), 217–229.

    Article  Google Scholar 

  26. Graham, R., Knuth, D., & Patashnik, O. (1998). Concrete mathematics: A foundation for computer science. Reading, MA: Addison-Wesley. ISBN 0-201-55802-5.

    MATH  Google Scholar 

  27. Halloy, J., Sempo, G., Caprari, G., Rivault, C., Asadpour, M., Tâche, F., et al. (2007). Social integration of robots into groups of cockroaches to control self-organized choices. Science, 318(5853), 1155–1158. http://dx.doi.org/10.1126/science.1144259

    Article  Google Scholar 

  28. Hamann, H. (2013). Towards swarm calculus: Urn models of collective decisions and universal properties of swarm performance. Swarm Intelligence, 7(2–3), 145–172. http://dx.doi.org/10.1007/s11721-013-0080-0

    Article  Google Scholar 

  29. Hasegawa, E., Mizumoto, N., Kobayashi, K., Dobata, S., Yoshimura, J., Watanabe, S., et al. (2017). Nature of collective decision-making by simple yes/no decision units. Scientific Reports, 7(1), 14436. https://doi.org/10.1038/s41598-017-14626-z

    Article  Google Scholar 

  30. Hegselmann, R., & Krause, U. (2002). Opinion dynamics and bounded confidence models, analysis, and simulation. Journal of Artifical Societies and Social Simulation, 5(3), 1–24.

    Google Scholar 

  31. Kac, M. (1947). Random walk and the theory of Brownian motion. The American Mathematical Monthly, 54, 369.

    Article  MathSciNet  MATH  Google Scholar 

  32. Kernbach, S., Häbe, D., Kernbach, O., Thenius, R., Radspieler, G., Kimura, T., et al. (2013). Adaptive collective decision-making in limited robot swarms without communication. The International Journal of Robotics Research, 32(1), 35–55.

    Article  Google Scholar 

  33. Kernbach, S., Thenius, R., Kernbach, O., & Schmickl, T. (2009). Re-embodiment of honeybee aggregation behavior in an artificial micro-robotic swarm. Adaptive Behavior, 17, 237–259.

    Article  Google Scholar 

  34. Kuramoto, Y. (1984). Chemical oscillations, waves, and turbulence. Berlin: Springer.

    Book  MATH  Google Scholar 

  35. Mahmoud, H. (2008). Pólya urn models. Boca Raton, FL: Chapman and Hall/CRC.

    Book  MATH  Google Scholar 

  36. Merkle, D., Middendorf, M., & Scheidler, A. (2007). Swarm controlled emergence-designing an anti-clustering ant system. In IEEE Swarm Intelligence Symposium (pp. 242–249). New York: IEEE.

    Google Scholar 

  37. Moioli, R., Vargas, P. A., & Husbands, P. (2010). Exploring the Kuramoto model of coupled oscillators in minimally cognitive evolutionary robotics tasks. In WCCI 2010 IEEE World Congress on Computational Intelligence - CEC IEEE (pp. 2483–2490).

    Google Scholar 

  38. Mondada, F., Bonani, M., Raemy, X., Pugh, J., Cianci, C., Klaptocz, A., et al. (2009). The e-puck, a robot designed for education in engineering. In Proceedings of the 9th Conference on Autonomous Robot Systems and Competitions (Vol. 1, pp. 59–65).

    Google Scholar 

  39. O’Keeffe, K. P., Hong, H., & Strogatz, S. H. (2017). Oscillators that sync and swarm. Nature Communications, 8, 1504.

    Article  Google Scholar 

  40. Peires, F. T. (1926). Tensile tests for cotton yarns. Journal of the Textile Institute, 17, 355–368.

    Article  Google Scholar 

  41. Pólya, G., & Eggenberger, F. (1923). Über die Statistik verketteter Vorgänge. Zeitschrift für Angewandte Mathematik und Mechanik, 3(4), 279–289.

    Article  MATH  Google Scholar 

  42. Raischel, F., Kun, F., & Herrmann, H. J. (2006). Fiber bundle models for composite materials. In Conference on Damage in Composite Materials.

    Google Scholar 

  43. Reina, A., Dorigo, M., & Trianni, V. (2014). Towards a cognitive design pattern for collective decision-making. In M. Dorigo, M. Birattari, S. Garnier, H. Hamann, M. M. de Oca, C. Solnon, & T. Stützle (Eds.), Swarm intelligence. Lecture notes in computer science (Vol. 8667, pp. 194–205). Berlin: Springer International Publishing. ISBN 978-3-319-09951-4. http://dx.doi.org/10.1007/978-3-319-09952-1_17

  44. Rubenstein, M., Ahler, C., & Nagpal, R. (2012). Kilobot: A low cost scalable robot system for collective behaviors. In IEEE International Conference on Robotics and Automation (ICRA 2012) (pp. 3293–3298). https://doi.org/10.1109/ICRA.2012.6224638

  45. Rubenstein, M., Cornejo, A., & Nagpal, R. (2014). Programmable self-assembly in a thousand-robot swarm. Science, 345(6198), 795–799. http://dx.doi.org/10.1126/science.1254295

    Article  Google Scholar 

  46. Scheidler, A. (2011). Dynamics of majority rule with differential latencies. Physical Review E, 83(3), 031116.

    Article  Google Scholar 

  47. Schmickl, T., & Hamann, H. (2011). BEECLUST: A swarm algorithm derived from honeybees. In Y. Xiao (Ed.), Bio-inspired computing and communication networks (pp. 95–137). Boca Raton, FL: CRC Press.

    Google Scholar 

  48. Schmickl, T., Thenius, R., Möslinger, C., Radspieler, G., Kernbach, S., & Crailsheim, K. (2008). Get in touch: Cooperative decision making based on robot-to-robot collisions. Autonomous Agents and Multi-Agent Systems, 18(1), 133–155.

    Article  Google Scholar 

  49. Strogatz, S. H., Abrams, D. M., McRobie, A., Eckhardt, B., & Ott, E. (2005). Theoretical mechanics: Crowd synchrony on the Millennium Bridge. Nature, 438(7064), 43–44.

    Article  Google Scholar 

  50. Sznajd-Weron, K., & Sznajd, J. (2000). Opinion evolution in closed community. International Journal of Modern Physics C, 11(06), 1157–1165.

    Article  MATH  Google Scholar 

  51. Szopek, M., Schmickl, T., Thenius, R., Radspieler, G., & Crailsheim, K. (2013). Dynamics of collective decision making of honeybees in complex temperature fields. PLoS One, 8(10), e76250. https://doi.org/10.1371/journal.pone.0076250. http://dx.doi.org/10.1371/journal.pone.0076250

  52. Valentini, G. (2017). Achieving consensus in robot swarms: Design and analysis of strategies for the best-of-n problem. Berlin: Springer. ISBN 978-3-319-53608-8. https://doi.org/10.1007/978-3-319-53609-5

    Book  MATH  Google Scholar 

  53. Valentini, G., Brambilla, D., Hamann, H., & Dorigo, M. (2016). Collective perception of environmental features in a robot swarm. In 10th International Conference on Swarm Intelligence, ANTS 2016. Lecture notes in computer science (Vol. 9882, pp. 65–76). Berlin: Springer.

    Google Scholar 

  54. Valentini, G., Ferrante, E., & Dorigo, M. (2017). The best-of-n problem in robot swarms: Formalization, state of the art, and novel perspectives. Frontiers in Robotics and AI, 4, 9. ISSN 2296-9144. http://journal.frontiersin.org/article/10.3389/frobt.2017.00009

    Article  Google Scholar 

  55. Valentini, G., Ferrante, E., Hamann, H., & Dorigo, M. (2016). Collective decision with 100 Kilobots: Speed vs accuracy in binary discrimination problems. Journal of Autonomous Agents and Multi-Agent Systems, 30(3), 553–580. http://dx.doi.org/10.1007/s10458-015-9323-3

    Article  Google Scholar 

  56. Valentini, G., Hamann, H., & Dorigo, M. (2015). Efficient decision-making in a self-organizing robot swarm: On the speed versus accuracy trade-off. In R. Bordini, E. Elkind, G. Weiss, & P. Yolum (Eds.), Proceedings of the 14th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2015) (pp. 1305–1314). IFAAMAS. http://dl.acm.org/citation.cfm?id=2773319.

    Google Scholar 

  57. Wahby, M., Weinhold, A., & Hamann, H. (2016). Revisiting BEECLUST: Aggregation of swarm robots with adaptiveness to different light settings. In Proceedings of the 9th EAI International Conference on Bio-inspired Information and Communications Technologies (BICT 2015), pp. 272–279. ICST. http://dx.doi.org/10.4108/eai.3-12-2015.2262877

  58. Yang, C. N. (1952). The spontaneous magnetization of a two-dimensional Ising model. Physical Review, 85(5), 808–816. http://dx.doi.org/10.1103/PhysRev.85.808

    Article  MathSciNet  MATH  Google Scholar 

  59. Yates, C. A., Erban, R., Escudero, C., Couzin, I. D., Buhl, J., Kevrekidis, I. G., et al. (2009). Inherent noise can facilitate coherence in collective swarm motion. Proceedings of the National Academy of Sciences of the United States of America, 106(14), 5464–5469. https://doi.org/10.1073/pnas.0811195106. http://www.pnas.org/content/106/14/5464.abstract

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hamann, H. (2018). Collective Decision-Making. In: Swarm Robotics: A Formal Approach. Springer, Cham. https://doi.org/10.1007/978-3-319-74528-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74528-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74526-8

  • Online ISBN: 978-3-319-74528-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics