Skip to main content

Non-Saccharomyces (and Bacteria) Yeasts That Produce Ethanol

  • Chapter
  • First Online:
Brewing and Distilling Yeasts

Part of the book series: The Yeast Handbook ((YEASTHDB))

  • 3155 Accesses

Abstract

In excess of a thousand unique yeast species have been identified, and many of them have been characterized (to a lesser or greater extent). Ninety percent (and more) of the fermentation ethanol produced globally employs species of the genus Saccharomyces (predominantly S. cerevisiae and S. pastorianus). However, there are a number of non-Saccharomyces yeast species that can produce ethanol (also called nonconventional yeast species). Nonconventional yeasts are a large and barely exploited resource of yeast biodiversity. Many of these nonconventional yeast species exhibit industrially relevant traits such as an ability to utilize complex substrates, nutrient tolerance against stresses and fermentation inhibition. The evolution of most of these yeast species was independent of Saccharomyces spp. Many of them possess novel and unique mechanisms that are not present in Saccharomyces yeasts. Most of them have been characterized as spoilage yeasts because they have been isolated from contaminated foods and beverages. Yeast species that are included in this category are Schizosaccharomyces pombe, Kluyveromyces marxianus, Schwanniomyces occidentalis, Brettanomyces bruxcellensis, Pichia stipitis, Pachysolen tannophilus and Torulaspora delbrueckii.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abarca D, Fernandez-Lobato M, Del Poso L, Jimenez A (1991) Isolation of a new gene (SWA2) encoding a new α-amylase Swanniomyces occidentalis and its expression in Saccharomyces cerevisiae. FEBS Lett 279:41–44

    Article  CAS  PubMed  Google Scholar 

  • Abdel-Banat BMA, Hoshida H, Ano A, Nonklang S, Akada R (2010) High-temperature fermentation: how can processes for ethanol production at high temperatures become superior to the traditional process using mesophilic yeast? Appl Microbiol Biotechnol 85:861–867

    Article  CAS  PubMed  Google Scholar 

  • Agrawal M, Mao Z, Chen RR (2011) Adaptation yields a highly efficient xylose-fermenting Zymomonas mobilis strain. Biotechnol Bioeng 108:777–785

    Article  CAS  PubMed  Google Scholar 

  • Albertin W, Chasseriaud L, Comte G, Panfili A, Delcamp A, Salin F, Marullo P, Bely M (2014) Winemaking and bioprocesses strongly shaped the genetic diversity of the ubiquitous yeast Torulaspora delbrueckii. PLoS One:e94246

    Google Scholar 

  • Barnett JA (1992) Some controls on oligosaccharide utilization by yeasts: the physiological basis of the Kluyver effect. FEMS Microbiol Lett 100:371–378

    Article  CAS  PubMed  Google Scholar 

  • Baruffini E, Goffrini P, Donnini C, Lodi T (2006) Galactose transport in Kluyveromyces lactis: major role of the glucose permease Hgt1. FEMS Yeast Res 6:1235–1242

    Article  CAS  PubMed  Google Scholar 

  • Basso RE, Alcarde AR, Portugal CB (2016) Could non-Saccharomyces yeasts contribute on innovative brewing fermentations? Food Res Int 86:112–120

    Article  CAS  Google Scholar 

  • Becerra M, Rodríguez-Belmonte E, Esperanza Cerdán M, González Siso MI (2004a) Engineered autolytic yeast strains secreting Kluyveromyces lactis beta-galactosidase for production of heterologous proteins in lactose media. J Biotechnol 8:131–137

    Article  CAS  Google Scholar 

  • Becerra M, Tarrío N, González-Siso MI, Cerdán ME (2004b) Genome-wide analysis of Kluyveromyces lactis in wild-type and rag2 mutant strains. Genome 47:970–978

    Article  CAS  PubMed  Google Scholar 

  • Belloch C, Barrio E, García MD, Querol A (1998a) Inter- and intraspecific chromosome pattern variation in the yeast genus Kluyveromyces. Yeast 14:1341–1354

    Article  CAS  PubMed  Google Scholar 

  • Belloch C, Barrio E, García MD, Querol A (1998b) Phylogenetic reconstruction of the yeast genus Kluyveromyces: restriction map analysis of the 5.8S rRNA gene and the two ribosomal internal transcribed spacers. Syst Appl Microbiol 21:266–273

    Article  CAS  PubMed  Google Scholar 

  • Björling T, Lindman B (1989) Evaluation of xylose-fermenting yeasts for ethanol production from spent sulfite liquor. Enzyme Microb Technol 11(4):240–246

    Article  Google Scholar 

  • Boekhout T (2005) Biodiversity: gut feeling for yeasts. Nature 434(7032):449–451

    Article  CAS  PubMed  Google Scholar 

  • Boze H, Moulin G, Galzy P (1987a) A comparison of growth yields obtained from Schwanniomyces castellii and an alcohol dehydrogenase mutant. Biotechnol Lett 9:461–466

    Article  CAS  Google Scholar 

  • Boze H, Moulin G, Galzy P (1987b) Influence of culture conditions on the yield and amylase biosynthesis in continuous culture by Schwanniomyces castellii. Arch Microbiol 148:162–166

    Article  CAS  Google Scholar 

  • Boze H, Guyot JB, Moulin G, Galzy B (1989) Isolation and characterization of a derepressed mutant of Schwanniomyces castellii for amylase production. Appl Microbiol Biotechnol 31:366

    Article  CAS  Google Scholar 

  • Breunig KD, Bolotin-Fukuhara M, Bianchi MM, Bourgarel D, Falcone C, Ferrero II, Frontali L, Goffrini P, Krijger JJ, Mazzoni C, Milkowski C, Steensma HY, Wésolowski-Louvel M, Zeeman AM (2000) Regulation of primary carbon metabolism in Kluyveromyces lactis. Enzym Microb Technol 26:771–780

    Article  CAS  Google Scholar 

  • Calleja GB, Zuker M, Johnson BF, Yoo BY (1980) Analyses of fission scars as permanent records of cell division in Schizosaccharomyces pombe. J Theor Biol 84:523–544

    Article  CAS  PubMed  Google Scholar 

  • Calleja GB, Levy-Rick S, Lusena CV, Moranelli F, Nasim A (1982) Direct and quantitative conversion of starch to ethanol by the yeast Schwanniomyces alluvius. Biotechnol Lett 4:543–546

    Article  CAS  Google Scholar 

  • Calleja GB, Levy-Rick S, Moranelli F, Nasim A (1984) Thermosensitive export of amylases in the yeast Schwanniomyces alluvius. Plant Cell Physiol 25:757–761

    CAS  Google Scholar 

  • Canonico C, Agarbati A, Comitini F, Ciani M (2016) Torulaspora delbrueskii in the brewing process: a new approach to enhance bioflavour and reduce ethanol content. Food Microbiol 56:45–51

    Article  CAS  PubMed  Google Scholar 

  • Chen RR, Wang Y, Shin H-D, Agrawal M, Mao Z (2009) Strains of Zymomonas mobilis for fermentation of biomass. US Patent Appl. No. US20090269797

    Google Scholar 

  • Clapp C, Portt L, Khoury C, Sheibani S, Norman G, Ebner P, Eid R, Vali H, Mandato CA, Madeo F, Greenwood MT (2012) 14-3-3 protects against stress-induced apoptosis. Cell Death Dis 3:e348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Claros MG, Abarca D, Fernández-Lobato M, Jiménez A (1993) Molecular structure of the SWA2 gene encoding an AMY1-related alpha-amylase from Schwanniomyces occidentalis. Curr Genet 24:75–83

    Article  CAS  PubMed  Google Scholar 

  • Clementi F, Rossi J (1986) Alpha-amylase and glucoamylase production by Schwanniomyces castellii. Antonie Van Leeuwenhoek 52:343–352

    Article  CAS  PubMed  Google Scholar 

  • Coenen TM, Bertens AM, de Hoog SC, Verspeek-Rip CM (2000) Safety evaluation of a lactase enzyme preparation derived from Kluyveromyces lactis. Food Chem Toxicol 38:671–677

    Article  CAS  PubMed  Google Scholar 

  • Colussi PA, Taron CH (2005) Kluyveromyces lactis LAC4 promoter variants that lack function in bacteria but retain full function in K. lactis. Appl Environ Microbiol 71:7092–7098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colussi PA, Specht CA, Taron CH (2005) Characterization of a nucleus-encoded chitinase from the yeast Kluyveromyces lactis. Appl Environ Microbiol 71:2862–2869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crichton PG, Affourtit C, Moore AL (2007) Identification of a mitochondrial alcohol dehydrogenase in Schizosaccharomyces pombe: new insights into energy metabolism. Biochem J 401:459–464

    Article  CAS  PubMed  Google Scholar 

  • De Moreas LMPS, Astolfi-Filhole S, Oliver SG (1995) Development of yeast strains for the efficient utilization of starch: evaluation of constructs that express amylase and glucoamylase separately or as bifunctional fusion proteins. Appl Microbiol Biotechnol 43:1067–1076

    Article  Google Scholar 

  • De Mot R, Verachtert H (1985) Purification and characterization of extracellular amylolytic enzymes from the yeast Filobasidium capsuligenum. Appl Environ Microbiol 50:1474–1482

    PubMed  PubMed Central  Google Scholar 

  • De Mot R, Andries K, Verachtert H (1984) Production of extracellular debranching activity by amylolytic yeasts. Biotechnol Lett 6:581–586

    Article  Google Scholar 

  • De Mot R, Van Dijck K, Donkers A, Verachtert H (1985a) Potentialities and limitations of direct alcoholic fermentations of starchy material with amyloytic yeast. Appl Microbiol Biotechnol 22:222–226

    Article  Google Scholar 

  • De Mot R, Van Oudendijck E, Verachtert H (1985b) Purification and characterization of an extracellular glucoamylase from the yeast Candida tsukubaensis CBS 6389. Antonie Van Leeuwenhoek 51:275–287

    Article  PubMed  Google Scholar 

  • Deanda K, Zhang M, Eddy C, Picataggio S (1996) Development of an arabinose-fermenting Zymomonas mobilis strain by metabolic pathway engineering. Appl Environ Microbiol 62:4465–4470

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dohmen RJ, Strasser AW, Dahlems UM, Hollenberg CP (1990) Cloning of the Schwanniomyces occidentalis glucoamylase gene (GAM1) and its expression in Saccharomyces cerevisiae. Gene 95:111–121

    Article  CAS  PubMed  Google Scholar 

  • Domingues L, Guimarães PM, Oliveira C (2010) Metabolic engineering of Saccharomyces cerevisiae for lactose/whey fermentation. Bioeng Bugs 1:164–171

    Article  PubMed  Google Scholar 

  • Doran-Peterson J, Cook DM, Brandon SK (2008) Microbial conversion of sugars from plant biomass to lactic acid or ethanol. Plant J 54:582–592

    Article  CAS  PubMed  Google Scholar 

  • Dowhanick TM, Russell I, Scherer SW, Stewart GG, Seligy VL (1990) Expression and regulation of glucoamylase from the yeast Schwanniomyces castellii. J Bacteriol 172:2360–2366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dujon B (2010) Yeast evolutionary genomics. Nat Rev Genet 11:512–524

    Article  CAS  PubMed  Google Scholar 

  • Eksteen JM, Steyn AJ, van Rensburg P, Cordero Otero RR, Pretorius IS (2003a) Cloning and characterization of a second alpha-amylase gene (LKA2) from Lipomyces kononenkoae IGC4052B and its expression in Saccharomyces cerevisiae. Yeast 20:69–78

    Article  CAS  PubMed  Google Scholar 

  • Eksteen JM, Van Rensburg P, Cordero Otero RR, Pretorius IS (2003b) Starch fermentation by recombinant Saccharomyces cerevisiae strains expressing the alpha-amylase and glucoamylase genes from Lipomyces kononenkoae and Saccharomycopsis fibuligera. Biotechnol Bioeng 84:639–646

    Article  CAS  PubMed  Google Scholar 

  • Erratt JA, Stewart GG (1978) Genetic and biochemical studies on yeast strains able to utilize dextrins. J Am Soc Brew Chem 36:151–161

    CAS  Google Scholar 

  • Erratt JA, Stewart GG (1981a) Fermentation studies using Saccharomyces diastaticus yeast strains. Dev Ind Microbiol 22:577–586

    CAS  Google Scholar 

  • Erratt JA, Stewart GG (1981b) Genetic and biochemical studies on glucoamylase from Saccharomyces diastaticus. In: Advances in Biotechnol. Pergamon Press, Toronto, pp 177–183

    Chapter  Google Scholar 

  • Fantes PA, Nurse P (1977) Control of cell size at division in fission yeast by a growth-modulated size control over nuclear division. Exp Cell Res 107:377–386

    Article  CAS  PubMed  Google Scholar 

  • Ferreira JD, Phaff HJ (1959) Life cycle and nuclear behaviour of a species of the yeast genus Schwanniomyces. J Bacteriol 78:352–361

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fonseca GG, Heinzle E, Wittmann C, Gombert AK (2008) The yeast Kluyveromyces marxianus and its biotechnological potential. Appl Microbiol Biotechnol 79:339–345

    Article  CAS  PubMed  Google Scholar 

  • Forsburg SL, Rhind N (2006) Basic methods for fission yeast. Yeast 23:173–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujii M, Kawamura Y (1985) Synergistic action of α-amylase and glucoamylase on hydrolysis of starch. Biotechnol Bioeng 27:260–265

    Article  CAS  PubMed  Google Scholar 

  • Fukuhara H (2003) The Kluyver effect revisited. FEMS Yeast Res 3:327–331

    Article  CAS  PubMed  Google Scholar 

  • Fuson GB, Presley HL, Phaff HJ (1987) Deoxyribonucleic acid base sequence relatedness among members of the yeast genus Kluyveromyces. Int J Syst Bacteriol 37:371–379

    Article  Google Scholar 

  • Goffeau A (1996) A vintage year for yeast. Yeast 12:1603–1605

    Article  CAS  PubMed  Google Scholar 

  • Goffeau A, Barrell BG, Bussey H, Davis RW, Dujon B (1996) Life with 6000 genes. Science 274:546–547

    Article  CAS  PubMed  Google Scholar 

  • Hagen I, Carr AM, Grallert A, Nurse P (2016) Fission yeast: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Hahn-Hägerdal B, Pamment N (2004) Microbial pentose metabolism. Appl Biochem Biotechnol 113-116:1207–1209

    Article  PubMed  Google Scholar 

  • Heinisch JJ, Buchwald U, Gottschlich A, Heppeler N, Rodicio R (2010) A tool kit for molecular genetics of Kluyveromyces lactis comprising a congenic strain series and a set of versatile vectors. FEMS Yeast Res 10:333–342

    Article  CAS  PubMed  Google Scholar 

  • Hnatova M, Wesolowski-Louvel M, Dieppois G, Deffaud J, Lemaire M (2008) Characterization of KlGRR1 and SMS1 genes, two new elements of the glucose signaling pathway of Kluyveromyces lactis. Eukaryot Cell 7:1299–1308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hollenberg CP, Wilhelm M (1987) New substrates for old organisms. In: Biotec I: microbiol genetic engineering and enzyme technology. Gustav Fisher, Stutgart, pp 21–31

    Google Scholar 

  • Hoshida H, Murakami N, Suzuki A, Tamura R, Asakawa J, Abdel-Banat BM, Nonklang S, Nakamura M, Akada R (2014) Non-homologous end joining-mediated functional marker selection for DNA cloning in the yeast Kluyveromyces marxianus. Yeast 31:29–46

    Article  CAS  PubMed  Google Scholar 

  • Ingledew WM (1987) Schwanniomyces: a potential superyeast? Crit Rev Biotechnol 5:159–176

    Article  CAS  PubMed  Google Scholar 

  • Jeffries TW, Grigoriev IV, Grimwood J, Laplaza JM, Aerts A, Salamov A, Schmutz J, Lindquist E, Dehal P, Shapiro H, Jin YS, Passoth V, Richardson PM (2007) Genome sequence of the lignocellulose-bioconverting and xylose-fermenting yeast Pichia stipitis. Nat Biotechnol 25:319–326

    Article  CAS  PubMed  Google Scholar 

  • Jeong H, Lee D-H, Kim SH, Kim HJ, Lee K, Song JY, Kim BK, Sung BH, Park JC, Sohn JH, Koo HM, Kim JF (2012) Genome sequence of the thermotolerant yeast Kluyveromyces marxianus var. marxianus KCTC 17555. Eukaryot Cell 11:1584–1585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joachimsthal EL, Rogers PL (2000) Characterization of a high productivity recombinant strain of Zymomonas mobilis for ethanol production from glucose/xylose mixtures. Appl Biochem Biotechnol 84–86:343–356

    Article  PubMed  Google Scholar 

  • Kegel A, Martinez P, Carter SD, Aström SU (2006) Genome wide distribution of illegitimate recombination events in Kluyveromyces lactis. Nucleic Acids Res 34:1633–1645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krijger JJ, Baumann J, Wagner M, Schulze K, Reinsch C, Klose T, Onuma OF, Simon C, Behrens SE, Breunig KD (2012) A novel, lactase-based selection and strain improvement strategy for recombinant protein expression in Kluyveromyces lactis. Microb Cell Factories 11:112

    Article  CAS  Google Scholar 

  • Lane MM, Burke N, Karreman R, Wolfe KH, O’Byrne CP, Morrissey JP (2011) Physiological and metabolic diversity in the yeast Kluyveromyces marxianus. Antonie Van Leeuwenhoek 100:507–519

    Article  CAS  PubMed  Google Scholar 

  • Lee K-S, Kim J-S, Heo P, Lee K-S, Kim J-S, Heo P, Yang T-J, Sung Y-J, Cheon Y, Koo HM, Yu BJ, Seo J-H, Jin Y-S, Park JC, Kweo D-H (2013) Characterization of Saccharomyces cerevisiae promoters for heterologous gene expression in Kluyveromyces marxianus. Appl Microbiol Biotechnol 97:2029–2041

    Article  CAS  PubMed  Google Scholar 

  • Leupold U (1950) Die verebung van homothallie und homothallie und heterothallis bei Saccharomyces pombe. CR Trav Lab Carlsberg Ser Physiol 24:381–480

    Google Scholar 

  • Leupold U (1993) The origin of Schizosaccharomyces pombe genetics. In: Hall MN, Linder P (eds) The early days of yeast genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 125–128

    Google Scholar 

  • Limtong S, Sringiew C, Yongmanitchai W (2007) Production of fuel ethanol at high temperature from sugar cane juice by a newly isolated Kluyveromyces marxianus. Bioresour Technol 98:3367–3374

    Article  CAS  PubMed  Google Scholar 

  • Lin Z, Li WH (2011) The evolution of aerobic fermentation in Schizosaccharomyces pombe was associated with regulatory reprogramming but not nucleosome reorganization. Mol Biol Evol 28:1407–1413

    Article  CAS  PubMed  Google Scholar 

  • Llorente B, Malpertuy A, Blandin G, Artiguenave F, Wincker P, Dujon B (2000) Genomic exploration of the hemiascomycetous yeasts: 12. Kluyveromyces marxianus var. marxianus. FEBS Lett 487:71–75

    Article  CAS  PubMed  Google Scholar 

  • Lodder J (ed) (1984) The yeasts: a taxonomic study, 3rd edn. North Holland Publishing, Amsterdam

    Google Scholar 

  • Lomer M, Parkes G, Sanderson J (2008) Review article: lactose intolerance in clinical practice – myths and realities. Aliment Pharmacol Ther 27:93–103

    Article  CAS  PubMed  Google Scholar 

  • Maleszka R, Schneider H (1982) Concurrent production and consumption of ethanol by cultures of Pachysolen tannophilus growing on d-xylose. Appl Environ Microbiol 44:909–912

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez LA, Naguibneva I, Lehrmann H, Vervisch A, Tchénio T, Lozano G, Harel-Bellan A (2002) Synthetic small inhibiting RNAs: efficient tools to inactivate oncogenic mutations and restore pathways. In: Vogt PK (ed) Proceedings of the National Academy of Sciences of the USA. The Scripps Research Institute, La Jolla, CA, p 53

    Google Scholar 

  • Martini AV, Martini A (1987) Taxonomic revision of the yeast genus Kluyveromyces by nuclear deoxyribonucleic acid reassociation. Int J Syst Bacteriol 44:380–385

    Article  Google Scholar 

  • Martorell P, Stratford M, Steels H, Fernández-Espinar MT, Querol A (2007) Physiological characterization of spoilage strains of Zygosaccharomyces bailii and Zygosaccharomyces rouxii isolated from high sugar environments. Int J Food Microbiol 114:234–242

    Article  CAS  PubMed  Google Scholar 

  • Maximilian M, Meier-Dörnberg T, Jacob F, Schneiderbanger H, Haselbeck K, Zarnkow M, Hutzler M (2017) Optimization of beer fermentation with a novel brewing strain of Torulaspora delbrueckii using response surface methodology. MBAA Tech Quart 54:23–33

    Google Scholar 

  • Michel M, Kopecká J, Meier-Dörnberg T, Zarnkow M, Jacob F, Hutzler M (2016) Screening for new brewing yeasts in the non-Saccharomyces sector with Torulaspora delbrueckii as model. Yeast 33:129–144

    Article  CAS  PubMed  Google Scholar 

  • Mitchison JM (1957) The growth of single cells. I. Schizosaccharomyces pombe. Exp Cell Res 13:244–262

    Article  CAS  PubMed  Google Scholar 

  • Naim HY, Niermann T, Kleinhans U, Hollenberg CP, Strasser AW (1991) Striking structural and functional similarities suggest that intestinal sucrase-isomaltase, human lysosomal alpha-glucosidase and Schwanniomyces occidentalis glucoamylase are derived from a common ancestral gene. FEBS Lett 294:109–112

    Article  CAS  PubMed  Google Scholar 

  • Nonklang S, Abdel-Banat BMA, Cha-aim K, Moonjai N, Hoshida H, Limtong S, Yamada M, Akada R (2008) High-temperature ethanol fermentation and transformation with linear DNA in the thermotolerant yeast Kluyveromyces marxianus DMKU3–1042. Appl Environ Microbiol 74:7514–7521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Novak B, Mitchison JM (1990a) CO2 production after induction synchrony of the fission yeast Schizosaccharomyces pombe: the origin and nature of entrainment. J Cell Sci 96:79–91

    PubMed  Google Scholar 

  • Novak B, Mitchison JM (1990b) Change in the rate of oxygen consumption in synchronous cultures of the fission yeast Schizosaccharomyces pombe. J Cell Sci 96:429–433

    CAS  PubMed  Google Scholar 

  • Oteng-Gyang K, Moulin G, Galzy P (1981) A study of amylolytic system of Schwanniomyces castelii. J Basic Microbiol 21:537–544

    CAS  Google Scholar 

  • Panesar PS, Kumari S, Panesar R (2010) Potential applications of immobilized β-galactosidase in food processing industries. Enzyme Res 2010:12–27

    Article  CAS  Google Scholar 

  • Paradh AD (2015) Gram-negative spoilage bacteria in brewing. In: Hill AE (ed) Brewing microbiology. Woodhead Publishing, Cambridge, pp 175–194

    Chapter  Google Scholar 

  • Pecota DC, Rajgarhia V, Da Silva NA (2007) Sequential gene integration for the engineering of Kluyveromyces marxianus. J Biotechnol 127:408–416

    Article  CAS  PubMed  Google Scholar 

  • Phaff HJ (1970) Genus 20. Schwanniomyces klocker. In: Lodder J (ed) The yeasts, a taxonomic study, 2nd edn. North-Holland Publishing, Amsterdam, pp 756–766

    Google Scholar 

  • Phaff HJ (1981) The species concept in yeasts: physiology, morphology, genetic and ecological parameters. In: Stewart GG, Russell I (eds) Current developments in yeast research. Pergamon Press, Toronto, pp 635–643

    Google Scholar 

  • Phaff HJ, Miller MW, Mrak EM (1966) The life of yeasts. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Poinsot C, Moulin G, Claisse M, Galzy P (1987) Isolation and characterization of a mutant of Schwanniomyces castellii with altered respiration. Antonie Van Leeuwenhoek 53:65–70

    Article  CAS  PubMed  Google Scholar 

  • Prazeres AR, Carvalho F, Rivas J (2012) Cheese whey management: a review. J Environ Manag 110:48–68

    Article  CAS  Google Scholar 

  • Price CW, Fuson GB, Phaff HJ (1978) Genome comparison in yeast systematics: delimitation of species within the genera Schwanniomyces, Saccharomyces, Debaryomyces, and Pichia. Am Soc Microbiol 42:161–193

    CAS  Google Scholar 

  • Radecka D, Mukherjee V, Mateo RQ, Stojiljkovic M, Foulquié-Moreno MR, Thevelein JM (2015) Looking beyond Saccharomyces: the potential of non-conventional yeast species for desirable traits in bioethanol fermentation. FEMS Yeast Res 15 pii: fov053

    Google Scholar 

  • Rigamonte TA, Silveira WB, Fietto LG, Castro IM, Breunig KD, Passos FM (2011) Restricted sugar uptake by sugar-induced internalization of the yeast lactose/galactose permease Lac12. FEMS Yeast Res 11:243–251

    Article  CAS  PubMed  Google Scholar 

  • Rives J, Fernandez-Rodriguez I, Rieradevall J, Gabarrell X (2011) Environmental analysis of the production of natural cork stoppers in Southern Europe (Catalonia e Spain). J Clean Prod 19:259–271

    Article  Google Scholar 

  • Rogers P, Lee K, Skotnicki M, Tribe D (1982) Microbial reactions: ethanol Production by Zymomonas mobilis. Springer, New York, Berlin, pp 37–84

    Book  Google Scholar 

  • Rossi J, Clementi F (1985) Protein production by Schwanniomyces castelli on starchy substrates, in liquid and solid cultivation. J Food Technol 20:318–330

    Google Scholar 

  • Rouwenhorst RJ, Visser LE, Baan AA, Scheffers WA, Van Dijken JP (1988) Production, distribution, and kinetic properties of inulinase in continuous cultures of Kluyveromyces marxianus CBS 6556. Appl Environ Microbiol 54:1131–1137

    CAS  PubMed  PubMed Central  Google Scholar 

  • Russell I, Stewart GG (2014) Whisky: technology production and marketing, 2nd edn. Academic Press (Elsevier), Boston, MA

    Google Scholar 

  • Saliola M, Shuster JR, Falcone C (1990) The alcohol dehydrogenase system in the yeast, Kluyveromyces lactis. Yeast 6:193–204

    Article  CAS  PubMed  Google Scholar 

  • Schneider H, Maleszka R, Neirinck LG, Veliky IA, Wang PY, Chan YK (1983) Ethanol production from d-xylose and several other carbohydrates by Pachysolen tannophilus and other yeasts. In: Fiechter A (ed) Advances in biochemical engineering biotechnology. Springer, Berlin

    Google Scholar 

  • Seyis I, and Aksoz N (2004) Production of lactase by Trichoderma sp. Food Tech. Biotechnol 42:121–124

    Google Scholar 

  • Sicard D, Legras JL (2011) Bread, beer and wine: yeast domestication in the Saccharomyces sensu stricto complex. C R Biol 334:229–236

    Article  PubMed  Google Scholar 

  • Sills AM, Stewart GG (1982) Production of amylolytic enzymes by several yeast species. J Inst Brew 88:313–316

    Article  CAS  Google Scholar 

  • Sills AM, Sauder ME, Stewart GG (1983) Amylase activity in certain yeasts and a fungal species (Schwanniomyces castellii, Endomycopsis fibuligera, Aspergillus oryzae). Dev Ind Microbiol 24:295–303

    CAS  Google Scholar 

  • Sills AM, Zygora PSJ, Stewart GG (1984a) Characterization of Schwanniomyces casteliii mutants with increased productivity of amylases. Appl Microbiol Biotechnol 20:124–128

    Article  CAS  Google Scholar 

  • Sills AM, Sauder ME, Stewart GG (1984b) Isolation and characterization of the amylolytic system of Schwanniomyces castellii. J Inst Brew 90:311–314

    Article  CAS  Google Scholar 

  • Sills AM, Panchal CJ, Russell I, Stewart GG (1987) Production of amylolytic enzymes by yeasts and their utilization in brewing. Crit Rev Biotechnol 5:105–115

    Article  CAS  PubMed  Google Scholar 

  • Slinger PJ, Bothast RJ, van Cauwenberge JE, Curtzman CP (1982) Conversion of d-xylose to ethanol by the yeast Pachysolen tannophilus. Biotechnol Bioeng 24:371–384

    Article  Google Scholar 

  • Snoek IS, Steensma HY (2006) Why does Kluyveromyces lactis not grow under anaerobic conditions? Comparison of essential anaerobic genes of Saccharomyces cerevisiae with the Kluyveromyces lactis genome. FEMS Yeast Res 6:393–403

    Article  CAS  PubMed  Google Scholar 

  • Souciet JL, Dujon B, Gaillardin C, Johnston M, Baret PV, Cliften P, Sherman DJ, Weissenbach J, Westhof E, Wincker P, Jubin C, Poulain J, Barbe V, Ségurens B, Artiguenave F, Anthouard V, Vacherie B, Val ME, Fulton RS, Minx P, Wilson R, Durrens P, Jean G, Marck C, Martin T, Nikolski M, Rolland T, Seret ML, Casarégola S, Despons L, Fairhead C, Fischer G, Lafontaine I, Leh V, Lemaire M, de Montigny J, Neuvéglise C, Thierry A, Blanc-Lenfle I, Bleykasten C, Diffels J, Fritsch E, Frangeul L, Goëffon A, Jauniaux N, Kachouri-Lafond R, Payen C, Potier S, Pribylova L, Ozanne C, Richard GF, Sacerdot C, Straub ML, Talla E (2009) Comparative genomics of protoploid Saccharomycetaceae. Genome Res 19:1696–1709

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Spencer JRT, Spencer DM (1997) Taxonomy: the names of the yeasts. In: Spencer JRT, Spencer DM (eds) Natural and artificial habitats. Springer, Berlin, pp 11–32

    Chapter  Google Scholar 

  • Spencer-Martins I, van Uden N (1979) Extracellular amylolytic system of the yeast Lipomyces kononenkoae. Eur J Appl Microbiol Biotechnol 6:241–250

    Article  CAS  Google Scholar 

  • Spencer-Martins I, van Uden N (1982) The temperature profile of growth, death and yield of the starch-converting yeast Lipomyces kononenkoae. J Basic Microbiol 22:503–505

    CAS  Google Scholar 

  • Steensels J, Verstrepen KJ (2014) Taming wild yeast: potential of conventional and nonconventional yeasts in industrial fermentations. Annu Rev Microbiol 68:61–80

    Article  CAS  PubMed  Google Scholar 

  • Stewart GG (1987) The biotechnological relevance of starch-degrading enzymes. CRC Crit Rev Biotechnol 5:89–94

    Article  CAS  Google Scholar 

  • Teoh AL, Heard G, Cox J (2004) Yeast ecology of Kombucha fermentation. Int J Food Microbiol 95:119–126

    Article  CAS  PubMed  Google Scholar 

  • Touzi A, Prebois JP, Moulin G, Deschamps F, Galzy P (1982) Production of food yeast from starchy substrates. Eur J Appl Microbial Biotechnol 15:232–236

    Article  Google Scholar 

  • Tubb RS, Liljestrom PL, Torkkeli T, Korhola M (1986) In: Priest EG, Campbell I (eds) Proc 2nd Aviemore conf on malting, brewing and distilling. Institute of Brewing, London, pp 298–306

    Google Scholar 

  • van den Berg JA, van den Laken KJ, van Ooyen AJ, Renniers TC, Rietveld K, Schaap A, Brake AJ, Bishop RJ, Schultz K, Moyer D (1990) Kluyveromyces as a host for heterologous gene expression: expression and secretion of prochymosin. Biotechnology (NY) 8:135–139

    Google Scholar 

  • van Ooyen AJ, Dekker P, Huang M, Olsthoorn MM, Jacobs DI, Colussi PA, Taron CH (2006) Heterologous protein production in the yeast Kluyveromyces lactis. FEMS Yeast Res 6:381–392

    Article  PubMed  CAS  Google Scholar 

  • Wilhelm BT, Marguerat S, Watt S, Schubert F, Wood V, Goodhead I, Penkett CJ, Rogers J, Bähler J (2008) Dynamic repertoire of a eukaryotic transcriptome surveyed at single-nucleotide resolution. Nature 453:1239–1243

    Article  CAS  PubMed  Google Scholar 

  • Wilson JJ, Ingledew WM (1982) Isolation and characterization of Schwanniomyces alluvius amylolytic enzymes. Appl Environ Microbiol 44:301–307

    CAS  PubMed  PubMed Central  Google Scholar 

  • Winderickx J, Delay C, De Vos A, Klinger H, Pellens K, Vanhelmont T, Van Leuven F, Zabrocki P (2008) Protein folding diseases and neurodegeneration: lessons learned from yeast. Biochim Biophys Acta 1783:1381–1395

    Article  CAS  PubMed  Google Scholar 

  • Wingren A, Galbe M, Zacchi G (2003) Techno-economic evaluation of producing ethanol from softwood: comparison of SSF and SHF and identification of bottlenecks. Biotechnol Prog 19:1109–1117

    Article  CAS  PubMed  Google Scholar 

  • Wolf K (1996) Nonconventional yeasts in biotechnology. Springer, Berlin

    Book  Google Scholar 

  • Wood V, Gwilliam R, Rajandream MA, Lyne M, Lyne R, Stewart A, Sgouros J, Peat N, Hayles J, Baker S, Basham D, Bowman S, Brooks K, Brown D, Brown S, Chillingworth T, Churcher C, Collins M, Connor R, Cronin A, Davis P, Feltwell T, Fraser A, Gentles S, Goble A, Hamlin N, Harris D, Hidalgo J, Hodgson G, Holroyd S, Hornsby T, Howarth S, Huckle EJ, Hunt S, Jagels K, James K, Jones L, Jones M, Leather S, McDonald S, McLean J, Mooney P, Moule S, Mungall K, Murphy L, Niblett D, Odell C, Oliver K, O’Neil S, Pearson D, Quail MA, Rabbinowitsch E, Rutherford K, Rutter S, Saunders D, Seeger K, Sharp S, Skelton J, Simmonds M, Squares R, Squares S, Stevens K, Taylor K, Taylor RG, Tivey A, Walsh S, Warren T, Whitehead S, Woodward J, Volckaert G, Aert R, Robben J, Grymonprez B, Weltjens I, Vanstreels E, Rieger M, Schäfer M, Müller-Auer S, Gabel C, Fuchs M, Düsterhöft A, Fritzc C, Holzer E, Moestl D, Hilbert H, Borzym K, Langer I, Beck A, Lehrach H, Reinhardt R, Pohl TM, Eger P, Zimmermann W, Wedler H, Wambutt R, Purnelle B, Goffeau A, Cadieu E, Dréano S, Gloux S, Lelaure V, Mottier S, Galibert F, Aves SJ, Xiang Z, Hunt C, Moore K, Hurst SM, Lucas M, Rochet M, Gaillardin C, Tallada VA, Garzon A, Thode G, Daga RR, Cruzado L, Jimenez J, Sánchez M, del Rey F, Benito J, Domínguez A, Revuelta JL, Moreno S, Armstrong J, Forsburg SL, Cerutti L, Lowe T, McCombie WR, Paulsen I, Potashkin J, Shpakovski GV, Ussery D, Barrell BG, Nurse P (2002) The genome sequence of Schizosaccharomyces pombe. Nature 415:871–880

    Article  CAS  PubMed  Google Scholar 

  • Wu FM, Wang TT, Hsu WH (1991) The nucleotide sequence of Schwanniomyces occidentalis alpha-amylase gene. FEMS Microbiol Lett 66:313–318

    CAS  PubMed  Google Scholar 

  • Yang S, Fei Q, Zhang Y, Contreras LM, Utturkar SM, Brown SD, Himmel ME, Zhang M (2016) Zymomonas mobilis as a model system for production of biofuels and biochemicals. Microb Biotechnol 9:699–717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yarimizu T, Nonklang S, Nakamura J, Tokuda S, Nakagawa T, Lorreungsil S, Sutthikhumpha S, Pukahuta C, Kitagawa T, Nakamura M, Cha-aim K, Limtong S, Hoshida H, Akada R (2013) Identification of auxotrophic mutants of the yeast Kluyveromyces marxianus by non-homologous end joining-mediated integrative transformation with genes from Saccharomyces cerevisiae. Yeast 30:485–500

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stewart, G.G. (2017). Non-Saccharomyces (and Bacteria) Yeasts That Produce Ethanol. In: Brewing and Distilling Yeasts. The Yeast Handbook. Springer, Cham. https://doi.org/10.1007/978-3-319-69126-8_17

Download citation

Publish with us

Policies and ethics