Skip to main content

Vitamin D and Bone Health: Basic and Clinical Aspects

  • Chapter
  • First Online:
Osteoporosis

Part of the book series: Contemporary Endocrinology ((COE))

Abstract

Vitamin D is a calciotropic hormone with essential roles in postnatal skeletal development as well as mineral homeostasis in the elderly. Severe vitamin D deficiency or genetic defects in vitamin D actions may result in rickets (before epiphyseal growth plate closure) or osteomalacia. Vitamin D is mainly synthesized in the epidermis from cholesterol precursors by ultraviolet B light exposure, followed by conversion to 25-hydroxyvitamin D in liver by CYP2R1 and other cytochrome P450 enzymes. The definition of vitamin D deficiency as well as the role of free vitamin D not bound to vitamin D-binding protein (GC globulin) remains controversial. In the kidney, CYP27B1 converts the 25-hydrovitamin D prohormone to the active metabolite 1,25-dihydroxyvitamin D which acts upon the vitamin D receptor to regulate transcription in target cells. The beneficial skeletal effects of vitamin D are mainly determined by its stimulation of intestinal calcium absorption, prevention of secondary hyperparathyroidism and subsequent increases in bone turnover, as well as reducing the risk of falls in vitamin D-deficient elderly. Remarkably low doses are however needed for these beneficial effects, while very high dose vitamin D supplements may stimulate bone resorption, suppress mineralization, and increase the risk of falls. This chapter will critically discuss basic and clinical aspects of vitamin D related to bone health across the lifespan.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Munns CF, Shaw N, Kiely M, Specker BL, Thacher TD, Ozono K, et al. Global consensus recommendations on prevention and Management of Nutritional Rickets. J Clin Endocrinol Metab. 2016;101(2):394–415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Laurent MR, Bravenboer N, Van Schoor NM, Bouillon R, Pettifor JM, Rickets LP. Osteomalacia. In: Bilezikian JP, editor. Primer on the metabolic bone diseases and disorders of mineral metabolism. 9th ed. Hoboken, NJ, USA; 2018. p. 684–94.

    Google Scholar 

  3. Bouillon R. Comparative analysis of nutritional guidelines for vitamin D. Nat Rev Endocrinol. 2017;13(8):466–79.

    Article  CAS  PubMed  Google Scholar 

  4. Bouillon R, Marcocci C, Carmeliet G, Bikle D, White JH, Dawson-Hughes B, et al. Skeletal and extra-skeletal actions of vitamin D: current evidence and outstanding questions. Endocr Rev. 2019;40(4):1109–51.

    Article  PubMed  Google Scholar 

  5. Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM, Hanley DA, Heaney RP, et al. Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2011;96(7):1911–30.

    Article  CAS  PubMed  Google Scholar 

  6. Rosen CJ, Abrams SA, Aloia JF, Brannon PM, Clinton SK, Durazo-Arvizu RA, et al. IOM committee members respond to Endocrine Society vitamin D guideline. J Clin Endocrinol Metab. 2012;97(4):1146–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. O'Riordan JL, Bijvoet OL. Rickets before the discovery of vitamin D. Bonekey Rep. 2014;3:478.

    PubMed  PubMed Central  Google Scholar 

  8. Bouillon R. Vitamin D: from photosynthesis, metabolism, and action to clinical applications. In: De Groot LJ, Jameson JL, editors. Endocrinology. 7th ed. Philadelphia: Saunders Elsevier; 2014. p. 1010–28.

    Google Scholar 

  9. DeLuca HF. In: Feldman D, Pike JW, Bouillon R, Giovannucci E, Goltzman D, Hewison M, editors. Historical overview of vitamin D. New York: Academic Press; 2018.

    Google Scholar 

  10. Hilger J, Goerig T, Weber P, Hoeft B, Eggersdorfer M, Carvalho NC, et al. Micronutrient intake in healthy toddlers: a multinational perspective. Nutrients. 2015;7(8):6938–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pilz S, Marz W, Cashman KD, Kiely ME, Whiting SJ, Holick MF, et al. Rationale and plan for vitamin D food fortification: a review and guidance paper. Front Endocrinol (Lausanne). 2018;9:373.

    Article  Google Scholar 

  12. McDonald GB, Lau KH, Schy AL, Wergedal JE, Baylink DJ. Intestinal metabolism and portal venous transport of 1,25(OH)2D3, 25(OH)D3, and vitamin D3 in the rat. Am J Phys. 1985;248(6 Pt 1):G633–8.

    CAS  Google Scholar 

  13. Geller AC, Jablonski NG, Pagoto SL, Hay JL, Hillhouse J, Buller DB, et al. Interdisciplinary perspectives on sun safety. JAMA Dermatol. 2018;154(1):88–92.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Green AC, Wallingford SC, McBride P. Childhood exposure to ultraviolet radiation and harmful skin effects: epidemiological evidence. Prog Biophys Mol Biol. 2011;107(3):349–55.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Narbutt J, Philipsen PA, Lesiak A, Sandberg Liljendahl T, Segerback D, Heydenreich J, et al. Children sustain high levels of skin DNA photodamage, with a modest increase of serum 25-hydroxyvitamin D3, after a summer holiday in Northern Europe. Br J Dermatol. 2018;179(4):940–50.

    Article  CAS  PubMed  Google Scholar 

  16. Singh P, Trivedi N. Tanning beds and hypervitaminosis D: a case report. Ann Intern Med. 2014;160(11):810–1.

    Article  PubMed  Google Scholar 

  17. Laurent MR, Gielen E, Pauwels S, Vanderschueren D, Bouillon R, Hypervitaminosis D. Associated with tanning bed use: a case report. Ann Intern Med. 2017;166(2):155–6.

    Article  PubMed  Google Scholar 

  18. Molin A, Wiedemann A, Demers N, Kaufmann M, Do Cao J, Mainard L, et al. Vitamin D-dependent rickets type 1B (25-hydroxylase deficiency): a rare condition or a misdiagnosed condition? J Bone Miner Res. 2017;32(9):1893–9.

    Article  CAS  PubMed  Google Scholar 

  19. Jones G, Kottler ML, Schlingmann KP. Genetic diseases of vitamin D metabolizing enzymes. Endocrinol Metab Clin N Am. 2017;46(4):1095–117.

    Article  Google Scholar 

  20. Zhu JG, Ochalek JT, Kaufmann M, Jones G, Deluca HF. CYP2R1 is a major, but not exclusive, contributor to 25-hydroxyvitamin D production in vivo. Proc Natl Acad Sci U S A. 2013;110(39):15650–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhu J, DeLuca HF. Vitamin D 25-hydroxylase - four decades of searching, are we there yet? Arch Biochem Biophys. 2012;523(1):30–6.

    Article  CAS  PubMed  Google Scholar 

  22. Bonnet L, Hachemi MA, Karkeni E, Couturier C, Astier J, Defoort C, et al. Diet induced obesity modifies vitamin D metabolism and adipose tissue storage in mice. In:J steroid Biochem Mol Biol; 2018.

    Google Scholar 

  23. Kogawa M, Findlay DM, Anderson PH, Ormsby R, Vincent C, Morris HA, et al. Osteoclastic metabolism of 25(OH)-vitamin D3: a potential mechanism for optimization of bone resorption. Endocrinology. 2010;151(10):4613–25.

    Article  CAS  PubMed  Google Scholar 

  24. Turner AG, Hanrath MA, Morris HA, Atkins GJ, Anderson PH. The local production of 1,25(OH)2D3 promotes osteoblast and osteocyte maturation. J Steroid Biochem Mol Biol. 2014;144(Pt A):114–8.

    Article  CAS  PubMed  Google Scholar 

  25. Shultz TD, Fox J, Heath H 3rd, Kumar R. Do tissues other than the kidney produce 1,25-dihydroxyvitamin D3 in vivo? A reexamination. Proc Natl Acad Sci U S A. 1983;80(6):1746–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bouillon R. The many faces of rickets. N Engl J Med. 1998;338(10):681–2.

    Article  CAS  PubMed  Google Scholar 

  27. Schlingmann KP, Kaufmann M, Weber S, Irwin A, Goos C, John U, et al. Mutations in CYP24A1 and idiopathic infantile hypercalcemia. N Engl J Med. 2011;365(5):410–21.

    Article  CAS  PubMed  Google Scholar 

  28. St-Arnaud R, Arabian A, Travers R, Barletta F, Raval-Pandya M, Chapin K, et al. Deficient mineralization of intramembranous bone in vitamin D-24-hydroxylase-ablated mice is due to elevated 1,25-dihydroxyvitamin D and not to the absence of 24,25-dihydroxyvitamin D. Endocrinology. 2000;141(7):2658–66.

    Article  CAS  PubMed  Google Scholar 

  29. Carpenter TO. CYP24A1 loss of function: clinical phenotype of monoallelic and biallelic mutations. J Steroid Biochem Mol Biol. 2017;173:337–40.

    Article  CAS  PubMed  Google Scholar 

  30. Cools M, Goemaere S, Baetens D, Raes A, Desloovere A, Kaufman JM, et al. Calcium and bone homeostasis in heterozygous carriers of CYP24A1 mutations: a cross-sectional study. Bone. 2015;81:89–96.

    Article  CAS  PubMed  Google Scholar 

  31. Hawkes CP, Li D, Hakonarson H, Meyers KE, Thummel KE, Levine MA. CYP3A4 induction by rifampin: an alternative pathway for vitamin D inactivation in patients with CYP24A1 mutations. J Clin Endocrinol Metab. 2017;102(5):1440–6.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Roizen JD, Li D, O'Lear L, Javaid MK, Shaw NJ, Ebeling PR, et al. CYP3A4 mutation causes vitamin D-dependent rickets type 3. J Clin Invest. 2018;128(5):1913–8.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Pauwels S, Jans I, Billen J, Heijboer A, Verstuyf A, Carmeliet G, et al. 1beta,25-Dihydroxyvitamin D3: a new vitamin D metabolite in human serum. J Steroid Biochem Mol Biol. 2017;173:341–8.

    Article  CAS  PubMed  Google Scholar 

  34. Martineau C, Naja RP, Husseini A, Hamade B, Kaufmann M, Akhouayri O, et al. Optimal bone fracture repair requires 24R,25-dihydroxyvitamin D3 and its effector molecule FAM57B2. J Clin Invest. 2018;128(8):3546–57.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Bikle D, Bouillon R, Thadhani R, Schoenmakers I. Vitamin D metabolites in captivity? Should we measure free or total 25(OH)D to assess vitamin D status? J Steroid Biochem Mol Biol. 2017;173:105–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Nielson CM, Jones KS, Bouillon R. Osteoporotic fractures in men research G, Chun RF, Jacobs J, et al. role of assay type in determining free 25-Hydroxyvitamin D levels in diverse populations. N Engl J Med. 2016;374(17):1695–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Safadi FF, Thornton P, Magiera H, Hollis BW, Gentile M, Haddad JG, et al. Osteopathy and resistance to vitamin D toxicity in mice null for vitamin D binding protein. J Clin Invest. 1999;103(2):239–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jones KS, Assar S, Harnpanich D, Bouillon R, Lambrechts D, Prentice A, et al. 25(OH)D2 half-life is shorter than 25(OH)D3 half-life and is influenced by DBP concentration and genotype. J Clin Endocrinol Metab. 2014;99(9):3373–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Leong A, Rehman W, Dastani Z, Greenwood C, Timpson N, Langsetmo L, et al. The causal effect of vitamin D binding protein (DBP) levels on calcemic and cardiometabolic diseases: a Mendelian randomization study. PLoS Med. 2014;11(10):e1001751.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Bouillon R, Pauwels S. The vitamin D-binding protein. In: Feldman D, Pike JW, Bouillon R, Giovannucci E, Goltzman D, Hewison M, editors. Vitamin D. 4th ed. Waltham: Academic Press; 2018. p. 97–115.

    Chapter  Google Scholar 

  41. Pike JW, Meyer MB, Lee SM, Onal M, Benkusky NA. The vitamin D receptor: contemporary genomic approaches reveal new basic and translational insights. J Clin Invest. 2017;127(4):1146–54.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Chen H, Hewison M, Hu B, Adams JS. Heterogeneous nuclear ribonucleoprotein (hnRNP) binding to hormone response elements: a cause of vitamin D resistance. Proc Natl Acad Sci U S A. 2003;100(10):6109–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Adams JS, Chen H, Chun RF, Nguyen L, Wu S, Ren SY, et al. Novel regulators of vitamin D action and metabolism: lessons learned at the Los Angeles zoo. J Cell Biochem. 2003;88(2):308–14.

    Article  CAS  PubMed  Google Scholar 

  44. Craig TA, Zhang Y, McNulty MS, Middha S, Ketha H, Singh RJ, et al. Research resource: whole transcriptome RNA sequencing detects multiple 1alpha,25-dihydroxyvitamin D(3)-sensitive metabolic pathways in developing zebrafish. Mol Endocrinol. 2012;26(9):1630–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bouillon R. Extra-skeletal effects of vitamin D. Front Horm Res. 2018;50:72–88.

    Article  PubMed  Google Scholar 

  46. Rosen CJ, Adams JS, Bikle DD, Black DM, Demay MB, Manson JE, et al. The nonskeletal effects of vitamin D: an Endocrine Society scientific statement. Endocr Rev. 2012;33(3):456–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Van Cromphaut SJ, Dewerchin M, Hoenderop JG, Stockmans I, Van Herck E, Kato S, et al. Duodenal calcium absorption in vitamin D receptor-knockout mice: functional and molecular aspects. Proc Natl Acad Sci U S A. 2001;98(23):13324–9.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Benn BS, Ajibade D, Porta A, Dhawan P, Hediger M, Peng JB, et al. Active intestinal calcium transport in the absence of transient receptor potential vanilloid type 6 and calbindin-D9k. Endocrinology. 2008;149(6):3196–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Christakos S, Dhawan P, Verstuyf A, Verlinden L, Carmeliet G, Vitamin D. Metabolism, molecular mechanism of action, and pleiotropic effects. Physiol Rev. 2016;96(1):365–408.

    Article  CAS  PubMed  Google Scholar 

  50. Dhawan P, Veldurthy V, Yehia G, Hsaio C, Porta A, Kim KI, et al. Transgenic expression of the vitamin D receptor restricted to the ileum, cecum, and Colon of vitamin D receptor knockout mice rescues vitamin D receptor-dependent rickets. Endocrinology. 2017;158(11):3792–804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Tiosano D, Hadad S, Chen Z, Nemirovsky A, Gepstein V, Militianu D, et al. Calcium absorption, kinetics, bone density, and bone structure in patients with hereditary vitamin D-resistant rickets. J Clin Endocrinol Metab. 2011;96(12):3701–9.

    Article  CAS  PubMed  Google Scholar 

  52. Carmeliet G, Bouillon R. How important is vitamin D for calcium homeostasis during pregnancy and lactation? J Bone Miner Res. 2018;33(1):13–5.

    Article  PubMed  Google Scholar 

  53. Meir T, Levi R, Lieben L, Libutti S, Carmeliet G, Bouillon R, et al. Deletion of the vitamin D receptor specifically in the parathyroid demonstrates a limited role for the receptor in parathyroid physiology. Am J Physiol Renal Physiol. 2009;297(5):F1192–8.

    Article  CAS  PubMed  Google Scholar 

  54. van de Peppel J, Franceschi RT, Li Y, van der Eerden BCJ. Vitamin D regulation of osteoblast function. In: Feldman D, Pike JW, Bouillon R, Giovannucci R, Goltzman D, Hewison M, editors. Vitamin D. 4th ed. New York: Academic Press; 2018. p. 295–308.

    Chapter  Google Scholar 

  55. St John HC, Bishop KA, Meyer MB, Benkusky NA, Leng N, Kendziorski C, et al. The osteoblast to osteocyte transition: epigenetic changes and response to the vitamin D3 hormone. Mol Endocrinol. 2014;28(7):1150–65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Starczak Y, Reinke DC, Barratt KR, Ryan JW, Russell PK, Clarke MV, et al. Absence of vitamin D receptor in mature osteoclasts results in altered osteoclastic activity and bone loss. J Steroid Biochem Mol Biol. 2018;177:77–82.

    Article  CAS  PubMed  Google Scholar 

  57. Nakamishi Y, Takahashi N, Udagawa N, Suda T. Osteoclastogenesis and vitamin D. In: Feldman D, Pike JW, Bouillon R, Giovannucci R, Goltzman D, Hewison M, editors. Vitamin D. 4th ed. New York: Academic Press; 2018. p. 309–17.

    Chapter  Google Scholar 

  58. Baldock PA, Thomas GP, Hodge JM, Baker SU, Dressel U, O'Loughlin PD, et al. Vitamin D action and regulation of bone remodeling: suppression of osteoclastogenesis by the mature osteoblast. J Bone Miner Res. 2006;21(10):1618–26.

    Article  CAS  PubMed  Google Scholar 

  59. Anderson PH, Lam NN, Turner AG, Davey RA, Kogawa M, Atkins GJ, et al. The pleiotropic effects of vitamin D in bone. J Steroid Biochem Mol Biol. 2013;136:190–4.

    Article  CAS  PubMed  Google Scholar 

  60. Wronski TJ, Halloran BP, Bikle DD, Globus RK, Morey-Holton ER. Chronic administration of 1,25-dihydroxyvitamin D3: increased bone but impaired mineralization. Endocrinology. 1986;119(6):2580–5.

    Article  CAS  PubMed  Google Scholar 

  61. Nakamichi Y, Udagawa N, Horibe K, Mizoguchi T, Yamamoto Y, Nakamura T, et al. VDR in osteoblast-lineage cells primarily mediates vitamin D treatment-induced increase in bone mass by suppressing bone resorption. J Bone Miner Res. 2017;32(6):1297–308.

    Article  CAS  PubMed  Google Scholar 

  62. Balsan S, Garabedian M, Larchet M, Gorski AM, Cournot G, Tau C, et al. Long-term nocturnal calcium infusions can cure rickets and promote normal mineralization in hereditary resistance to 1,25-dihydroxyvitamin D. J Clin Invest. 1986;77(5):1661–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hock JM, Gunness-Hey M, Poser J, Olson H, Bell NH, Raisz LG. Stimulation of undermineralized matrix formation by 1,25 dihydroxyvitamin D3 in long bones of rats. Calcif Tissue Int. 1986;38(2):79–86.

    Article  CAS  PubMed  Google Scholar 

  64. Verhaeghe J, Suiker AM, Van Bree R, Van Herck E, Jans I, Visser WJ, et al. Increased clearance of 1,25(OH)2D3 and tissue-specific responsiveness to 1,25(OH)2D3 in diabetic rats. Am J Phys. 1993;265(2 Pt 1):E215–23.

    CAS  Google Scholar 

  65. Mathieu C, Waer M, Laureys J, Rutgeerts O, Bouillon R. Prevention of autoimmune diabetes in NOD mice by 1,25 dihydroxyvitamin D3. Diabetologia. 1994;37(6):552–8.

    Article  CAS  PubMed  Google Scholar 

  66. Adams JS, Lee G. Gains in bone mineral density with resolution of vitamin D intoxication. Ann Intern Med. 1997;127(3):203–6.

    Article  CAS  PubMed  Google Scholar 

  67. Lieben L, Masuyama R, Torrekens S, Van Looveren R, Schrooten J, Baatsen P, et al. Normocalcemia is maintained in mice under conditions of calcium malabsorption by vitamin D-induced inhibition of bone mineralization. J Clin Invest. 2012;122(5):1803–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Yamamoto Y, Yoshizawa T, Fukuda T, Shirode-Fukuda Y, Yu T, Sekine K, et al. Vitamin D receptor in osteoblasts is a negative regulator of bone mass control. Endocrinology. 2013;154(3):1008–20.

    Article  CAS  PubMed  Google Scholar 

  69. Masuyama R, Stockmans I, Torrekens S, Van Looveren R, Maes C, Carmeliet P, et al. Vitamin D receptor in chondrocytes promotes osteoclastogenesis and regulates FGF23 production in osteoblasts. J Clin Invest. 2006;116(12):3150–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Takeda S, Yoshizawa T, Nagai Y, Yamato H, Fukumoto S, Sekine K, et al. Stimulation of osteoclast formation by 1,25-dihydroxyvitamin D requires its binding to vitamin D receptor (VDR) in osteoblastic cells: studies using VDR knockout mice. Endocrinology. 1999;140(2):1005–8.

    Article  CAS  PubMed  Google Scholar 

  71. Thacher TD, Fischer PR, Pettifor JM, Lawson JO, Isichei CO. Reading JC, et al. a comparison of calcium, vitamin D, or both for nutritional rickets in Nigerian children. N Engl J Med. 1999;341(8):563–8.

    Article  CAS  PubMed  Google Scholar 

  72. Kutluk G, Cetinkaya F, Basak M. Comparisons of oral calcium, high dose vitamin D and a combination of these in the treatment of nutritional rickets in children. J Trop Pediatr. 2002;48(6):351–3.

    Article  PubMed  Google Scholar 

  73. Aggarwal V, Seth A, Marwaha RK, Sharma B, Sonkar P, Singh S, et al. Management of nutritional rickets in Indian children: a randomized controlled trial. J Trop Pediatr. 2013;59(2):127–33.

    Article  PubMed  Google Scholar 

  74. Harnot J, Verma S, Singhi S, Sankhyan N, Sachdeva N, Bharti B. Comparison of 300,000 and 600,000 IU Oral vitamin-D bolus for vitamin-D deficiency in young children. Indian J Pediatr. 2017;84(2):111–6.

    Article  PubMed  Google Scholar 

  75. Mondal K, Seth A, Marwaha RK, Dhanwal D, Aneja S, Singh R, et al. A randomized controlled trial on safety and efficacy of single intramuscular versus staggered oral dose of 600 000IU vitamin D in treatment of nutritional rickets. J Trop Pediatr. 2014;60(3):203–10.

    Article  PubMed  Google Scholar 

  76. Ganmaa D, Stuart JJ, Sumberzul N, Ninjin B, Giovannucci E, Kleinman K, et al. Vitamin D supplementation and growth in urban Mongol school children: results from two randomized clinical trials. PLoS One. 2017;12(5):e0175237.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Thacher TD, Bommersbach TJ, Pettifor JM, Isichei CO, Fischer PR. Comparison of limestone and ground fish for treatment of nutritional rickets in children in Nigeria. J Pediatr. 2015;167(1):148–54.. e1

    Article  PubMed  Google Scholar 

  78. Thacher TD, Obadofin MO, O'Brien KO, Abrams SA. The effect of vitamin D2 and vitamin D3 on intestinal calcium absorption in Nigerian children with rickets. J Clin Endocrinol Metab. 2009;94(9):3314–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hosking DJ, Campbell GA, Kemm JR, Cotton RE, Knight ME, Berryman R, et al. Screening for subclinical osteomalacia in the elderly: normal ranges or pragmatism? Lancet. 1983;2(8362):1290–2.

    Article  CAS  PubMed  Google Scholar 

  80. Islam MZ, Shamim AA, Viljakainen HT, Akhtaruzzaman M, Jehan AH, Khan HU, et al. Effect of vitamin D, calcium and multiple micronutrient supplementation on vitamin D and bone status in Bangladeshi premenopausal garment factory workers with hypovitaminosis D: a double-blinded, randomised, placebo-controlled 1-year intervention. Br J Nutr. 2010;104(2):241–7.

    Article  CAS  PubMed  Google Scholar 

  81. Vogelsang H, Ferenci P, Resch H, Kiss A, Gangl A. Prevention of bone mineral loss in patients with Crohn's disease by long-term oral vitamin D supplementation. Eur J Gastroenterol Hepatol. 1995;7(7):609–14.

    CAS  PubMed  Google Scholar 

  82. Schafer AL, Weaver CM, Black DM, Wheeler AL, Chang H, Szefc GV, et al. Intestinal calcium absorption decreases dramatically after gastric bypass surgery despite optimization of vitamin D status. J Bone Miner Res. 2015;30(8):1377–85.

    Article  CAS  PubMed  Google Scholar 

  83. Cooper C, Harvey NC, Bishop NJ, Kennedy S, Papageorghiou AT, Schoenmakers I, et al. Maternal gestational vitamin D supplementation and offspring bone health (MAVIDOS): a multicentre, double-blind, randomised placebo-controlled trial. Lancet Diabetes Endocrinol. 2016;4(5):393–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Winzenberg TM, Powell S, Shaw KA, Jones G. Vitamin D supplementation for improving bone mineral density in children. Cochrane Database Syst Rev. 2010;10:CD006944.

    Google Scholar 

  85. Lewis RD, Laing EM, Hill Gallant KM, Hall DB, McCabe GP, Hausman DB, et al. A randomized trial of vitamin D(3) supplementation in children: dose-response effects on vitamin D metabolites and calcium absorption. J Clin Endocrinol Metab. 2013;98(12):4816–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Need AG, O'Loughlin PD, Morris HA, Coates PS, Horowitz M, Nordin BE. Vitamin D metabolites and calcium absorption in severe vitamin D deficiency. J Bone Miner Res. 2008;23(11):1859–63.

    Article  CAS  PubMed  Google Scholar 

  87. Gallagher JC, Jindal PS, Smith LM. Vitamin D does not increase calcium absorption in young women: a randomized clinical trial. J Bone Miner Res. 2014;29(5):1081–7.

    Article  CAS  PubMed  Google Scholar 

  88. Gallagher JC, Yalamanchili V, Smith LM. The effect of vitamin D on calcium absorption in older women. J Clin Endocrinol Metab. 2012;97(10):3550–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Aloia JF, Dhaliwal R, Shieh A, Mikhail M, Fazzari M, Ragolia L, et al. Vitamin D supplementation increases calcium absorption without a threshold effect. Am J Clin Nutr. 2014;99(3):624–31.

    Article  CAS  PubMed  Google Scholar 

  90. Hansen KE, Johnson RE, Chambers KR, Johnson MG, Lemon CC, Vo TN, et al. Treatment of vitamin D insufficiency in postmenopausal women: a randomized clinical trial. JAMA Intern Med. 2015;175(10):1612–21.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Bolland MJ, Grey A, Avenell A. Effects of vitamin D supplementation on musculoskeletal health: a systematic review, meta-analysis, and trial sequential analysis. Lancet Diabetes Endocrinol. 2018;6(11):847–58.

    Article  CAS  Google Scholar 

  92. Macdonald HM, Reid IR, Gamble GD, Fraser WD, Tang JC, Wood AD. 25-Hydroxyvitamin D threshold for the effects of vitamin D supplements on bone density: secondary analysis of a randomized controlled trial. J Bone Miner Res. 2018;33(8):1464–9.

    Article  CAS  PubMed  Google Scholar 

  93. Reid IR, Horne AM, Mihov B, Gamble GD, Al-Abuwsi F, Singh M, et al. Effect of monthly high-dose vitamin D on bone density in community-dwelling older adults substudy of a randomized controlled trial. J Intern Med. 2017;282(5):452–60.

    Article  CAS  PubMed  Google Scholar 

  94. Kahwati LC, Weber RP, Pan H, Gourlay M, LeBlanc E, Coker-Schwimmer M, et al. Vitamin D, calcium, or combined supplementation for the primary prevention of fractures in community-dwelling adults: evidence report and systematic review for the US preventive services task force. JAMA. 2018;319(15):1600–12.

    Article  PubMed  Google Scholar 

  95. Tai V, Leung W, Grey A, Reid IR, Bolland MJ. Calcium intake and bone mineral density: systematic review and meta-analysis. BMJ. 2015;351:h4183.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Jackson RD, LaCroix AZ, Gass M, Wallace RB, Robbins J, Lewis CE, et al. Calcium plus vitamin D supplementation and the risk of fractures. N Engl J Med. 2006;354(7):669–83.

    Article  CAS  PubMed  Google Scholar 

  97. Bolland MJ, Leung W, Tai V, Bastin S, Gamble GD, Grey A, et al. Calcium intake and risk of fracture: systematic review. BMJ. 2015;h4580:351.

    Google Scholar 

  98. Chapuy MC, Arlot ME, Duboeuf F, Brun J, Crouzet B, Arnaud S, et al. Vitamin D3 and calcium to prevent hip fractures in elderly women. N Engl J Med. 1992;327(23):1637–42.

    Article  CAS  PubMed  Google Scholar 

  99. Chapuy MC, Arlot ME, Delmas PD, Meunier PJ. Effect of calcium and cholecalciferol treatment for three years on hip fractures in elderly women. BMJ. 1994;308(6936):1081–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Grant AM, Avenell A, Campbell MK, McDonald AM, MacLennan GS, McPherson GC, et al. Oral vitamin D3 and calcium for secondary prevention of low-trauma fractures in elderly people (randomised evaluation of calcium or vitamin D, RECORD): a randomised placebo-controlled trial. Lancet. 2005;365(9471):1621–8.

    Article  CAS  PubMed  Google Scholar 

  101. Bolland MJ, Grey A, Avenell A, Gamble GD, Reid IR. Calcium supplements with or without vitamin D and risk of cardiovascular events: reanalysis of the Women's Health Initiative limited access dataset and meta-analysis. BMJ. 2011;342:d2040.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Ford JA, MacLennan GS, Avenell A, Bolland M, Grey A, Witham M, et al. Cardiovascular disease and vitamin D supplementation: trial analysis, systematic review, and meta-analysis. Am J Clin Nutr. 2014;100(3):746–55.

    Article  CAS  PubMed  Google Scholar 

  103. Avenell A, Mak JC, O'Connell D. Vitamin D and vitamin D analogues for preventing fractures in post-menopausal women and older men. Cochrane Database Syst Rev. 2014;(4):CD000227.

    Google Scholar 

  104. Boonen S, Lips P, Bouillon R, Bischoff-Ferrari HA, Vanderschueren D, Haentjens P. Need for additional calcium to reduce the risk of hip fracture with vitamin d supplementation: evidence from a comparative metaanalysis of randomized controlled trials. J Clin Endocrinol Metab. 2007;92(4):1415–23.

    Article  CAS  PubMed  Google Scholar 

  105. Chung M, Lee J, Terasawa T, Lau J, Trikalinos TA. Vitamin D with or without calcium supplementation for prevention of cancer and fractures: an updated meta-analysis for the U. S. Preventive services task force. Ann Intern Med. 2011;155(12):827–38.

    Article  PubMed  Google Scholar 

  106. Bolland MJ, Grey A, Gamble GD, Reid IR. The effect of vitamin D supplementation on skeletal, vascular, or cancer outcomes: a trial sequential meta-analysis. Lancet Diabetes Endocrinol. 2014;2(4):307–20.

    Article  CAS  PubMed  Google Scholar 

  107. Crandall CJ, Newberry SJ, Diamant A, Lim YW, Gellad WF, Booth MJ, et al. Comparative effectiveness of pharmacologic treatments to prevent fractures: an updated systematic review. Ann Intern Med. 2014;161(10):711–23.

    Article  PubMed  Google Scholar 

  108. Camacho PM, Petak SM, Binkley N, Clarke BL, Harris ST, Hurley DL, et al. American Association of Clinical Endocrinologists and American College of endocrinology clinical practice guidelines for the diagnosis and treatment of postmenopausal osteoporosis - 2016. Endocr Pract. 2016;22(Suppl 4):1–42.

    Article  PubMed  Google Scholar 

  109. Bourke S, Bolland MJ, Grey A, Horne AM, Wattie DJ, Wong S, et al. The impact of dietary calcium intake and vitamin D status on the effects of zoledronate. Osteoporos Int. 2013;24(1):349–54.

    Article  CAS  PubMed  Google Scholar 

  110. Reid IR, Horne AM, Mihov B, Stewart A, Garratt E, Wong S, et al. Fracture prevention with Zoledronate in older women with osteopenia. N Engl J Med. 2018;379:2407–16.

    Article  CAS  PubMed  Google Scholar 

  111. Cameron ID, Dyer SM, Panagoda CE, Murray GR, Hill KD, Cumming RG, et al. Interventions for preventing falls in older people in care facilities and hospitals. Cochrane Database Syst Rev. 2018;9:CD005465.

    PubMed  Google Scholar 

  112. Gillespie LD, Robertson MC, Gillespie WJ, Sherrington C, Gates S, Clemson LM, et al. Interventions for preventing falls in older people living in the community. Cochrane Database Syst Rev. 2012;(9):CD007146.

    Google Scholar 

  113. Khaw KT, Stewart AW, Waayer D, Lawes CMM, Toop L, Camargo CA Jr, et al. Effect of monthly high-dose vitamin D supplementation on falls and non-vertebral fractures: secondary and post-hoc outcomes from the randomised, double-blind, placebo-controlled ViDA trial. Lancet Diabetes Endocrinol. 2017;5(6):438–47.

    Article  CAS  PubMed  Google Scholar 

  114. Sanders KM, Stuart AL, Williamson EJ, Simpson JA, Kotowicz MA, Young D, et al. Annual high-dose oral vitamin D and falls and fractures in older women: a randomized controlled trial. JAMA. 2010;303(18):1815–22.

    Article  CAS  PubMed  Google Scholar 

  115. Glendenning P, Zhu K, Inderjeeth C, Howat P, Lewis JR, Prince RL. Effects of three-monthly oral 150,000 IU cholecalciferol supplementation on falls, mobility, and muscle strength in older postmenopausal women: a randomized controlled trial. J Bone Miner Res. 2012;27(1):170–6.

    Article  CAS  PubMed  Google Scholar 

  116. Bischoff-Ferrari HA, Dawson-Hughes B, Orav EJ, Staehelin HB, Meyer OW, Theiler R, et al. Monthly high-dose vitamin D treatment for the prevention of functional decline: a randomized clinical trial. JAMA Intern Med. 2016;176(2):175–83.

    Article  PubMed  Google Scholar 

  117. Beaudart C, Buckinx F, Rabenda V, Gillain S, Cavalier E, Slomian J, et al. The effects of vitamin D on skeletal muscle strength, muscle mass, and muscle power: a systematic review and meta-analysis of randomized controlled trials. J Clin Endocrinol Metab. 2014;99(11):4336–45.

    Article  CAS  PubMed  Google Scholar 

  118. van Abel M, Hoenderop JG, Bindels RJ. The epithelial calcium channels TRPV5 and TRPV6: regulation and implications for disease. Naunyn Schmiedebergs Arch Pharmacol. 2005;371(4):295–306.

    Article  CAS  PubMed  Google Scholar 

Download references

Conflicts of Interest

Bouillon: Lecture fees from l’Oréal and Abiogen; co-owner of university patent on vitamin D analogs licensed to Hybrigenix

Laurent: Lecture fees and travel support from Amgen; consultancy fees from Alexion, Kyowa Kirin, Sandoz, Takeda and UCB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger Bouillon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bouillon, R., Laurent, M.R. (2020). Vitamin D and Bone Health: Basic and Clinical Aspects. In: Leder, B., Wein, M. (eds) Osteoporosis. Contemporary Endocrinology. Humana, Cham. https://doi.org/10.1007/978-3-319-69287-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69287-6_4

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-319-69286-9

  • Online ISBN: 978-3-319-69287-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics