Skip to main content
Log in

Towards swarm calculus: urn models of collective decisions and universal properties of swarm performance

  • Published:
Swarm Intelligence Aims and scope Submit manuscript

Abstract

Methods of general applicability are searched for in swarm intelligence with the aim of gaining new insights about natural swarms and to develop design methodologies for artificial swarms. An ideal solution could be a ‘swarm calculus’ that allows to calculate key features of swarms such as expected swarm performance and robustness based on only a few parameters. To work towards this ideal, one needs to find methods and models with high degrees of generality. In this paper, we report two models that might be examples of exceptional generality. First, an abstract model is presented that describes swarm performance depending on swarm density based on the dichotomy between cooperation and interference. Typical swarm experiments are given as examples to show how the model fits to several different results. Second, we give an abstract model of collective decision making that is inspired by urn models. The effects of positive-feedback probability, that is increasing over time in a decision making system, are understood by the help of a parameter that controls the feedback based on the swarm’s current consensus. Several applicable methods, such as the description as Markov process, calculation of splitting probabilities, mean first passage times, and measurements of positive feedback, are discussed and applications to artificial and natural swarms are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. This paper is an extended version of Hamann (2012). The main extensions are the method of deriving the probability of positive feedback based on observed decision revisions (Sect. 4.1), a discussion of additional methodology such as Markov chains, splitting probabilities, and mean first passage times (Sect. 4.3), and a comprehensive introduction of the Ehrenfest and the Eigen urn models.

  2. See http://www.gnuplot.info/.

References

  • Arkin, R. C., Balch, T., & Nitz, E. (1993). Communication of behavioral state in multi-agent retrieval tasks. In W. Book & J. Luh (Eds.), IEEE conference on robotics and automation (Vol. 3, pp. 588–594). Los Alamitos: IEEE Press.

    Chapter  Google Scholar 

  • Berman, S., Kumar, V., & Nagpal, R. (2011). Design of control policies for spatially inhomogeneous robot swarms with application to commercial pollination. In S. LaValle, H. Arai, O. Brock, H. Ding, C. Laugier, A. M. Okamura, S. S. Reveliotis, G. S. Sukhatme, & Y. Yagi (Eds.), IEEE international conference on robotics and automation (ICRA’11) (pp. 378–385). Los Alamitos: IEEE Press.

    Chapter  Google Scholar 

  • Bjerknes, J. D., & Winfield, A. (2013). On fault-tolerance and scalability of swarm robotic systems. In A. Martinoli, F. Mondada, N. Correll, G. Mermoud, M. Egerstedt, M. A. Hsieh, L. E. Parker, & K. Støy (Eds.), Springer tracts in advanced robotics: Vol. 83. Distributed autonomous robotic systems (DARS 2010) (pp. 431–444). Berlin: Springer.

    Chapter  Google Scholar 

  • Bjerknes, J. D., Winfield, A., & Melhuish, C. (2007). An analysis of emergent taxis in a wireless connected swarm of mobile robots. In Y. Shi & M. Dorigo (Eds.), IEEE swarm intelligence symposium (pp. 45–52). Los Alamitos: IEEE Press.

    Google Scholar 

  • Breder, C. M. (1954). Equations descriptive of fish schools and other animal aggregations. Ecology, 35(3), 361–370.

    Article  Google Scholar 

  • Camazine, S., Deneubourg, J.-L., Franks, N. R., Sneyd, J., Theraulaz, G., & Bonabeau, E. (2001). Self-organizing biological systems. Princeton: Princeton University Press.

    Google Scholar 

  • Deneubourg, J.-L., Aron, S., Goss, S., & Pasteels, J. M. (1990). The self-organizing exploratory pattern of the Argentine ant. Journal of Insect Behavior, 3(2), 159–168.

    Article  Google Scholar 

  • Dussutour, A., Fourcassié, V., Helbing, D., & Deneubourg, J.-L. (2004). Optimal traffic organization in ants under crowded conditions. Nature, 428, 70–73.

    Article  Google Scholar 

  • Dussutour, A., Beekman, M., Nicolis, S. C., & Meyer, B. (2009). Noise improves collective decision-making by ants in dynamic environments. Proceedings of the Royal Society of London, Series B, 276, 4353–4361.

    Article  Google Scholar 

  • Edelstein-Keshet, L. (2006). Mathematical models of swarming and social aggregation. Robotica, 24(3), 315–324.

    Article  Google Scholar 

  • Ehrenfest, P., & Ehrenfest, T. (1907). Über zwei bekannte Einwände gegen das Boltzmannsche H-Theorem. Physikalische Zeitschrift, 8, 311–314.

    MATH  Google Scholar 

  • Eigen, M., & Winkler, R. (1993). Laws of the game: how the principles of nature govern chance. Princeton: Princeton University Press.

    Google Scholar 

  • Galam, S. (2004). Contrarian deterministic effect on opinion dynamics: the “hung elections scenario”. Physica A, 333(1), 453–460.

    Article  MathSciNet  Google Scholar 

  • Gardiner, C. W. (1985). Handbook of stochastic methods for physics, chemistry and the natural sciences. Berlin: Springer.

    Google Scholar 

  • Gautrais, J., Theraulaz, G., Deneubourg, J.-L., & Anderson, C. (2002). Emergent polyethism as a consequence of increased colony size in insect societies. Journal of Theoretical Biology, 215(3), 363–373.

    Article  Google Scholar 

  • Goldberg, D., & Matarić, M. J. (1997). Interference as a tool for designing and evaluating multi-robot controllers. In B. J. Kuipers & B. Webber (Eds.), Proc. of the fourteenth national conference on artificial intelligence (AAAI’97) (pp. 637–642). Cambridge: MIT Press.

    Google Scholar 

  • Graham, R., Knuth, D., & Patashnik, O. (1998). Concrete mathematics: a foundation for computer science. Reading: Addison–Wesley.

    Google Scholar 

  • Grinstead, C. M., & Snell, J. L. (1997). Introduction to probability. Providence: American Mathematical Society.

    MATH  Google Scholar 

  • Hamann, H. (2006). Modeling and investigation of robot swarms. Master’s thesis, University of Stuttgart, Germany.

  • Hamann, H. (2010). Space-time continuous models of swarm robotics systems: supporting global-to-local programming. Berlin: Springer.

    Book  Google Scholar 

  • Hamann, H. (2012). Towards swarm calculus: universal properties of swarm performance and collective decisions. In M. Dorigo, M. Birattari, C. Blum, A. L. Christensen, A. P. Engelbrecht, R. Groß, & T. Stützle (Eds.), Lecture notes in computer science: Vol. 7461. Swarm intelligence: 8th international conference, ANTS 2012 (pp. 168–179). Berlin: Springer.

    Google Scholar 

  • Hamann, H., & Wörn, H. (2007). Embodied computation. Parallel Processing Letters, 17(3), 287–298.

    Article  MathSciNet  Google Scholar 

  • Hamann, H., & Wörn, H. (2008). Aggregating robots compute: an adaptive heuristic for the Euclidean Steiner tree problem. In M. Asada, J. C. Hallam, J.-A. Meyer, & J. Tani (Eds.), Lecture notes in artificial intelligence: Vol. 5040. The tenth international conference on simulation of adaptive behavior (SAB’08) (pp. 447–456). Berlin: Springer.

    Google Scholar 

  • Hamann, H., Meyer, B., Schmickl, T., & Crailsheim, K. (2010). A model of symmetry breaking in collective decision-making. In S. Doncieux, B. Girard, A. Guillot, J. Hallam, J.-A. Meyer, & J.-B. Mouret (Eds.), Lecture notes in artificial intelligence: Vol. 6226. From animals to animats 11 (pp. 639–648). Berlin: Springer.

    Chapter  Google Scholar 

  • Hamann, H., Schmickl, T., Wörn, H., & Crailsheim, K. (2012). Analysis of emergent symmetry breaking in collective decision making. Neural Computing & Applications, 21(2), 207–218.

    Article  Google Scholar 

  • Ingham, A. G., Levinger, G., Graves, J., & Peckham, V. (1974). The Ringelmann effect: studies of group size and group performance. Journal of Experimental Social Psychology, 10(4), 371–384.

    Article  Google Scholar 

  • Jeanne, R. L., & Nordheim, E. V. (1996). Productivity in a social wasp: per capita output increases with swarm size. Behavioral Ecology, 7(1), 43–48.

    Article  Google Scholar 

  • Jeanson, R., Fewell, J. H., Gorelick, R., & Bertram, S. M. (2007). Emergence of increased division of labor as a function of group size. Behavioral Ecology and Sociobiology, 62, 289–298.

    Article  Google Scholar 

  • Karsai, I., & Wenzel, J. W. (1998). Productivity, individual-level and colony-level flexibility, and organization of work as consequences of colony size. Proceedings of the National Academy of Sciences of the United States of America, 95, 8665–8669.

    Article  Google Scholar 

  • Kennedy, J., & Eberhart, R. C. (2001). Swarm intelligence. San Mateo: Morgan Kaufmann.

    Google Scholar 

  • Klein, M. J. (1956). Generalization of the Ehrenfest urn model. Physical Review, 103(1), 17–20.

    Article  MATH  Google Scholar 

  • Krafft, O., & Schaefer, M. (1993). Mean passage times for triangular transition matrices and a two parameter Ehrenfest urn model. Journal of Applied Probability, 30(4), 964–970.

    Article  MathSciNet  MATH  Google Scholar 

  • Lerman, K., & Galstyan, A. (2002). Mathematical model of foraging in a group of robots: effect of interference. Autonomous Robots, 13, 127–141.

    Article  MATH  Google Scholar 

  • Lerman, K., Martinoli, A., & Galstyan, A. (2005). A review of probabilistic macroscopic models for swarm robotic systems. In E. Şahin & W. M. Spears (Eds.), Lecture notes in computer science: Vol. 3342. Swarm robotics—SAB 2004 international workshop (pp. 143–152). Berlin: Springer.

    Google Scholar 

  • Levenberg, K. (1944). A method for the solution of certain non-linear problems in least squares. Quarterly of Applied Mathematics, 2, 164–168.

    MathSciNet  MATH  Google Scholar 

  • Lighthill, M. J., & Whitham, G. B. (1955). On kinematic waves. II. A theory of traffic flow on long crowded roads. Proceedings of the Royal Society of London, Series A, 229(1178), 317–345.

    Article  MathSciNet  MATH  Google Scholar 

  • Mahmassani, H. S., Dong, J., Kim, J., Chen, R. B., & Park, B. (2009). Incorporating weather impacts in traffic estimation and prediction systems. Technical Report FHWA-JPO-09-065, U.S. Department of Transportation.

  • Mallon, E. B., Pratt, S. C., & Franks, N. R. (2001). Individual and collective decision-making during nest site selection by the ant leptothorax albipennis. Behavioral Ecology and Sociobiology, 50, 352–359.

    Article  Google Scholar 

  • Marquardt, D. (1963). An algorithm for least-squares estimation of nonlinear parameters. SIAM Journal on Applied Mathematics, 11(2), 431–441.

    Article  MathSciNet  MATH  Google Scholar 

  • Milutinovic, D., & Lima, P. (2007). Cells and robots: modeling and control of large-size agent populations. Berlin: Springer.

    Google Scholar 

  • Miramontes, O. (1995). Order-disorder transitions in the behavior of ant societies. Complexity, 1(1), 56–60.

    Article  Google Scholar 

  • Mondada, F., Bonani, M., Guignard, A., Magnenat, S., Studer, C., & Floreano, D. (2005). Superlinear physical performances in a SWARM-BOT. In M. S. Capcarrere (Ed.), Lecture notes in computer science: Vol. 3630. Proc. of the 8th European conference on artificial life (ECAL) (pp. 282–291). Berlin: Springer.

    Google Scholar 

  • Nembrini, J., Winfield, A. F. T., & Melhuish, C. (2002). Minimalist coherent swarming of wireless networked autonomous mobile robots. In B. Hallam, D. Floreano, J. Hallam, G. Hayes, & J.-A. Meyer (Eds.), Proceedings of the seventh international conference on simulation of adaptive behavior on from animals to animats (pp. 373–382). Cambridge: MIT Press.

    Google Scholar 

  • Nicolis, S. C., Zabzina, N., Latty, T., & Sumpter, D. J. T. (2011). Collective irrationality and positive feedback. PLoS ONE, 6, e18901.

    Article  Google Scholar 

  • Okubo, A. (1986). Dynamical aspects of animal grouping: swarms, schools, flocks, and herds. Advances in Biophysics, 22, 1–94.

    Article  Google Scholar 

  • Okubo, A., & Levin, S. A. (2001). Diffusion and ecological problems: modern perspectives. Berlin: Springer.

    Book  Google Scholar 

  • Østergaard, E. H., Sukhatme, G. S., & Matarić, M. J. (2001). Emergent bucket brigading: a simple mechanisms for improving performance in multi-robot constrained-space foraging tasks. In E. André, S. Sen, C. Frasson, & J. P. Müller (Eds.), Proceedings of the fifth international conference on autonomous agents (AGENTS’01) (pp. 29–35). New York: ACM.

    Chapter  Google Scholar 

  • Prorok, A., Correll, N., & Martinoli, A. (2011). Multi-level spatial models for swarm-robotic systems. The International Journal of Robotics Research, 30(5), 574–589.

    Article  Google Scholar 

  • Saffre, F., Furey, R., Krafft, B., & Deneubourg, J.-L. (1999). Collective decision-making in social spiders: dragline-mediated amplification process acts as a recruitment mechanism. Journal of Theoretical Biology, 198, 507–517.

    Article  Google Scholar 

  • Schmickl, T., & Hamann, H. (2011). BEECLUST: a swarm algorithm derived from honeybees. In Y. Xiao (Ed.), Bio-inspired computing and communication networks. Boca Raton: CRC Press.

    Google Scholar 

  • Schneider-Fontán, M., & Matarić, M. J. (1996). A study of territoriality: the role of critical mass in adaptive task division. In P. Maes, S. W. Wilson, & M. J. Matarić (Eds.), From animals to animats IV (pp. 553–561). Cambridge: MIT Press.

    Google Scholar 

  • Seeley, T. D., Camazine, S., & Sneyd, J. (1991). Collective decision-making in honey bees: how colonies choose among nectar sources. Behavioral Ecology and Sociobiology, 28(4), 277–290.

    Article  Google Scholar 

  • Strogatz, S. H. (2001). Exploring complex networks. Nature, 410(6825), 268–276.

    Article  Google Scholar 

  • Vicsek, T., & Zafeiris, A. (2012). Collective motion. Physics Reports, 517(3–4), 71–140.

    Article  Google Scholar 

  • Wong, G., & Wong, S. (2002). A multi-class traffic flow model—an extension of LWR model with heterogeneous drivers. Transportation Research. Part A, Policy and Practice, 36(9), 827–841.

    Article  Google Scholar 

  • Yates, C. A., Erban, R., Escudero, C., Couzin, I. D., Buhl, J., Kevrekidis, I. G., Maini, P. K., & Sumpter, D. J. T. (2009). Inherent noise can facilitate coherence in collective swarm motion. Proceedings of the National Academy of Sciences of the United States of America, 106(14), 5464–5469.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heiko Hamann.

Appendix: Details on curve fitting

Appendix: Details on curve fitting

All curve fitting was done with an implementation of the nonlinear least-squares Marquardt–Levenberg algorithm (Levenberg 1944; Marquardt 1963) using gnuplot 4.6 patchlevel 1 (2012-09-26).Footnote 2

1.1 A.1 Foraging in a group of robots

The data for the curve fitted in Fig. 2(b) are shown in Table 1.

Table 1 Fitting data, foraging in a group of robots, Fig. 2b

1.2 A.2 Collective decision making based on BEECLUST

The data for the curve fitted in Fig. 2(c) are shown in Table 2.

Table 2 Fitting data, collective decision making based on BEECLUST, Fig. 2(c)

1.3 A.3 Aggregation in tree-like structures and reduction to shortest path

The data for the curve fitted in Fig. 2(d) are shown in Table 3. In this case weighted fitting was used (values ρ 1=0.00524 and ρ 2=0.00598 were weighted ten times higher than other values) to enforce the limit P<1.

Table 3 Fitting data, aggregation in tree-like structures and reduction to shortest path, Fig. 2(d)

1.4 A.4 Emergent–taxis behavior

The data for the curve fitted in Fig. 3(a) are shown in Table 4. Fitting was done in two steps. First, the interference function I(N) was fitted. Second, the performance function P(N) was fitted while keeping the parameters a 2 and c fixed.

Table 4 Fitting data, emergent–taxis behavior, Fig. 3(a)

1.5 A.5 Emergent–taxis behavior, narrow fit

The data for the curve fitted in Fig. 3(b) are shown in Table 5. The parameters a 2 and c of the interference function I(N) as obtained in Sect. A.4 were reused. The performance function P(N) was fitted within the narrow interval of N∈[20,22] while keeping the parameters a 2 and c fixed.

Table 5 Fitting data, emergent–taxis behavior, narrow fit, Fig. 3(b)

1.6 A.6 Mean first passage times

The data for the curve fitted in Fig. 7 are shown in Table 6. Weighted fitting was applied based on the measured standard deviation and weights scaled by \(\sqrt{\tau^{\text{theor}}}\), respectively.

Table 6 Fitting data, mean first passage times, Fig. 7

1.7 A.7 Density classification

The data for the curve fitted in Fig. 8(a) are shown in Table 7. For times t∈{100,200,400}, we set φ=0 as otherwise the fitting would result in φ<0.

Table 7 Fitting data, density classification, Fig. 8(a)

1.8 A.8 Feedback intensities

The data for the curve fitted in Fig. 8(b) are shown in Table 8. Weighted fitting was applied with zero-weight for data points of t<700, which means we ignore the initial values of φ(t)=0. Data points of t≥3000 had double the weight than values of 700≤t<3000.

Table 8 Fitting data, feedback intensities, Fig. 8(b)

1.9 A.9 Positive feedback probability

The data for the curve fitted in Fig. 9(a) are shown in Table 9.

Table 9 Fitting data, positive-feedback probability, Fig. 9(a)

1.10 A.10 Swarm alignment in locusts

The data for the curve fitted in Fig. 10 are shown in Table 10. We set φ=1 as otherwise the fitting would result in φ>1. Weighted fitting was applied values of s<0.17 and s>0.83 had double weight than values of 0.17≤s≤0.83.

Table 10 Fitting data, swarm alignment in locusts, Fig. 10

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamann, H. Towards swarm calculus: urn models of collective decisions and universal properties of swarm performance. Swarm Intell 7, 145–172 (2013). https://doi.org/10.1007/s11721-013-0080-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11721-013-0080-0

Keywords

Navigation