Skip to main content

Advertisement

Log in

Vitamin D Activity and Metabolism in Bone

  • Skeletal Biology and Regulation (M Forwood and A Robling, Section Editors)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

In addition to the actions of the endocrine hormone, 1alpha,25-dihydroxyvitamin D (1,25(OH)2D) in stimulating intestinal calcium absorption, the regulation of bone mineral metabolism by 1,25(OH)2D is also considered an important contributor to calcium homeostasis. However, recent evidence suggest that 1,25(OH)2D acting either via endocrine or autocrine pathways plays varied roles in bone, which suggests that vitamin D contributes to the maintenance of bone mineral in addition to its catabolic roles. This review highlights the contrasting evidence for the direct action for vitamin D metabolism and activity in bone.

Recent Findings

Numerous cells within bone express vitamin D receptor (VDR), synthesise and catabolise 1,25(OH)2D via 25-hydroxyvitamin D 1alpha-hydroxylase (CYP27B1), and 25-hydroxyvitamin D 24-hydroxylase (CYP24A1) enzymes, respectively. Recent evidence suggests that all three genes are required to regulate processes of bone resorption, mineralization and fracture repair.

Summary

The actions of vitamin D in bone appear to negatively or positively regulate bone mineral depending on the physiological and pathological circumstances, suggesting that vitamin D plays pleiotropic roles in bone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Pasco JA, Sanders KM, Henry MJ, Nicholson GC, Seeman E, Kotowicz MA. Calcium intakes among Australian women: Geelong osteoporosis study. Aust NZ J Med. 2000;30(1):21–7.

    Article  CAS  Google Scholar 

  2. Tang BM, Eslick GD, Nowson C, Smith C, Bensoussan A. Use of calcium or calcium in combination with vitamin D supplementation to prevent fractures and bone loss in people aged 50 years and older: a meta-analysis. Lancet. 2007;370(9588):657–66.

    Article  CAS  PubMed  Google Scholar 

  3. Lai JKC, Lucas RM, Clements MS, Roddam AW, Banks E. Hip fracture risk in relation to vitamin D supplementation and serum 25-hydroxyvitamin D levels: a systematic review and meta-analysis of randomised controlled trials and observational studies. BMC Public Health. 2010;10:331.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Pike JW, Meyer MB, Lee SM, Onal M, Benkusky NA. The vitamin D receptor: contemporary genomic approaches reveal new basic and translational insights. J Clin Invest. 2017.

  5. Anderson PH, Hendrix I, Sawyer RK, Zarrinkalam R, Manavis J, Sarvestani GT, et al. Co-expression of CYP27B1 enzyme with the 1.5 kb CYP27B1 promoter-luciferase transgene in the mouse. Mol Cell Endocrinol. 2008;285(1–2):1–9.

    Article  CAS  PubMed  Google Scholar 

  6. Zehnder D, Bland R, Williams MC, McNinch RW, Howie AJ, Stewart PM, et al. Extrarenal expression of 25-hydroxyvitamin d(3)-1 alpha-hydroxylase. J Clin Endocrinol Metab. 2001;86(2):888–94.

    CAS  PubMed  Google Scholar 

  7. Li YC, Pirro AE, Amling M, Delling G, Baron R, Bronson R, et al. Targeted ablation of the vitamin D receptor: an animal model of vitamin D-dependent rickets type II with alopecia. Proc Natl Acad Sci U S A. 1997;94(18):9831–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dardenne O, Prud'homme J, Arabian A, Glorieux FH, St-Arnaud R. Targeted inactivation of the 25-hydroxyvitamin D(3)-1(alpha)-hydroxylase gene (CYP27B1) creates an animal model of pseudovitamin D-deficiency rickets. Endocrinology. 2001;142(7):3135–41.

    Article  CAS  PubMed  Google Scholar 

  9. Erben RG, Soegiarto DW, Weber K, Zeitz U, Lieberherr M, Gniadecki R, et al. Deletion of deoxyribonucleic acid binding domain of the vitamin D receptor abrogates genomic and nongenomic functions of vitamin D. Mol Endocrinol. 2002;16(7):1524–37.

    Article  CAS  PubMed  Google Scholar 

  10. Dardenne O, Prud'homme J, Hacking SA, Glorieux FH, St-Arnaud R. Correction of the abnormal mineral ion homeostasis with a high-calcium, high-phosphorus, high-lactose diet rescues the PDDR phenotype of mice deficient for the 25-hydroxyvitamin D-1alpha-hydroxylase (CYP27B1). Bone. 2003;32(4):332–40.

    Article  CAS  PubMed  Google Scholar 

  11. Amling M, Priemel M, Holzmann T, Chapin K, Rueger JM, Baron R, et al. Rescue of the skeletal phenotype of vitamin D receptor-ablated mice in the setting of normal mineral ion homeostasis: formal histomorphometric and biomechanical analyses. Endocrinology. 1999;140(11):4982–7.

    Article  CAS  PubMed  Google Scholar 

  12. Panda DK, Miao D, Bolivar I, Li J, Huo R, Hendy GN, et al. Inactivation of the 25-hydroxyvitamin D 1alpha-hydroxylase and vitamin D receptor demonstrates independent and interdependent effects of calcium and vitamin D on skeletal and mineral homeostasis. J Biol Chem. 2004;279(16):16754–66.

    Article  CAS  PubMed  Google Scholar 

  13. Ryan JW, Starczak Y, Tsangari H, Sawyer RK, Davey RA, Atkins GJ, et al. Sex-related differences in the skeletal phenotype of aged vitamin D receptor global knockout mice. J Steroid Biochem Mol Biol. 2015;164:361–8.

    Article  PubMed  Google Scholar 

  14. Yamamoto Y, Yoshizawa T, Fukuda T, Shirode-Fukuda Y, Yu T, Sekine K, et al. Vitamin D receptor in osteoblasts is a negative regulator of bone mass control. Endocrinology. 2013;154(3):1008–20.

    Article  CAS  PubMed  Google Scholar 

  15. Nakamichi Y, Udagawa N, Horibe K, Mizoguchi T, Yamamoto Y, Nakamura T, et al. VDR in osteoblast-lineage cells primarily mediates vitamin D treatment-induced increase in bone mass by suppressing bone resorption. J Bone Miner Res. 2017;32(6):1297–308.

    Article  CAS  PubMed  Google Scholar 

  16. •• Lieben L, Masuyama R, Torrekens S, Van Looveren R, Schrooten J, Baatsen P, et al. Normocalcemia is maintained in mice under conditions of calcium malabsorption by vitamin D-induced inhibition of bone mineralization. J Clin Invest. 2012;122(5):1803–15. This paper describes the relative importance of VDR-mediated siganlling in osteocytes in the process of regulating mineralisation. Data presented here illustrate that that bone mineralisation is a co-ordinated process which can be inhibited by excessive vitamin D activity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Atkins GJ, Kostakis P, Pan B, Farrugia A, Gronthos S, Evdokiou A, et al. RANKL expression is related to the differentiation state of human osteoblasts. J Bone Miner Res. 2003;18(6):1088–98.

    Article  CAS  PubMed  Google Scholar 

  18. Owen TA, Aronow MS, Barone LM, Bettencourt B, Stein GS, Lian JB. Pleiotropic effects of vitamin D on osteoblast gene expression are related to the proliferative and differentiated state of the bone cell phenotype: dependency upon basal levels of gene expression, duration of exposure, and bone matrix competency in normal rat osteoblast cultures. Endocrinology. 1991;128(3):1496–504.

    Article  CAS  PubMed  Google Scholar 

  19. •• Geng S, Zhou S, Glowacki J. Effects of 25-hydroxyvitamin D(3) on proliferation and osteoblast differentiation of human marrow stromal cells require CYP27B1/1alpha-hydroxylase. J Bone Miner Res. 2011;26(5):1145–53. This papers contributes important evidence tht local synthesis of vitamin D within osteoblasts-lineage cells plays a key role on the promotion of osteoblastogenesis.

    Article  CAS  PubMed  Google Scholar 

  20. Kato H, Ochiai-Shino H, Onodera S, Saito A, Shibahara T, Azuma T. Promoting effect of 1,25(OH)2 vitamin D3 in osteogenic differentiation from induced pluripotent stem cells to osteocyte-like cells. Open Biol. 2015;5(2):140201.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Xue Y, Karaplis AC, Hendy GN, Goltzman D, Miao D. Exogenous 1,25-dihydroxyvitamin D3 exerts a skeletal anabolic effect and improves mineral ion homeostasis in mice that are homozygous for both the 1alpha-hydroxylase and parathyroid hormone null alleles. Endocrinology. 2006;147(10):4801–10.

    Article  CAS  PubMed  Google Scholar 

  22. Atkins GJ, Anderson PH, Findlay DM, Welldon KJ, Vincent C, Zannettino AC, et al. Metabolism of vitamin D(3) in human osteoblasts: evidence for autocrine and paracrine activities of 1alpha,25-dihydroxyvitamin D(3). Bone. 2007;40(6):1517–28.

    Article  CAS  PubMed  Google Scholar 

  23. Yang D, Turner AG, Wijenayaka AR, Anderson PH, Morris HA, Atkins GJ. 1,25-Dihydroxyvitamin D3 and extracellular calcium promote mineral deposition via NPP1 activity in a mature osteoblast cell line MLO-A5. Mol Cell Endocrinol. 2015;412:140–7.

    Article  CAS  PubMed  Google Scholar 

  24. Yang D, Atkins GJ, Turner AG, Anderson PH, Morris HA. Differential effects of 1,25-dihydroxyvitamin D on mineralisation and differentiation in two different types of osteoblast-like cultures. J Steroid Biochem Mol Biol. 2013;136:166–70.

    Article  CAS  PubMed  Google Scholar 

  25. Mackenzie NC, Huesa C, Rutsch F, MacRae VE. New insights into NPP1 function: lessons from clinical and animal studies. Bone. 2012;51(5):961–8.

    Article  CAS  PubMed  Google Scholar 

  26. Gardiner EM, Baldock PA, Thomas GP, Sims NA, Henderson NK, Hollis B, et al. Increased formation and decreased resorption of bone in mice with elevated vitamin D receptor in mature cells of the osteoblastic lineage. FASEB J. 2000;14(13):1908–16.

    Article  CAS  PubMed  Google Scholar 

  27. Triliana R, Lam NN, Sawyer RK, Atkins GJ, Morris HA, Anderson PH. Skeletal characterization of an osteoblast-specific vitamin D receptor transgenic (ObVDR-B6) mouse model. J Steroid Biochem Mol Biol. 2016;164:331–6.

    Article  CAS  PubMed  Google Scholar 

  28. Lam NN, Triliana R, Sawyer RK, Atkins GJ, Morris HA, O'Loughlin PD, et al. Vitamin D receptor overexpression in osteoblasts and osteocytes prevents bone loss during vitamin D-deficiency. J Steroid Biochem Mol Biol. 2014;144:128–31.

    Article  CAS  PubMed  Google Scholar 

  29. Anderson PH, Atkins GJ. The skeleton as an intracrine organ for vitamin D metabolism. Mol Asp Med. 2008;29(6):397–406.

    Article  CAS  Google Scholar 

  30. van Driel M, Koedam M, Buurman CJ, Hewison M, Chiba H, Uitterlinden AG, et al. Evidence for auto/paracrine actions of vitamin D in bone: 1alpha-hydroxylase expression and activity in human bone cells. FASEB J. 2006;20(13):2417–9.

    Article  PubMed  Google Scholar 

  31. Turner AG, Hanrath MA, Morris HA, Atkins GJ, Anderson PH. The local production of 1, 25 (OH) 2 D 3 promotes osteoblast and osteocyte maturation. J Steroid Biochem Mol Biol. 2014;144:114–8.

    Article  CAS  PubMed  Google Scholar 

  32. Anderson PH, Atkins GJ, Findlay DM, Oloughlin PD, Welldon K, Vincent C, et al. RNAi-mediated silencing of CYP27B1 abolishes 1,25(OH)2D3 synthesis and reduces osteocalcin and CYP24 mRNA expression in human osteosarcoma (HOS) cells. J Steroid Biochem Mol Biol. 2007;103(3–5):601–5.

    Article  CAS  PubMed  Google Scholar 

  33. Turner AG, RK Sawyer, O’Loughlin PD, Atkins GJ, Morris HA, Anderson PH. Transgene expression of CYP27B1 in osteoblasts promotes bone formation without altering bone resorption. J Bone Miner Res. 2012;27(Suppl 1). Available at: http://www.asbmr.org/education/AbstractDetail?aid=05ac9f70-6487-4091-b38f-49cd239a7a29.

  34. Panda DK, Miao DS, Bolivar I, Li JR, Huo RJ, Hendy GN, et al. Inactivation of the 25-hydroxyvitamin D 1 alpha-hydroxylase and vitamin D receptor demonstrates independent and interdependent effects of calcium and vitamin D on skeletal and mineral homeostasis. J Biol Chem. 2004;279(16):16754–66.

    Article  CAS  PubMed  Google Scholar 

  35. Anderson PH, Sawyer RK, Moore AJ, May BK, O'Loughlin PD, Morris HA. Vitamin D depletion induces RANKL-mediated osteoclastogenesis and bone loss in a rodent model. J Bone Miner Res. 2008;23(11):1789–97.

    Article  CAS  PubMed  Google Scholar 

  36. Lee AM, Anderson PH, Sawyer RK, Moore AJ, Forwood MR, Steck R, et al. Discordant effects of vitamin D deficiency in trabecular and cortical bone architecture and strength in growing rodents. J Steroid Biochem Mol Biol. 2010;121(1–2):284–7.

    Article  CAS  PubMed  Google Scholar 

  37. Lee AM, Sawyer RK, Moore AJ, Morris HA, O'Loughlin PD, Anderson PH. Adequate dietary vitamin D and calcium are both required to reduce bone turnover and increased bone mineral volume. J Steroid Biochem Mol Biol. 2013;144:159–62.

    Article  PubMed  Google Scholar 

  38. Anderson P, Sawyer R, May B, O’Loughlin P, Morris H. 25-Hydroxyvitamin D requirement for maintaining skeletal health utilising a Sprague-Dawley rat model. J Steroid Biochem Mol Biol. 2007;103(3):592–5.

    Article  CAS  PubMed  Google Scholar 

  39. Anderson PH, Sawyer RK, May BK, O'Loughlin PD, Morris HA. 25-Hydroxyvitamin D requirement for maintaining skeletal health utilising a Sprague-Dawley rat model. J Steroid Biochem Mol Biol. 2007;103(3–5):592–5.

    Article  CAS  PubMed  Google Scholar 

  40. Lidor C, Sagiv P, Amdur B, Gepstein R, Otremski I, Hallel T, et al. Decrease in bone levels of 1,25-dihydroxyvitamin D in women with subcapital fracture of the femur. Calcif Tissue Int. 1993;52(2):146–8.

    Article  CAS  PubMed  Google Scholar 

  41. Masuda S, Byford V, Arabian A, Sakai Y, Demay MB, St-Arnaud R, et al. Altered pharmacokinetics of 1alpha,25-dihydroxyvitamin D3 and 25-hydroxyvitamin D3 in the blood and tissues of the 25-hydroxyvitamin D-24-hydroxylase (Cyp24a1) null mouse. Endocrinology. 2005;146(2):825–34.

    Article  CAS  PubMed  Google Scholar 

  42. Dinour D, Beckerman P, Ganon L, Tordjman K, Eisenstein Z, Holtzman EJ. Loss-of-function mutations of CYP24A1, the vitamin D 24-hydroxylase gene, cause long-standing hypercalciuric nephrolithiasis and nephrocalcinosis. J Urol. 2013;190(2):552–7.

    Article  CAS  PubMed  Google Scholar 

  43. Sumantran VN, Mishra P, Bera R, Sudhakar N. Microarray analysis of differentially-expressed genes encoding CYP450 and phase II drug metabolizing enzymes in psoriasis and melanoma. Pharmaceutics. 2016;8(1).

  44. Masuda S, Strugnell SA, Knutson JC, St-Arnaud R, Jones G. Evidence for the activation of 1alpha-hydroxyvitamin D2 by 25-hydroxyvitamin D-24-hydroxylase: delineation of pathways involving 1alpha,24-dihydroxyvitamin D2 and 1alpha,25-dihydroxyvitamin D2. Biochim Biophys Acta. 2006;1761(2):221–34.

    Article  CAS  PubMed  Google Scholar 

  45. Quarles LD. Role of FGF23 in vitamin D and phosphate metabolism: implications in chronic kidney disease. Exp Cell Res. 2012;318(9):1040–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Armbrecht HJ, Hodam TL, Boltz MA, Partridge NC, Brown AJ, Kumar VB. Induction of the vitamin D 24-hydroxylase (CYP24) by 1,25-dihydroxyvitamin D3 is regulated by parathyroid hormone in UMR106 osteoblastic cells. Endocrinology. 1998;139(8):3375–81.

    Article  CAS  PubMed  Google Scholar 

  47. Ito N, Findlay DM, Anderson PH, Bonewald LF, Atkins GJ. Extracellular phosphate modulates the effect of 1 alpha,25-dihydroxy vitamin D-3 (1,25D) on osteocyte like cells. J Steroid Biochem Mol Biol. 2013;136:183–6.

    Article  CAS  PubMed  Google Scholar 

  48. St-Arnaud R, Naja RP. Vitamin D metabolism, cartilage and bone fracture repair. Mol Cell Endocrinol. 2011;347(1–2):48–54.

    Article  CAS  PubMed  Google Scholar 

  49. Kogawa M, Anderson PH, Findlay DM, Morris HA, Atkins GJ. The metabolism of 25-(OH)vitamin D-3 by osteoclasts and their precursors regulates the differentiation of osteoclasts. J Steroid Biochem Mol Biol. 2010;121(1–2):277–80.

    Article  CAS  PubMed  Google Scholar 

  50. St-Arnaud R, Arabian A, Travers R, Barletta F, Raval-Pandya M, Chapin K, et al. Deficient mineralization of intramembranous bone in vitamin D-24-hydroxylase-ablated mice is due to elevated 1,25-dihydroxyvitamin D and not to the absence of 24,25-dihydroxyvitamin D. Endocrinology. 2000;141(7):2658–66.

    Article  CAS  PubMed  Google Scholar 

  51. Masuda S, Byford V, Arabian A, Sakai Y, Demay MB, St-Arnaud R, et al. Altered pharmacokinetics of 1a,25-dihydroxyvitamin D3 and 25-hydroxyvitamin D3 in the blood and tissues of the 25-hydroxyvitamin D-24-hydroxylase (Cyp24a1) null mouse. Endocrinology. 2005;146:825–34.

    Article  CAS  PubMed  Google Scholar 

  52. Hosogane N, Shinki T, Kasuga H, Taketomi S, Toyama Y, Suda T. Mechanisms for the reduction of 24,25-dihydroxyvitamin D3 levels and bone mass in 24-hydroxylase transgenic rats. FASEB J. 2003;17(6):737–9.

    CAS  PubMed  Google Scholar 

  53. Kasuga H, Hosogane N, Matsuoka K, Mori I, Sakura Y, Shimakawa K, et al. Characterization of transgenic rats constitutively expressing vitamin D-24-hydroxylase gene. Biochem Biophys Res Commun. 2002;297(5):1332–8.

    Article  CAS  PubMed  Google Scholar 

  54. Friedman NE, Lobaugh B, Drezner MK. Effects of calcitriol and phosphorus therapy on the growth of patients with X-linked hypophosphatemia. J Clin Endocrinol Metab. 1993;76(4):839–44.

    CAS  PubMed  Google Scholar 

  55. A gene (PEX) with homologies to endopeptidases is mutated in patients with X-linked hypophosphatemic rickets. The HYP Consortium. Nat Genet. 1995;11(2):130–6.

  56. Liu S, Zhou J, Tang W, Jiang X, Rowe DW, Quarles LD. Pathogenic role of Fgf23 in Hyp mice. Am J Physiol Endocrinol Metab. 2006;291(1):E38–49.

    Article  CAS  PubMed  Google Scholar 

  57. Miedlich SU, Zalutskaya A, Zhu ED, Demay MB. Phosphate-induced apoptosis of hypertrophic chondrocytes is associated with a decrease in mitochondrial membrane potential and is dependent upon Erk1/2 phosphorylation. J Biol Chem. 2010;285(24):18270–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sabbagh Y, Carpenter TO, Demay MB. Hypophosphatemia leads to rickets by impairing caspase-mediated apoptosis of hypertrophic chondrocytes. Proc Natl Acad Sci U S A. 2005;102(27):9637–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. •• Bai X, Miao D, Xiao S, Qiu D, St-Arnaud R, Petkovich M, et al. CYP24 inhibition as a therapeutic target in FGF23-mediated renal phosphate wasting disorders. J Clin Invest. 2016;126(2):667–80. This paper describes desmostrates that CYP24A1 inhibtion can prevent rickets without the need to restore circulating phosphate or calcitriol levels in the disorder of x-linked hypophosphatemia.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Schwartz Z, Sylvia VL, Del Toro F, Hardin RR, Dean DD, Boyan BD. 24R,25-(OH)(2)D(3) mediates its membrane receptor-dependent effects on protein kinase C and alkaline phosphatase via phospholipase a(2) and cyclooxygenase-1 but not cyclooxygenase-2 in growth plate chondrocytes. J Cell Physiol. 2000;182(3):390–401.

    Article  CAS  PubMed  Google Scholar 

  61. Hurst-Kennedy J, Boyan BD, Schwartz Z. Lysophosphatidic acid signaling promotes proliferation, differentiation, and cell survival in rat growth plate chondrocytes. Biochim Biophys Acta. 2009;1793(5):836–46.

    Article  CAS  PubMed  Google Scholar 

  62. Seo EG, Norman AW. Three-fold induction of renal 25-hydroxyvitamin D3-24-hydroxylase activity and increased serum 24,25-dihydroxyvitamin D3 levels are correlated with the healing process after chick tibial fracture. J Bone Miner Res. 1997;12(4):598–606.

    Article  CAS  PubMed  Google Scholar 

  63. Seo EG, Einhorn TA, Norman AW. 24R,25-dihydroxyvitamin D3: an essential vitamin D3 metabolite for both normal bone integrity and healing of tibial fracture in chicks. Endocrinology. 1997;138(9):3864–72.

    Article  CAS  PubMed  Google Scholar 

  64. Husseini A, St-Arnaud R. CYP24A1-deficiency does not affect bone regeneration in distraction osteogenesis. J Steroid Biochem Mol Biol. 2016; doi:10.1016/j.jsbmb.2016.11.003.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul H. Anderson.

Ethics declarations

Conflict of Interest

Paul Anderson declares no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Skeletal Biology and Regulation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anderson, P.H. Vitamin D Activity and Metabolism in Bone. Curr Osteoporos Rep 15, 443–449 (2017). https://doi.org/10.1007/s11914-017-0394-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-017-0394-8

Keywords

Navigation