Skip to main content

BluePharmTrain: Biology and Biotechnology of Marine Sponges

  • Chapter
  • First Online:
Grand Challenges in Marine Biotechnology

Abstract

BluePharmTrain is a Marie Curie Initial Training Network of 17 European academic and industrial partners collaborating to train young scientists in multidisciplinary aspects of blue biotechnology. Harvesting marine sponges for the extraction of bioactive compounds is often highly unsustainable, and the chemical synthesis of promising compounds is often either too complex or very expensive. To find sustainable and economically feasible production methods of sponge-derived compounds, individual BluePharmTrain research projects explore innovative techniques, focusing on selected sponge species shown to harbour interesting active metabolites. The different techniques include sponge cell cultivation, cultivation of microbial symbionts, next-generation sequencing approaches (i.e. metagenomics and metatranscriptomics), in situ and ex situ cultivation of sponges, life cycle characterisation, chemical structure elucidation of compounds and compound metabolic pathway description. Altogether, these consorted efforts and collaborations lead to new insights on sponge metabolism, sponge-microbe interactions and bioactive compound production.

Authors “Georg Steinert” and “Carla Huete Stauffer” contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Blunt JW, Copp BR, Keyzers RA et al (2016) Marine natural products. Nat Prod Rep 33:382–431. https://doi.org/10.1039/C5NP00156K

    Article  CAS  PubMed  Google Scholar 

  2. Taylor MW, Radax R, Steger D, Wagner M (2007) Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiol Mol Biol Rev 71:295–347. https://doi.org/10.1128/MMBR.00040-06

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Maldonado M (2007) Intergenerational transmission of symbiotic bacteria in oviparous and viviparous demosponges, with emphasis on intracytoplasmically-compartmented bacterial types. J Mar Biol Assoc UK 87:1701–1713. https://doi.org/10.1017/S0025315407058080

    Article  Google Scholar 

  4. Ahn YB, Kerkhof LJ, Häggblom MM (2009) Desulfoluna spongiiphila sp. nov., a dehalogenating bacterium in the Desulfobacteraceae from the marine sponge Aplysina aerophoba. Int J Syst Evol Microbiol 59:2133–2139. https://doi.org/10.1099/ijs.0.005884-0

    Article  PubMed  CAS  Google Scholar 

  5. Gazave E, Lapébie P, Ereskovsky AV et al (2011) No longer Demospongiae: Homoscleromorpha formal nomination as a fourth class of Porifera. Hydrobiologia 687:3–10. https://doi.org/10.1007/s10750-011-0842-x

    Article  Google Scholar 

  6. Morrow C, Cárdenas P (2015) Proposal for a revised classification of the Demospongiae (Porifera). Front Zool 12:7. https://doi.org/10.1186/s12983-015-0099-8

    Article  PubMed  PubMed Central  Google Scholar 

  7. Van Soest RWM, Boury-Esnault N, Hooper JNA, et al (2017) World Porifera database. http://www.marinespecies.org/porifera

  8. Conway Morris S (1998) Early metazoan evolution: reconciling paleontology and molecular biology. Am Zool 38:867–877. https://doi.org/10.1093/icb/38.6.867

    Article  Google Scholar 

  9. Dewel RA (2000) Colonial origin for eumetazoa: major morphological transitions and the origin of bilaterian complexity. J Morphol 243:35–74

    Article  CAS  PubMed  Google Scholar 

  10. Halanych KM (2015) The ctenophore lineage is older than sponges? That cannot be right! Or can it? J Exp Biol 218:592–597. https://doi.org/10.1242/jeb.111872

    Article  PubMed  Google Scholar 

  11. Ryan JF, Pang K, Schnitzler CE et al (2013) The genome of the ctenophore Mnemiopsis leidyi and its implications for cell type evolution. Science 342:1242592. https://doi.org/10.1126/science.1242592

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Yin Z, Zhu M, Davidson EH et al (2015) Sponge grade body fossil with cellular resolution dating 60 Myr before the Cambrian. Proc Natl Acad Sci U S A 112:201414577. https://doi.org/10.1073/pnas.1414577112

    Article  CAS  Google Scholar 

  13. Ayling AL (1980) Patterns of sexuality, asexual reproduction and recruitment in some subtidal marine demosponge. Biol Bull 158:271–282. https://doi.org/10.2307/1540854

    Article  Google Scholar 

  14. Hentschel U, Piel J, Degnan SM, Taylor MW (2012) Genomic insights into the marine sponge microbiome. Nat Rev Microbiol 10:641–654. https://doi.org/10.1038/nrmicro2839

    Article  PubMed  CAS  Google Scholar 

  15. Wehrl M, Steinert M, Hentschel U (2007) Bacterial uptake by the marine sponge Aplysina aerophoba. Microb Ecol 53:355–365. https://doi.org/10.1007/s00248-006-9090-4

    Article  PubMed  Google Scholar 

  16. Borchiellini C, Manuel M, Alivon E et al (2001) Sponge paraphyly and the origin of Metazoa. J Evol Biol 14:171–179. https://doi.org/10.1046/j.1420-9101.2001.00244.x

    Article  PubMed  CAS  Google Scholar 

  17. Halanych KM (2004) The new view of animal phylogeny. Annu Rev Ecol Evol Syst 35:229–256. https://doi.org/10.1146/annurev.ecolsys.35.112202.130124

    Article  Google Scholar 

  18. Li C (1998) Precambrian sponges with cellular structures. Science 279:879–882. https://doi.org/10.1126/science.279.5352.879

    Article  PubMed  CAS  Google Scholar 

  19. Wilkinson CR (1984) Immunological evidence for the precambrian origin of bacterial symbioses in marine sponges. Proc R Soc Lond 220:509–518. https://doi.org/10.1098/rspb.1984.0017

    Article  Google Scholar 

  20. Reveillaud J, Maignien L, Eren MA et al (2014) Host-specificity among abundant and rare taxa in the sponge microbiome. ISME J 8:1198–1209. https://doi.org/10.1038/ismej.2013.227

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Thomas T, Moitinho-Silva L, Lurgi M et al (2016) Diversity, structure and convergent evolution of the global sponge microbiome. Nat Commun 7:11870. https://doi.org/10.1038/ncomms11870

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Ribes M, Coma R, Gili JM (1999) Natural diet and grazing rate of the temperate sponge Dysidea avara (Demospongiae, Dendroceratida) throughout an annual cycle. Mar Ecol Prog Ser 176:179–190. https://doi.org/10.3354/meps176179

    Article  Google Scholar 

  23. Vacelet J, Donadey C (1977) Electron microscope study of the association between some sponges and bacteria. J Exp Mar Biol Ecol 30:301–314

    Article  Google Scholar 

  24. Wilkinson CR (1978) Microbial associations in sponges. I. Ecology, physiology and microbial populations of coral reef sponges. Mar Biol 49:161–167. https://doi.org/10.1007/BF00387115

    Article  Google Scholar 

  25. Wilkinson CR (1978) Microbial associations in sponges. II. Numerical analysis of sponge and water bacterial populations. Mar Biol 49:169–176. https://doi.org/10.1007/BF00387116

    Article  Google Scholar 

  26. Hentschel U, Usher KM, Taylor MW (2006) Marine sponges as microbial fermenters. FEMS Microbiol Ecol 55:167–177. https://doi.org/10.1111/j.1574-6941.2005.00046.x

    Article  PubMed  CAS  Google Scholar 

  27. Reiswig HM (1981) Partial carbon and energy budgets of the bacteriosponge Verohgia fistularis (Porifera: Demospongiae) in Barbados. Mar Ecol 2:273–293. https://doi.org/10.1111/j.1439-0485.1981.tb00271.x

    Article  CAS  Google Scholar 

  28. Abdelmohsen UR, Bayer K, Hentschel U (2014) Diversity, abundance and natural products of marine sponge-associated actinomycetes. Nat Prod Rep 31:381–399. https://doi.org/10.1039/c3np70111e

    Article  PubMed  CAS  Google Scholar 

  29. Bayer K, Kamke J, Hentschel U (2014) Quantification of bacterial and archaeal symbionts in high and low microbial abundance sponges using real-time PCR. FEMS Microbiol Ecol 89:679–690. https://doi.org/10.1111/1574-6941.12369

    Article  PubMed  CAS  Google Scholar 

  30. Moitinho-Silva L, Bayer K, Cannistraci CV et al (2014) Specificity and transcriptional activity of microbiota associated with low and high microbial abundance sponges from the Red Sea. Mol Ecol 23:1348–1363. https://doi.org/10.1111/mec.12365

    Article  PubMed  CAS  Google Scholar 

  31. Noyer C, Hamilton A, Sacristan-Soriano O, Becerro MA (2010) Quantitative comparison of bacterial communities in two Mediterranean sponges. Symbiosis 51:239–243. https://doi.org/10.1007/s13199-010-0082-2

    Article  Google Scholar 

  32. Gloeckner V, Wehrl M, Moitinho-Silva L et al (2014) The HMA-LMA dichotomy revisited: an electron microscopical survey of 56 sponge species. Biol Bull 227:78–88

    Article  PubMed  Google Scholar 

  33. Hentschel U, Hopke J, Horn M et al (2002) Molecular evidence for a uniform microbial community in sponges from different oceans. Appl Environ Microbiol 68:4431–4440. https://doi.org/10.1128/AEM.68.9.4431-4440.2002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Simister RL, Deines P, Botté ES et al (2012) Sponge-specific clusters revisited: a comprehensive phylogeny of sponge-associated microorganisms. Environ Microbiol 14:517–524. https://doi.org/10.1111/j.1462-2920.2011.02664.x

    Article  PubMed  CAS  Google Scholar 

  35. Taylor MW, Tsai P, Simister RL et al (2013) “Sponge-specific” bacteria are widespread (but rare) in diverse marine environments. ISME J 7:438–443. https://doi.org/10.1038/ismej.2012.111

    Article  PubMed  CAS  Google Scholar 

  36. Taylor MW, Schupp PJ, Dahllöf I et al (2004) Host specificity in marine sponge-associated bacteria, and potential implications for marine microbial diversity. Environ Microbiol 6:121–130. https://doi.org/10.1046/j.1462-2920.2003.00545.x

    Article  PubMed  Google Scholar 

  37. Webster NS, Taylor MW, Behnam F et al (2010) Deep sequencing reveals exceptional diversity and modes of transmission for bacterial sponge symbionts. Environ Microbiol 12:2070–2082. https://doi.org/10.1111/j.1462-2920.2009.02065.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Wilkinson CR (1978) Microbial associations in sponges. III. Ultrastructure of the in situ associations in coral reef sponges. Mar Biol 49:177–185. https://doi.org/10.1007/BF00387117

    Article  Google Scholar 

  39. Easson CG, Thacker RW (2014) Phylogenetic signal in the community structure of host-specific microbiomes of tropical marine sponges. Front Microbiol 5:1–11. https://doi.org/10.3389/fmicb.2014.00532

    Article  Google Scholar 

  40. Pita L, Turon X, López-Legentil S, Erwin PM (2013) Host rules: spatial stability of bacterial communities associated with marine sponges (Ircinia spp.) in the Western Mediterranean Sea. FEMS Microbiol Ecol 86:268–276. https://doi.org/10.1111/1574-6941.12159

    Article  PubMed  CAS  Google Scholar 

  41. Steinert G, Taylor MW, Deines P et al (2016) In four shallow and mesophotic tropical reef sponges from Guam the microbial community largely depends on host identity. PeerJ 4:e1936. https://doi.org/10.7717/peerj.1936

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Erwin PM, Thacker RW (2008) Phototrophic nutrition and symbiont diversity of two Caribbean sponge-cyanobacteria symbioses. Mar Ecol Prog Ser 362:139–147. https://doi.org/10.3354/meps07464

    Article  CAS  Google Scholar 

  43. Lee OO, Chui PY, Wong YH et al (2009) Evidence for vertical transmission of bacterial symbionts from adult to embryo in the Caribbean sponge Svenzea zeai. Appl Environ Microbiol 75:6147–6156. https://doi.org/10.1128/AEM.00023-09

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Schmitt S, Angermeier H, Schiller R et al (2008) Molecular microbial diversity survey of sponge reproductive stages and mechanistic insights into vertical transmission of microbial symbionts. Appl Environ Microbiol 74:7694–7708. https://doi.org/10.1128/AEM.00878-08

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Schmitt S, Weisz JB, Lindquist N, Hentschel U (2007) Vertical transmission of a phylogenetically complex microbial consortium in the viviparous sponge Ircinia felix. Appl Environ Microbiol 73:2067–2078. https://doi.org/10.1128/AEM.01944-06

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Sharp KH, Eam B, John Faulkner D, Haygood MG (2007) Vertical transmission of diverse microbes in the tropical sponge Corticium sp. Appl Environ Microbiol 73:622–629. https://doi.org/10.1128/AEM.01493-06

    Article  PubMed  CAS  Google Scholar 

  47. Uriz MJ, Agell G, Blanquer A et al (2012) Endosymbiotic calcifying bacteria: a new cue to the origin of calcification in metazoa? Evolution (NY) 66:2993–2999. https://doi.org/10.1111/j.1558-5646.2012.01676.x

    Article  Google Scholar 

  48. Uriz MJ, Turon X, Becerro MA (2001) Morphology and ultrastructure of the swimming larvae of Crambe crambe (Demospongiae, Poecilosclerida). Invertebr Biol 120:295–307

    Article  Google Scholar 

  49. Usher KM, Sutton DC, Toze S et al (2005) Inter-generational transmission of microbial symbionts in the marine sponge Chondrilla australiensis (Demospongiae). Mar Freshw Res 56:125–131. https://doi.org/10.1071/MF04304

    Article  Google Scholar 

  50. Schmitt S, Tsai P, Bell J et al (2012) Assessing the complex sponge microbiota: core, variable and species-specific bacterial communities in marine sponges. ISME J 6:564–576

    Article  CAS  PubMed  Google Scholar 

  51. Thacker RW, Freeman CJ (2012) Sponge–microbe symbioses. Adv Mar Biol 62:57–111

    Article  PubMed  Google Scholar 

  52. Sipkema D, de Caralt S, Morillo JA et al (2015) Similar sponge-associated bacteria can be acquired via both vertical and horizontal transmission. Environ Microbiol. https://doi.org/10.1111/1462-2920.12827

  53. de Goeij JM, van Oevelen D, Vermeij MJA et al (2013) Surviving in a marine desert: the sponge loop retains resources within coral reefs. Science 342:108–110. https://doi.org/10.1126/science.1241981

    Article  PubMed  CAS  Google Scholar 

  54. Rix L, de Goeij JM, Mueller CE et al (2016) Coral mucus fuels the sponge loop in warm- and cold-water coral reef ecosystems. Sci Rep 6:18715. https://doi.org/10.1038/srep18715

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Diaz MC, Rützler K (2001) Sponges: an essential component of Caribbean coral reefs. Bull Mar Sci 69:535–546

    Google Scholar 

  56. Diaz MC, Ward BB (1997) Sponge-mediated nitrification in tropical benthic communities. Mar Ecol Prog Ser 156:97–107. https://doi.org/10.3354/meps156097

    Article  CAS  Google Scholar 

  57. Hoffmann F, Radax R, Woebken D et al (2009) Complex nitrogen cycling in the sponge Geodia barretti. Environ Microbiol 11:2228–2243. https://doi.org/10.1111/j.1462-2920.2009.01944.x

    Article  PubMed  CAS  Google Scholar 

  58. Schläppy ML, Schöttner SI, Lavik G et al (2010) Evidence of nitrification and denitrification in high and low microbial abundance sponges. Mar Biol 157:593–602. https://doi.org/10.1007/s00227-009-1344-5

    Article  PubMed  CAS  Google Scholar 

  59. Hoffmann F, Larsen O, Thiel V et al (2005) An anaerobic world in sponges. Geomicrobiol J 22:1–10. https://doi.org/10.1080/01490450590922505

    Article  Google Scholar 

  60. Fan L, Reynolds D, Liu M et al (2012) Functional equivalence and evolutionary convergence in complex communities of microbial sponge symbionts. Proc Natl Acad Sci U S A 109:E1878–E1887. https://doi.org/10.1073/pnas.1203287109

    Article  PubMed  PubMed Central  Google Scholar 

  61. Hallam SJ, Konstantinidis KT, Putnam N et al (2006) Genomic analysis of the uncultivated marine crenarchaeote Cenarchaeum symbiosum. Proc Natl Acad Sci U S A 103:18296–18301. https://doi.org/10.1073/pnas.0608549103

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Liu M, Fan L, Zhong L et al (2012) Metaproteogenomic analysis of a community of sponge symbionts. ISME J 6:1515–1525. https://doi.org/10.1038/ismej.2012.1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Siegl A, Kamke J, Hochmuth T et al (2011) Single-cell genomics reveals the lifestyle of Poribacteria, a candidate phylum symbiotically associated with marine sponges. ISME J 5:61–70. https://doi.org/10.1038/ismej.2010.95

    Article  PubMed  Google Scholar 

  64. Freeman CJ, Thacker RW, Baker DM, Fogel ML (2013) Quality or quantity: is nutrient transfer driven more by symbiont identity and productivity than by symbiont abundance? ISME J 7:1116–1125. https://doi.org/10.1038/ismej.2013.7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Freeman CJ, Easson CG, Baker DM (2014) Metabolic diversity and niche structure in sponges from the Miskito Cays, Honduras. Peer J 2:e695. https://doi.org/10.7717/peerj.695

    Article  PubMed  PubMed Central  Google Scholar 

  66. Ribes M, Jiménez E, Yahel G et al (2012) Functional convergence of microbes associated with temperate marine sponges. Environ Microbiol 14:1224–1239. https://doi.org/10.1111/j.1462-2920.2012.02701.x

    Article  PubMed  CAS  Google Scholar 

  67. Margulis L, Fester R (1991) Symbiosis as a source of evolutionary innovation: speciation and morphogenesis. MIT Press, Cambridge, MA

    Google Scholar 

  68. Pita L, Fraune S, Hentschel U (2016) Emerging sponge models of animal-microbe symbioses. Front Microbiol 7:2102. https://doi.org/10.3389/fmicb.2016.02102

    Article  PubMed  PubMed Central  Google Scholar 

  69. Bayer K, Scheuermayer M, Fieseler L, Hentschel U (2013) Genomic mining for novel FADH2-dependent halogenases in marine sponge-associated microbial consortia. Mar Biotechnol 15:63–72. https://doi.org/10.1007/s10126-012-9455-2

    Article  CAS  Google Scholar 

  70. Della Sala G, Hochmuth T, Costantino V et al (2013) Polyketide genes in the marine sponge Plakortis simplex: a new group of mono-modular type I polyketide synthases from sponge symbionts. Environ Microbiol Rep 5:809–818. https://doi.org/10.1111/1758-2229.12081

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Thomas T, Rusch D, DeMaere MZ et al (2010) Functional genomic signatures of sponge bacteria reveal unique and shared features of symbiosis. ISME J 4:1557–1567. https://doi.org/10.1038/ismej.2010.74

    Article  CAS  PubMed  Google Scholar 

  72. Duckworth A (2009) Farming sponges to supply bioactive metabolites and bath sponges: a review. Mar Biotechnol (NY) 11:669–679. https://doi.org/10.1007/s10126-009-9213-2

    Article  CAS  Google Scholar 

  73. Brümmer F, Nickel M (2003) Sustainable use of marine resources: cultivation of sponges. In: Müller WEG (ed) Sponges (Porifera). Springer, Berlin, pp 143–162

    Chapter  Google Scholar 

  74. Pronzato R (2003) Mediterranean sponge fauna: a biological, historical and cultural heritage. Biogeographia 24:91–99

    Article  Google Scholar 

  75. Pronzato R, Manconi R (2008) Mediterranean commercial sponges: over 5000 years of natural history and cultural heritage. Mar Ecol 29:146–166. https://doi.org/10.1111/j.1439-0485.2008.00235.x

    Article  Google Scholar 

  76. Stevely JM, Sweat DE, Bert TM et al (2010) Commercial bath sponge (Spongia and Hippospongia) and total sponge community abundance and biomass estimates in the Florida Middle and Upper Keys, USA Estimaciones de la Biomasa en los Cayos Central y Superior del Estado de Florida, EE. UU, de Espon. Proc Gulf Caribb Fish Inst 62:394–403

    Google Scholar 

  77. Vicente VP (1989) Regional commercial sponge extinctions in the west indies: are recent climatic changes responsible? Mar Ecol 10:179–191. https://doi.org/10.1111/j.1439-0485.1989.tb00073.x

    Article  Google Scholar 

  78. Voultsiadou E, Vafidis D, Antoniadou C (2008) Sponges of economical interest in the Eastern Mediterranean: an assessment of diversity and population density. J Nat Hist 42:529–543. https://doi.org/10.1080/00222930701835506

    Article  Google Scholar 

  79. Duckworth AR, Wolff C (2007) Bath sponge aquaculture in Torres Strait, Australia: effect of explant size, farming method and the environment on culture success. Aquaculture 271:188–195. https://doi.org/10.1016/j.aquaculture.2007.06.037

    Article  Google Scholar 

  80. Wolff C (2004) Sponge farming in remote Australian communities. Australas Sci 25:35

    Google Scholar 

  81. Josupeit H (1990) Sponges: world production and markets. Food and Agriculture Organisation of the United Nations. FAO, Suva

    Google Scholar 

  82. Voultsiadou E (2010) Therapeutic properties and uses of marine invertebrates in the ancient Greek world and early Byzantium. J Ethnopharmacol 130:237–247. https://doi.org/10.1016/j.jep.2010.04.041

    Article  PubMed  Google Scholar 

  83. Sipkema D, Franssen MCR, Osinga R et al (2005) Marine sponges as pharmacy. Mar Biotechnol 7:142–162. https://doi.org/10.1007/s10126-004-0405-5

    Article  CAS  Google Scholar 

  84. Mehbub MF, Lei J, Franco C, Zhang W (2014) Marine sponge derived natural products between 2001 and 2010: trends and opportunities for discovery of bioactives. Mar Drugs 12:4539–4577. https://doi.org/10.3390/md12084539

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Hirata Y, Uemura D (1986) Halichondrins – antitumor polyether macrolides from a marine sponge. Pure Appl Chem 58:701–710. https://doi.org/10.1351/pac198658050701

    Article  CAS  Google Scholar 

  86. Hayashi K, Hamada Y, Shioiri T (1992) Synthesis of nazumamide A, a thrombin-inhibitory linear tetrapeptide, from a marine sponge, Theonella sp. Tetrahedron Lett 33:5075–5076. https://doi.org/10.1016/S0040-4039(00)61193-0

    Article  CAS  Google Scholar 

  87. Sata NU, Matsunaga S, Fusetani N, Van Soest RWM (1999) Aurantosides D, E, and F: new antifungal tetramic acid glycosides from the marine sponge Siliquariaspongia japonica. J Nat Prod 62:969–971. https://doi.org/10.1021/np9900021

    Article  PubMed  CAS  Google Scholar 

  88. Ferrandiz ML, Sanz MJ, Bustos G et al (1994) Avarol and avarone, 2 new antiinflammatory agents of marine origin. Eur J Pharmacol 253:75–82. https://doi.org/10.1016/0014-2999(94)90759-5

    Article  PubMed  CAS  Google Scholar 

  89. Bucar F, Wube A, Schmid M (2013) Natural product isolation – how to get from biological material to pure compounds. Nat Prod Rep 30:525–545. https://doi.org/10.1039/c3np20106f

    Article  PubMed  CAS  Google Scholar 

  90. Quinn RJ (1988) Chemistry of aqueous marine extracts: isolation techniques. In: Scheuer PJ (ed) Bioorganic marine chemistry. Springer, Berlin, pp 1–41

    Google Scholar 

  91. Ankisetty S, Slattery M (2012) Antibacterial secondary metabolites from the cave sponge Xestospongia sp. Mar Drugs 10:1037–1043. https://doi.org/10.3390/md10051037

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Roué M, Domart-Coulon I, Ereskovsky A et al (2010) Cellular localization of clathridimine, an antimicrobial 2-aminoimidazole alkaloid produced by the mediterranean calcareous sponge Clathrina clathrus. J Nat Prod 73:1277–1282. https://doi.org/10.1021/np100175x

    Article  PubMed  CAS  Google Scholar 

  93. Sauleau P, Moriou C, Al Mourabit A (2017) Metabolomics approach to chemical diversity of the Mediterranean marine sponge Agelas oroides. Nat Prod Res 6419:1–8. https://doi.org/10.1080/14786419.2017.1285298

    Article  CAS  Google Scholar 

  94. Di Bari G, Gentile E, Latronico T et al (2015) Inhibitory effect of aqueous extracts from marine sponges on the activity and expression of gelatinases A (MMP-2) and B (MMP-9) in rat astrocyte cultures. PLoS One 10(6):e0129322. https://doi.org/10.1371/journal.pone.0129322

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Sepčić K, Kauferstein S, Mebs D, Turk T (2010) Biological activities of aqueous and organic extracts from tropical marine sponges. Mar Drugs 8:1550–1566. https://doi.org/10.3390/md8051550

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Pérez-Victoria I, Martín J, Reyes F (2016) Combined LC/UV/MS and NMR strategies for the dereplication of marine natural products. Planta Med 82:857–871. https://doi.org/10.1055/s-0042-101763

    Article  PubMed  CAS  Google Scholar 

  97. Gaudencio SP, Pereira F (2015) Dereplication: racing to speed up the natural products discovery process. Nat Prod Rep 32:779–810. https://doi.org/10.1039/c4np00134f

    Article  PubMed  CAS  Google Scholar 

  98. Indraningrat AAG, Smidt H, Sipkema D (2016) Bioprospecting sponge-associated microbes for antimicrobial compounds. Mar Drugs 14:87. https://doi.org/10.3390/md14050087

    Article  PubMed Central  CAS  Google Scholar 

  99. Youssef DTA, Shaala LA, Asfour HZ (2013) Bioactive compounds from the Red Sea marine sponge Hyrtios species. Mar Drugs 11:1061–1070. https://doi.org/10.3390/md11041061

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Cutignano A, Nuzzo G, Ianora A et al (2015) Development and application of a novel SPE-method for bioassay-guided fractionation of marine extracts. Mar Drugs 13:5736–5749. https://doi.org/10.3390/md13095736

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Shaaban M, Abd-Alla HI, Hassan AZ et al (2012) Chemical characterization, antioxidant and inhibitory effects of some marine sponges against carbohydrate metabolizing enzymes. Org Med Chem Lett 2:30. https://doi.org/10.1186/2191-2858-2-30\r2191-2858-2-30

    Article  PubMed  PubMed Central  Google Scholar 

  102. Wolfender JL (2009) HPLC in natural product analysis: the detection issue. Planta Med 75:719–734. https://doi.org/10.1055/s-0028-1088393

    Article  PubMed  CAS  Google Scholar 

  103. Li K, Chung-Davidson Y-W, Bussy U, Li W (2015) Recent advances and applications of experimental technologies in marine natural product research. Mar Drugs 13:2694–2713. https://doi.org/10.3390/md13052694

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Bouslimani A, Sanchez LM, Garg N, Dorrestein PC (2014) Mass spectrometry of natural products: current, emerging and future technologies. Nat Prod Rep 31:718–729. https://doi.org/10.1039/c4np00044g

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Breton RC, Reynolds WF (2013) Using NMR to identify and characterize natural products. Nat Prod Rep 30:501–524. https://doi.org/10.1039/c2np20104f

    Article  PubMed  CAS  Google Scholar 

  106. Kwan EE, Huang SG (2008) Structural elucidation with NMR spectroscopy: practical strategies for organic chemists. Eur J Org Chem:2671–2688. https://doi.org/10.1002/ejoc.200700966

    Article  CAS  Google Scholar 

  107. Riccio R, Bifulco G, Cimino P et al (2003) Stereochemical analysis of natural products. Approaches relying on the combination of NMR spectroscopy and computational methods. Pure Appl Chem 75:295–308. https://doi.org/10.1351/pac200375020295

    Article  CAS  Google Scholar 

  108. Blunt JW, Copp BR, Keyzers RA et al (2015) Marine natural products. Nat Prod Rep 32:116–211. https://doi.org/10.1039/C4NP00144C

    Article  PubMed  CAS  Google Scholar 

  109. Koopmans M, Martens D, Wijffels RH (2009) Towards commercial production of sponge medicines. Mar Drugs 7:787–802. https://doi.org/10.3390/md7040787

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Piel J (2004) Metabolites from symbiotic bacteria. Nat Prod Rep 21:519–538. https://doi.org/10.1039/b310175b

    Article  PubMed  CAS  Google Scholar 

  111. Wang G (2006) Diversity and biotechnological potential of the sponge-associated microbial consortia. J Ind Microbiol Biotechnol 33:545–551. https://doi.org/10.1007/s10295-006-0123-2

    Article  PubMed  CAS  Google Scholar 

  112. Ebada SS, Lin W, Proksch P (2010) Bioactive sesterterpenes and triterpenes from marine sponges: occurrence and pharmacological significance. Mar Drugs 8:313–346. https://doi.org/10.3390/md8020313

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Gandhimathi R, Arunkumar M, Selvin J et al (2008) Antimicrobial potential of sponge associated marine actinomycetes. J Mycol Med 18:16–22. https://doi.org/10.1016/j.mycmed.2007.11.001

    Article  Google Scholar 

  114. Molinski TF, Dalisay DS, Lievens SL, Saludes JP (2009) Drug development from marine natural products. Nat Rev Drug Discov 8:69–85. https://doi.org/10.1038/nrd2487

    Article  PubMed  CAS  Google Scholar 

  115. Sashidhara KV, White KN, Crews P (2009) A selective account of effective paradigms and significant outcomes in the discovery of inspirational marine natural products. J Nat Prod 72:588–603. https://doi.org/10.1021/np800817y

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Bewley CA, Faulkner DJ (1998) Lithistid sponges: star performers or hosts to the stars. Angew Chem Int Ed 37:2162–2178

    Article  Google Scholar 

  117. Unson MD, Faulkner DJ (1993) Cyanobacterial symbiont biosynthesis of chlorinated metabolites from Dysidea herbacea (Porifera). Experientia 49:349–353. https://doi.org/10.1007/BF01923420

    Article  CAS  Google Scholar 

  118. Unson MD, Holland ND, Faulkner DJ (1994) A brominated secondary metabolite synthesized by the cyanobacterial symbiont of a marine sponge and accumulation of the crystalline metabolite in the sponge tissue. Mar Biol 119:1–11. https://doi.org/10.1007/BF00350100

    Article  CAS  Google Scholar 

  119. Narquizian R, Kocienski PJ (2000) The pederin family of antitumor agents: structures, synthesis and biological activity. In: Mulzer J, Bohlmann R (eds) The role of natural products in drug discovery. Springer, Berlin, pp 25–56

    Chapter  Google Scholar 

  120. Piel J, Butzke D, Fusetani N et al (2005) Exploring the chemistry of uncultivated bacterial symbionts: Antitumor polyketides of the Pederin family. J Nat Prod 68:472–479. https://doi.org/10.1021/np049612d

    Article  PubMed  CAS  Google Scholar 

  121. Kocienski P, Narquizian R, Raubo P et al (2000) Synthetic studies on the pederin family of antitumour agents. Syntheses of mycalamide B, theopederin D and pederin. J Chem Soc Perkin Trans 1(8):2357–2384. https://doi.org/10.1039/a909898d

    Article  Google Scholar 

  122. Perry NB, Blunt JW, Munro MHG, Pannell LK (1988) Mycalamide A, an antiviral compound from a New Zealand sponge of the genus Mycale. J Am Chem Soc 110:4850–4851

    Article  CAS  Google Scholar 

  123. Sakemi S, Ichiba T, Kohmoto S et al (1988) Isolation and structure elucidation of onnamide A, a new bioactive metabolite of a marine sponge, Theonella sp. J Am Chem Soc 110:4851–4853

    Article  CAS  Google Scholar 

  124. Cichewicz RH, Valeriote FA, Crews P (2004) Psymberin, a potent sponge-derived cytotoxin from Psammocinia distantly related to the pederin family. Org Lett 6:1951–1954. https://doi.org/10.1021/ol049503q

    Article  PubMed  CAS  Google Scholar 

  125. Kampa A, Gagunashvili AN, Gulder T a M et al (2013) Metagenomic natural product discovery in lichen provides evidence for a family of biosynthetic pathways in diverse symbioses. Proc Natl Acad Sci U S A 110:E3129–E3137. https://doi.org/10.1073/pnas.1305867110

    Article  PubMed  PubMed Central  Google Scholar 

  126. Nakabachi A, Ueoka R, Oshima K et al (2013) Defensive bacteriome symbiont with a drastically reduced genome. Curr Biol 23:1478–1484. https://doi.org/10.1016/j.cub.2013.06.027

    Article  PubMed  CAS  Google Scholar 

  127. Wakimoto T, Egami Y, Nakashima Y et al (2014) Calyculin biogenesis from a pyrophosphate protoxin produced by a sponge symbiont. Nat Chem Biol 10:648–655. https://doi.org/10.1038/nchembio.1573

    Article  PubMed  CAS  Google Scholar 

  128. Lackner G, Peters EE, Helfrich EJN, Piel J (2017) Insights into the lifestyle of uncultured bacterial natural product factories associated with marine sponges. Proc Natl Acad Sci U S A 114:E347–E356. https://doi.org/10.1073/pnas.1616234114

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Uriz MJ, Turon X, Galera J, Tur JM (1996) New light on the cell location of avarol within the sponge Dysidea avara (Dendroceratida). Cell Tissue Res 285:519–527. https://doi.org/10.1007/s004410050668

    Article  Google Scholar 

  130. Andrade P, Willoughby R, Pomponi SA, Kerr RG (1999) Biosynthetic studies of the alkaloid, stevensine, in a cell culture of the marine sponge Teichaxinella morchella. Tetrahedron Lett 40:4775–4778. https://doi.org/10.1016/S0040-4039(99)00881-3

    Article  CAS  Google Scholar 

  131. Ternon E, Zarate L, Chenesseau S et al (2016) Spherulization as a process for the exudation of chemical cues by the encrusting sponge C. crambe. Sci Rep 6:29474. https://doi.org/10.1038/srep29474

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Turon X, Becerro MA, Uriz MJ (2000) Distribution of brominated compounds within the sponge Aplysina aerophoba: coupling of X-ray microanalysis with cryofixation techniques. Cell Tissue Res 301:311–322. https://doi.org/10.1007/s004410000233

    Article  PubMed  CAS  Google Scholar 

  133. Lopp A, Reintamm T, Kuusksalu A et al (2012) A novel endoribonuclease from the marine sponge Tethya aurantium specific to 2',5'-phosphodiester bonds. Biochimie 94:1635–1646. https://doi.org/10.1016/j.biochi.2012.04.002

    Article  PubMed  CAS  Google Scholar 

  134. Reintamm T, Lopp A, Kuusksalu A et al (2003) ATP N-glycosidase: a novel ATP-converting activity from a marine sponge Axinella polypoides. Eur J Biochem 270:4122–4132. https://doi.org/10.1046/j.1432-1033.2003.03805.x

    Article  PubMed  CAS  Google Scholar 

  135. Mendola D (2003) Aquaculture of three phyla of marine invertebrates to yield bioactive metabolites: process developments and economics. Biomol Eng 20:441–458. https://doi.org/10.1016/S1389-0344(03)00075-3

    Article  PubMed  CAS  Google Scholar 

  136. Huyck TK, Gradishar W, Manuguid F, Kirkpatrick P (2011) Eribulin mesylate. Nat Rev Drug Discov 10:173–174. https://doi.org/10.1038/nrd3389

    Article  PubMed  CAS  Google Scholar 

  137. Yu MJ, Zheng W, Seletsky BM (2013) From micrograms to grams: scale-up synthesis of eribulin mesylate. Nat Prod Rep 30:1158–1164. https://doi.org/10.1039/c3np70051h

    Article  PubMed  CAS  Google Scholar 

  138. Brand U, Görg C, Hirsch J, Wissen M (2008) Conflicts in environmental regulation and the internationalisation of the state: contested terrains. Routledge, London

    Google Scholar 

  139. Greiber T, Moreno SP, Ahrén M et al (2012) An explanatory guide to the Nagoya Protocol on access and benefit-sharing. IUCN, Gland, Switzerland

    Google Scholar 

  140. Laird S, Wynberg R (2012) Bioscience at a crossroads: implementing the Nagoya Protocol on access and benefit sharing in a time of scientific, technological and industry change. Secretariat of the Convention on Biological Diversity, Montréal, QC

    Google Scholar 

  141. Swanson TM (1998) The economics and ecology of biodiversity decline: the forces driving global change. Cambridge University Press, Cambridge

    Google Scholar 

  142. Richerzhagen C (2013) Protecting biological diversity: the effectiveness of access and benefit-sharing regimes. Routledge, New York

    Book  Google Scholar 

  143. Battershill CN, Page MJ (1996) Sponge aquaculture for drug production. Aquac Updat 16:5–6

    Google Scholar 

  144. Osinga R, de Beukelaer PB, Meijer EM et al (1999a) Growth of the sponge Pseudosuberites (aff.) andrewsi in a closed system. J Biotechnol 70:155–161. https://doi.org/10.1016/S0168-1656(99)00068-1

    Article  CAS  Google Scholar 

  145. Verdenal B, Vacelet J (1990) Sponge culture on vertical ropes in the Northwestern Mediterranean Sea. In: Ruetzler K (ed) New perspectives in sponge biology. Smithsonian Institution Press, Washington, DC, pp 416–424

    Google Scholar 

  146. Belarbi EH, Contreras Gómez A, Chisti Y et al (2003) Producing drugs from marine sponges. Biotechnol Adv 21:585–598. https://doi.org/10.1016/S0734-9750(03)00100-9

    Article  CAS  Google Scholar 

  147. de Voogd NJ (2007) An assessment of sponge mariculture potential in the Spermonde Archipelago, Indonesia. J Mar Biol Assoc UK 87:1777–1784. https://doi.org/10.1017/S0025315407057335

    Article  Google Scholar 

  148. Duckworth A, Battershill C (2003) Sponge aquaculture for the production of biologically active metabolites: the influence of farming protocols and environment. Aquaculture 221:311–329. https://doi.org/10.1016/S0044-8486(03)00070-X

    Article  Google Scholar 

  149. Muller WE, Wimmer W, Schatton W et al (1999) Initiation of an aquaculture of sponges for the sustainable production of bioactive metabolites in open systems: example, Geodia cydonium. Mar Biotechnol (NY) 1:569–579

    Article  CAS  Google Scholar 

  150. Ruiz C, Valderrama K, Zea S, Castellanos L (2013) Mariculture and natural production of the antitumoural (+)-discodermolide by the Caribbean marine sponge Discodermia dissoluta. Mar Biotechnol (NY) 15:571–583. https://doi.org/10.1007/s10126-013-9510-7

    Article  CAS  Google Scholar 

  151. van Treeck P, Eisinger M, Müller J et al (2003) Mariculture trials with Mediterranean sponge species: the exploitation of an old natural resource with sustainable and novel methods. Aquaculture 218:439–455. https://doi.org/10.1016/S0044-8486(03)00010-3

    Article  Google Scholar 

  152. Francis JC, Bart L, Poirrier MA (1990) Effect of medium pH on the growth rate of Ephydatia fluviatilis in laboratory culture. In: New perspectives in sponge biology. 3rd international sponge conference, pp 485–490

    Google Scholar 

  153. Hoffmann F, Rapp HT, Zoller T, Reitner J (2003) Growth and regeneration in cultivated fragments of the boreal deep water sponge Geodia barretti Bowerbank, 1858 (Geodiidae, Tetractinellida, Demospongiae). J Biotechnol 100:109–118

    Article  CAS  PubMed  Google Scholar 

  154. Nickel M, Brummer F (2003) In vitro sponge fragment culture of Chondrosia reniformis (Nardo, 1847). J Biotechnol 100:147–159

    Article  CAS  PubMed  Google Scholar 

  155. Osinga R, Tramper J, Wijffels RH (1998) Cultivation of marine sponges for metabolite production: applications for biotechnology? Trends Biotechnol 16:130–134. https://doi.org/10.1016/S0167-7799(97)01164-5

    Article  CAS  Google Scholar 

  156. Pérez-López P, Ternon E, González-García S et al (2014) Environmental solutions for the sustainable production of bioactive natural products from the marine sponge Crambe crambe. Sci Total Environ 475:71–82. https://doi.org/10.1016/j.scitotenv.2013.12.068

    Article  PubMed  CAS  Google Scholar 

  157. Osinga R, Tramper J, Wijffels RH (1999b) Cultivation of marine sponges. Mar Biotechnol (NY) 1:509–532

    Article  CAS  Google Scholar 

  158. Hausmann R, Vitello MP, Leitermann F, Syldatk C (2006) Advances in the production of sponge biomass Aplysina aerophoba – a model sponge for ex situ sponge biomass production. J Biotechnol 124:117–127. https://doi.org/10.1016/j.jbiotec.2006.03.033

    Article  PubMed  CAS  Google Scholar 

  159. Simpson TL (1984) Gamete, embryo, larval development. In: Simpson TL (ed) The cell biology of sponges. Springer, Berlin, pp 341–413

    Chapter  Google Scholar 

  160. Wilson HV (1907) On some phenomena of coalescence and regeneration in sponges. J Exp Zool 5:245–258. https://doi.org/10.1002/jez.1400050204

    Article  Google Scholar 

  161. Borojevic R (1966) Étude expérimentale de la différenciation des cellules de l’éponge au cours de son développement. Dev Biol 14:130–153. https://doi.org/10.1016/0012-1606(66)90009-1

    Article  PubMed  CAS  Google Scholar 

  162. De Sutter D, Van de Vyver G (1979) Isolation and recognition properties of some definite sponge cell types. Dev Comp Immunol 3:389–397. https://doi.org/10.1016/S0145-305X(79)80036-1

    Article  PubMed  Google Scholar 

  163. Pomponi SA (2006) Biology of the Porifera: cell culture. Can J Zool 84:167–174. https://doi.org/10.1139/z05-188

    Article  CAS  Google Scholar 

  164. Schippers KJ, Sipkema D, Osinga R et al (2012) Chapter six – cultivation of sponges, sponge cells and symbionts: achievements and future prospects. In: Mikel A, Becerro MJUMM, Xavier T (eds) Advances in marine biology. Academic, New York, pp 273–337

    Google Scholar 

  165. Pomponi SA, Willoughby R, Kaighn ME, Wright AE (1996) Development of techniques for in vitro production of bioactive natural products from marine sponges. In: Proceedings of the 1996 world congress of vitro biology, pp 231–237

    Google Scholar 

  166. Pomponi SA, Willoughby R, Kaighn ME, Wright AE (1997) Development of techniques for in vitro production of bioactive natural products from marine sponges. In: Maramorosch K, Mitsuhashi J (eds) Invertebrate cell culture: novel directions and biotechnology applications. Science Publishers, Enfield, NH, pp 231–237

    Google Scholar 

  167. Rinkevich B (2005) Marine invertebrate cell cultures: new millennium trends. Mar Biotechnol 7:429–439. https://doi.org/10.1007/s10126-004-0108-y

    Article  CAS  Google Scholar 

  168. Cai X, Zhang Y (2014) Marine invertebrate cell culture: a decade of development. J Oceanogr 70:405–414. https://doi.org/10.1007/s10872-014-0242-8

    Article  Google Scholar 

  169. Willoughby R, Pomponi SA (2000) Quantitative assessment of marine sponge cells in vitro: development of improved growth medium. In Vitro Cell Dev Biol Anim 36:194–200

    Article  CAS  PubMed  Google Scholar 

  170. Zhang X, Le Pennec G, Steffen R et al (2004) Application of a MTT assay for screening nutritional factors in growth media of primary sponge cell culture. Biotechnol Prog 20:151–155. https://doi.org/10.1021/bp0341601

    Article  PubMed  CAS  Google Scholar 

  171. Custodio MR, Prokic I, Steffen R et al (1998) Primmorphs generated from dissociated cells of the sponge Suberites domuncula: a model system for studies of cell proliferation and cell death. Mech Ageing Dev 105:45–59. https://doi.org/10.1016/S0047-6374(98)00078-5

    Article  PubMed  CAS  Google Scholar 

  172. Schippers KJ, Martens DE, Pomponi SA, Wijffels RH (2011) Cell cycle analysis of primary sponge cell cultures. In Vitro Cell Dev Biol Anim 47:302–311. https://doi.org/10.1007/s11626-011-9391-x

    Article  PubMed  PubMed Central  Google Scholar 

  173. Srivastava M, Simakov O, Chapman J et al (2010) The Amphimedon queenslandica genome and the evolution of animal complexity. Nature 466:720–726. https://doi.org/10.1038/nature09201

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  174. Schippers KJ (2013) Sponge cell culture. Dissertation, Wageningen University

    Google Scholar 

  175. Pomponi SA, Jevitt A, Patel J, Diaz MC (2013) Sponge hybridomas: applications and implications. Integr Comp Biol 53:524–530

    Article  PubMed  Google Scholar 

  176. Wijffels RH, Osinga R, Pomponi S, Tramper J (2001) Marine sponges as biocatalysts. In: Cabral JMS, Mota M, Tramper J (eds) Multiphase bioreactor design. Taylor & Francis, London, pp 477–493

    Google Scholar 

  177. Sipkema D, Schippers K, Maalcke WJ et al (2011) Multiple approaches to enhance the cultivability of bacteria associated with the marine sponge Haliclona (gellius) sp. Appl Environ Microbiol 77:2130–2140. https://doi.org/10.1128/AEM.01203-10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  178. Zhang H, Lee YK, Zhang W, Lee HK (2006) Culturable actinobacteria from the marine sponge Hymeniacidon perleve: isolation and phylogenetic diversity by 16S rRNA gene-RFLP analysis. Antonie Van Leeuwenhoek 90:159–169. https://doi.org/10.1007/s10482-006-9070-1

    Article  PubMed  CAS  Google Scholar 

  179. Schwedt A, Seidel M, Dittmar T et al (2015) Substrate use of Pseudovibrio sp. growing in ultra-oligotrophic seawater. PLoS One 10:e0121675. https://doi.org/10.1371/journal.pone.0121675

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  180. Kurtböke DI (2005) Actinophages as indicators of actinomycete taxa in marine environments. Antonie Van Leeuwenhoek 87:19–28. https://doi.org/10.1007/s10482-004-6535-y

    Article  PubMed  Google Scholar 

  181. Rappe MS, Connon SA, Vergin KL, Giovannoni SJ (2002) Cultivation of the ubiquitous SAR11 marine bacterioplankton clade. Nature 418:630–633

    Article  CAS  PubMed  Google Scholar 

  182. Toledo G, Green W, Gonzalez R et al (2006) High throughput cultivation for isolation of novel marine microorganisms. Oceanography 19:120–125. https://doi.org/10.5670/oceanog.2006.75

    Article  Google Scholar 

  183. Steinert G, Whitfield S, Taylor MW et al (2014) Application of diffusion growth chambers for the cultivation of marine sponge-associated bacteria. Mar Biotechnol 16:594–603. https://doi.org/10.1007/s10126-014-9575-y

    Article  CAS  Google Scholar 

  184. Reynolds D, Thomas T (2016) Evolution and function of eukaryotic-like proteins from sponge symbionts. Mol Ecol 25:5242–5253. https://doi.org/10.1111/mec.13812

    Article  PubMed  CAS  Google Scholar 

  185. Janssen PH, Yates PS, Grinton BE et al (2002) Improved culturability of soil bacteria and isolation in pure culture of novel members of the divisions Acidobacteria, Actinobacteria, Proteobacteria, and Verrucomicrobia. Appl Environ Microbiol 68:2391–2396. https://doi.org/10.1128/AEM.68.5.2391-2396.2002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  186. Hoffmann F, Røy H, Bayer K et al (2008) Oxygen dynamics and transport in the Mediterranean sponge Aplysina aerophoba. Mar Biol 153:1257–1264. https://doi.org/10.1007/s00227-008-0905-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  187. Bruck WM, Bruck TB, Self WT et al (2010) Comparison of the anaerobic microbiota of deep-water Geodia spp. and sandy sediments in the Straits of Florida. ISME J 4:686–699

    Article  PubMed  Google Scholar 

  188. Ueoka R, Uria AR, Reiter S et al (2015) Metabolic and evolutionary origin of actin-binding polyketides from diverse organisms. Nat Chem Biol 11:705–712. https://doi.org/10.1038/nchembio.1870

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  189. Lambalot RH, Gehring AM, Flugel RS et al (1996) A new enzyme superfamily – the phosphopantetheinyl transferases. Chem Biol 3:923–936. https://doi.org/10.1016/S1074-5521(96)90181–7

    Article  PubMed  CAS  Google Scholar 

  190. Wenzel SC, Müller R (2005) Recent developments towards the heterologous expression of complex bacterial natural product biosynthetic pathways. Curr Opin Biotechnol 16:594–606. https://doi.org/10.1016/j.copbio.2005.10.001

    Article  PubMed  CAS  Google Scholar 

  191. Borchert E, Jackson SA, O’Gara F, Dobson AD (2016) Diversity of natural product biosynthetic genes in the microbiome of the deep sea sponges Inflatella pellicula, Poecillastra compressa, and Stelletta normani. Front Microbiol 7:1027. https://doi.org/10.3389/fmicb.2016.01027

    Article  PubMed  PubMed Central  Google Scholar 

  192. Kennedy J, Marchesi JR, Dobson ADW (2008) Marine metagenomics: strategies for the discovery of novel enzymes with biotechnological applications from marine environments. Microb Cell Factor 7:27. https://doi.org/10.1186/1475-2859-7-27

    Article  CAS  Google Scholar 

  193. Mineta K, Gojobori T (2016) Databases of the marine metagenomics. Gene 576:724–728. https://doi.org/10.1016/j.gene.2015.10.035

    Article  PubMed  CAS  Google Scholar 

  194. Franzosa EA, Hsu T, Sirota-Madi A et al (2015) Sequencing and beyond: integrating molecular “omics” for microbial community profiling. Nat Rev Microbiol 13:360–372. https://doi.org/10.1038/nrmicro3451

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  195. Loman NJ, Pallen MJ (2015) Twenty years of bacterial genome sequencing. Nat Rev Microbiol 13:787–794. https://doi.org/10.1038/nrmicro3565

    Article  PubMed  CAS  Google Scholar 

  196. Simon C, Daniel R (2011) Metagenomic analyses: past and future trends. Appl Environ Microbiol 77:1153–1161. https://doi.org/10.1128/AEM.02345-10

    Article  PubMed  CAS  Google Scholar 

  197. Thomas T, Gilbert J, Meyer F (2012) Metagenomics – a guide from sampling to data analysis. Microb Inform Exp 2:3. https://doi.org/10.1186/2042-5783-2-3

    Article  PubMed  PubMed Central  Google Scholar 

  198. Joyce AR, Palsson BO (2006) The model organism as a system: integrating “omics” data sets. Nat Rev Mol Cell Biol 7:198–210

    Article  CAS  PubMed  Google Scholar 

  199. Webster NS, Thomas T (2016) Defining the sponge hologenome. MBio 7:1–14. https://doi.org/10.1128/mBio.00135-16.Invited

    Article  Google Scholar 

  200. Hebert PDN, Cywinska A, Ball SL, deWaard JR (2003) Biological identifications through DNA barcodes. Proc R Soc Lond Ser B Biol Sci 270:313

    Article  CAS  Google Scholar 

  201. Caporaso JG, Lauber CL, Walters WA et al (2011) Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci 108:4516–4522. https://doi.org/10.1073/pnas.1000080107

    Article  PubMed  Google Scholar 

  202. Hajibabaei M, Singer GAC, Hebert PDN, Hickey DA (2007) DNA barcoding: how it complements taxonomy, molecular phylogenetics and population genetics. Trends Genet 23:167–172. https://doi.org/10.1016/j.tig.2007.02.001

    Article  PubMed  CAS  Google Scholar 

  203. Schoch CL, Seifert KA, Huhndorf S et al (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc Natl Acad Sci 109:6241–6246. https://doi.org/10.1073/pnas.1117018109

    Article  PubMed  PubMed Central  Google Scholar 

  204. Vargas S, Schuster A, Sacher K et al (2012) Barcoding sponges: an overview based on comprehensive sampling. PLoS One 7:e39345. https://doi.org/10.1371/journal.pone.0039345

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  205. Hooper JNA, Soest RWM (2002) Systema porifera: a guide to the classification of sponges. Kluwer Academic/Plenum, New York

    Book  Google Scholar 

  206. Xavier JR, Rachello-Dolmen PG, Parra-Velandia F et al (2010) Molecular evidence of cryptic speciation in the “cosmopolitan” excavating sponge Cliona celata (Porifera, Clionaidae). Mol Phylogenet Evol 56:13–20. https://doi.org/10.1016/j.ympev.2010.03.030

    Article  PubMed  CAS  Google Scholar 

  207. Bucklin A, Steinke D, Blanco-Bercial L (2011) DNA barcoding of marine metazoa. Annu Rev Mar Sci 3(3):471–508. https://doi.org/10.1146/annurev-marine-120308-080950

    Article  Google Scholar 

  208. Erpenbeck D, Ekins M, Enghuber N, et al (2015) Nothing in (sponge) biology makes sense – except when based on holotypes. J Mar Biol Assoc UK FirstView:1–7. doi:https://doi.org/10.1017/S0025315415000521

    Article  Google Scholar 

  209. Wörheide G, Erpenbeck D, Menke C (2007) The Sponge Barcoding Project: aiding in the identification and description of poriferan taxa. Porifera Res Biodivers Innov Sustain:123–128

    Google Scholar 

  210. Pace NR (1997) A molecular view of microbial diversity and the biosphere. Science 276:734–740

    Article  CAS  PubMed  Google Scholar 

  211. Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271

    PubMed  PubMed Central  CAS  Google Scholar 

  212. Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849

    Article  CAS  Google Scholar 

  213. Tringe SG, Hugenholtz P (2008) A renaissance for the pioneering 16S rRNA gene. Curr Opin Microbiol 11:442–446. https://doi.org/10.1016/j.mib.2008.09.011

    Article  PubMed  CAS  Google Scholar 

  214. Althoff K, Schütt C, Steffen R et al (1998) Evidence for a symbiosis between bacteria of the genus Rhodobacter and the marine sponge Halichondria panicea : harbor also for putatively toxic bacteria? Mar Biol 130:529–536. https://doi.org/10.1007/s002270050273

    Article  Google Scholar 

  215. Webb VL, Maas EW (2002) Sequence analysis of 16S rRNA gene of cyanobacteria associated with the marine sponge Mycale (Carmia) hentscheli. FEMS Microbiol Lett 207:43–47

    Article  CAS  PubMed  Google Scholar 

  216. Webster NS, Hill RT (2001) The culturable microbial community of the great barrier reef sponge Rhopaloeides odorabile is dominated by an Alphaproteobacterium. Mar Biol 138:843–851. https://doi.org/10.1007/s002270000503

    Article  CAS  Google Scholar 

  217. Friedrich AB, Merkert H, Fendert T et al (1999) Microbial diversity in the marine sponge Aplysina cavernicola (formerly Verongia cavernicola) analyzed by fluorescence in situ hybridization (FISH). Mar Biol 134:461–470. https://doi.org/10.1007/s002270050562

    Article  Google Scholar 

  218. Preston CM, Wu KY, Molinski TF, DeLong EF (1996) A psychrophilic crenarchaeon inhabits a marine sponge: Cenarchaeum symbiosum gen. nov., sp. nov. Proc Natl Acad Sci U S A 93:6241–6246. https://doi.org/10.1073/pnas.93.13.6241

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  219. Schmidt EW, Obraztsova AY, Davidson SK et al (2000) Identification of the antifungal peptide-containing symbiont of the marine sponge Theonella swinhoei as a novel δ-proteobacterium, “Candidatus Entotheonella palauensis”. Mar Biol 136:969–977. https://doi.org/10.1007/s002270000273

    Article  CAS  Google Scholar 

  220. Guardiola M, Uriz MJ, Taberlet P et al (2015) Deep-sea, deep-sequencing: metabarcoding extracellular DNA from sediments of marine canyons. PLoS One 10:e0139633. https://doi.org/10.1371/journal.pone.0139633

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  221. Zaiko A, Martinez JL, Schmidt-Petersen J et al (2015) Metabarcoding approach for the ballast water surveillance – an advantageous solution or an awkward challenge? Mar Pollut Bull 92:25–34. https://doi.org/10.1016/j.marpolbul.2015.01.008

    Article  PubMed  CAS  Google Scholar 

  222. Chain FJJ, Brown EA, Macisaac HJ, Cristescu ME (2016) Metabarcoding reveals strong spatial structure and temporal turnover of zooplankton communities among marine and freshwater ports. Divers Distrib 22:493–504. https://doi.org/10.1111/ddi.12427

    Article  Google Scholar 

  223. Cowart DA, Pinheiro M, Mouchel O et al (2015) Metabarcoding is powerful yet still blind: a comparative analysis of morphological and molecular surveys of seagrass communities. PLoS One 10:1–26. https://doi.org/10.1371/journal.pone.0117562

    Article  CAS  Google Scholar 

  224. Leray M, Knowlton N (2015) DNA barcoding and metabarcoding of standardized samples reveal patterns of marine benthic diversity. Proc Natl Acad Sci 112:2076–2081. https://doi.org/10.1073/pnas.1424997112

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  225. Stein L (2001) Genome annotation: from sequence to biology. Nat Rev Genet 2:493–503. https://doi.org/10.1038/35080529

    Article  PubMed  CAS  Google Scholar 

  226. Wiens M, Grebenjuk VA, Schröder HC et al (2009) Identification and isolation of a retrotransposon from the freshwater sponge Lubomirskia baicalensis: implication in rapid evolution of endemic sponges. In: Biosilica in evolution, morphogenesis, and nanobiotechnology. Springer, Berlin, pp 207–234

    Chapter  Google Scholar 

  227. Perina D, Korolija M, Mikoč A et al (2012) Structural and functional characterization of ribosomal protein gene introns in sponges. PLoS One 7:1–9. https://doi.org/10.1371/journal.pone.0042523

    Article  CAS  Google Scholar 

  228. Radax R, Hoffmann F, Rapp HT et al (2012) Ammonia-oxidizing archaea as main drivers of nitrification in cold-water sponges. Environ Microbiol 14:909–923. https://doi.org/10.1111/j.1462-2920.2011.02661.x

    Article  PubMed  CAS  Google Scholar 

  229. Wilkinson CR, Fay P (1979) Nitrogen fixation in coral reef sponges with symbiotic cyanobacteria. Nature 279:527–529

    Article  CAS  Google Scholar 

  230. Handelsman J (2004) Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev 68:669–685. https://doi.org/10.1128/MMBR.68.4.669-685.2004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  231. Tringe SG, Rubin EM (2005) Metagenomics: DNA sequencing of environmental samples. Nat Rev Genet 6:805–814. https://doi.org/10.1038/nrg1709

    Article  PubMed  CAS  Google Scholar 

  232. Tian RM, Wang Y, Bougouffa S et al (2014) Genomic analysis reveals versatile heterotrophic capacity of a potentially symbiotic sulfur-oxidizing bacterium in sponge. Environ Microbiol 16:3548–3561. https://doi.org/10.1111/1462-2920.12586

    Article  PubMed  CAS  Google Scholar 

  233. Burgsdorf I, Slaby BM, Handley KM et al (2015) Lifestyle evolution in cyanobacterial symbionts of sponges. MBio 6:1–14. https://doi.org/10.1128/mBio.00391-15

    Article  CAS  Google Scholar 

  234. Gao ZM, Wang Y, Tian RM et al (2014) Symbiotic adaptation drives genome streamlining of the cyanobacterial sponge symbiont ‘Candidatus Synechococcus spongiarum’. MBio 5:1–11. https://doi.org/10.1128/mBio.00079-14

    Article  CAS  Google Scholar 

  235. Gauthier M-EA, Watson JR, Degnan SM (2016) Draft genomes shed light on the dual bacterial symbiosis that dominates the microbiome of the coral reef sponge Amphimedon queenslandica. Front Mar Sci 3:1–18. https://doi.org/10.3389/fmars.2016.00196

    Article  Google Scholar 

  236. Ryu T, Seridi L, Moitinho-Silva L et al (2016) Hologenome analysis of two marine sponges with different microbiomes. BMC Genomics 17:158. https://doi.org/10.1186/s12864-016-2501-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  237. Trindade M, van Zyl LJ, Navarro-Fernandez J, Elrazak AA (2015) Targeted metagenomics as a tool to tap into marine natural product diversity for the discovery and production of drug candidates. Front Microbiol 6:1–14. https://doi.org/10.3389/fmicb.2015.00890

    Article  Google Scholar 

  238. Piel J, Hui D, Wen G et al (2004) Antitumor polyketide biosynthesis by an uncultivated bacterial symbiont of the marine sponge Theonella swinhoei. Proc Natl Acad Sci U S A 101:16222–16227. https://doi.org/10.1073/pnas.0405976101

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  239. Fisch KM, Gurgui C, Heycke N et al (2009) Polyketide assembly lines of uncultivated sponge symbionts from structure-based gene targeting. Nat Chem Biol 5:494–501. https://doi.org/10.1038/nchembio.176

    Article  PubMed  CAS  Google Scholar 

  240. Yung PY, Burke C, Lewis M et al (2011) Novel antibacterial proteins from the microbial communities associated with the sponge Cymbastela concentrica and the green alga Ulva australis. Appl Environ Microbiol 77:1512–1515. https://doi.org/10.1128/AEM.02038-10

    Article  PubMed  CAS  Google Scholar 

  241. He R, Wang B, Wakimoto T et al (2013) Cyclodipeptides from metagenomic library of a Japanese marine sponge. J Braz Chem Soc 24:1926–1932. https://doi.org/10.5935/0103-5053.20130240

    Article  CAS  Google Scholar 

  242. Medema MH, Blin K, Cimermancic P et al (2011) AntiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Res 39:339–346. https://doi.org/10.1093/nar/gkr466

    Article  CAS  Google Scholar 

  243. VanGuilder HD, Vrana KE, Freeman WM (2008) Twenty-five years of quantitative PCR for gene expression analysis. Biotechniques 44:619–626. https://doi.org/10.2144/000112776

    Article  PubMed  CAS  Google Scholar 

  244. Croucher NJ, Thomson NR (2010) Studying bacterial transcriptomes using RNA-seq. Curr Opin Microbiol 13:619–624. https://doi.org/10.1016/j.mib.2010.09.009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  245. Engström PG, Steijger T, Sipos B et al (2013) Systematic evaluation of spliced alignment programs for RNA-seq data. Nat Methods 10:1185–1191. https://doi.org/10.1038/nmeth.2722

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  246. Steijger T, Abril JF, Engström PG et al (2013) Assessment of transcript reconstruction methods for RNA-seq. Nat Methods 10:1177–1184. https://doi.org/10.1038/nmeth.2714

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  247. Aylward FO, Eppley JM, Smith JM et al (2015) Microbial community transcriptional networks are conserved in three domains at ocean basin scales. Proc Natl Acad Sci U S A 112:5443–5448. https://doi.org/10.1073/pnas.1502883112

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  248. Dyhrman S, Ammerman J, Van Mooy B (2007) Microbes and the marine phosphorus cycle. Oceanography 20:110–116. https://doi.org/10.5670/oceanog.2007.54

    Article  Google Scholar 

  249. Frias-Lopez J, Shi Y, Tyson G et al (2008) Microbial community gene expression in ocean surface waters. Proc Natl Acad Sci 105:3805–3810

    Article  PubMed  PubMed Central  Google Scholar 

  250. Dunn CW, Leys SP, Haddock SHD (2015) The hidden biology of sponges and ctenophores. Trends Ecol Evol 30:282–291. https://doi.org/10.1016/j.tree.2015.03.003

    Article  PubMed  Google Scholar 

  251. Jackson SA, Borchert E, O’Gara F, Dobson ADW (2015) Metagenomics for the discovery of novel biosurfactants of environmental interest from marine ecosystems. Curr Opin Biotechnol 33:176–182. https://doi.org/10.1016/j.copbio.2015.03.004

    Article  PubMed  CAS  Google Scholar 

  252. Pawlik JR, McMurray SE, Erwin P, Zea S (2015) A review of evidence for food limitation of sponges on Caribbean reefs. Mar Ecol Prog Ser 519:265–283. https://doi.org/10.3354/meps11093

    Article  CAS  Google Scholar 

  253. Riesgo A, Farrar N, Windsor PJ et al (2014) The analysis of eight transcriptomes from all poriferan classes reveals surprising genetic complexity in sponges. Mol Biol Evol 31:1102–1120. https://doi.org/10.1093/molbev/msu057

    Article  PubMed  CAS  Google Scholar 

  254. Guzman C, Conaco C (2016) Gene expression dynamics accompanying the sponge thermal stress response. PLoS One 11:1–15. https://doi.org/10.1371/journal.pone.0165368

    Article  CAS  Google Scholar 

  255. Leys SP (2015) Elements of a “nervous system” in sponges. J Exp Biol 218:581–591. https://doi.org/10.1242/jeb.110817

    Article  PubMed  Google Scholar 

  256. Guzman C, Conaco C (2016) Comparative transcriptome analysis reveals insights into the streamlined genomes of haplosclerid demosponges. Sci Rep 6:18774. https://doi.org/10.1038/srep18774

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  257. Taylor MW, Hill RT, Hentschel U (2011) Meeting report: 1st international symposium on sponge microbiology. Mar Biotechnol 13:1057–1061. https://doi.org/10.1007/s10126-011-9397-0

    Article  CAS  Google Scholar 

  258. Richardson C, Hill M, Marks C et al (2012) Experimental manipulation of sponge/bacterial symbiont community composition with antibiotics: sponge cell aggregates as a unique tool to study animal/microorganism symbiosis. FEMS Microbiol Ecol 81:407–418. https://doi.org/10.1111/j.1574-6941.2012.01365.x

    Article  PubMed  CAS  Google Scholar 

  259. Riesgo A, Peterson K, Richardson C et al (2014) Transcriptomic analysis of differential host gene expression upon uptake of symbionts: a case study with Symbiodinium and the major bioeroding sponge Cliona varians. BMC Genomics 15:376. https://doi.org/10.1186/1471-2164-15-376

    Article  PubMed  PubMed Central  Google Scholar 

  260. Díez-Vives C, Moitinho-Silva L, Nielsen S et al (2016) Expression of eukaryotic-like protein in the microbiome of sponges. Mol Ecol. https://doi.org/10.1111/mec.14003

  261. Anderson NL, Anderson NG (1998) Proteome and proteomics: new technologies, new concepts, and new words. Electrophoresis 19:1853–1861. https://doi.org/10.1002/elps.1150191103

    Article  PubMed  CAS  Google Scholar 

  262. Blackstock WP, Weir MP (1999) Proteomics: quantitative and physical mapping of cellular proteins. Trends Biotechnol 17:121–127. https://doi.org/10.1016/S0167-7799(98)01245-1

    Article  PubMed  CAS  Google Scholar 

  263. James P (1997) Protein identification in the post-genome era: the rapid rise of proteomics. Q Rev Biophys 30:279–331. https://doi.org/10.1017/S0033583597003399

    Article  PubMed  CAS  Google Scholar 

  264. Christie-Oleza JA, Fernandez B, Nogales B et al (2012) Proteomic insights into the lifestyle of an environmentally relevant marine bacterium. ISME J 6:124–135. https://doi.org/10.1038/ismej.2011.86

    Article  PubMed  CAS  Google Scholar 

  265. Bundy JG, Davey MP, Viant MR (2009) Environmental metabolomics: a critical review and future perspectives. Metabolomics 5:3–21. https://doi.org/10.1007/s11306-008-0152-0

    Article  CAS  Google Scholar 

  266. Oliver S (1998) Systematic functional analysis of the yeast genome. Trends Biotechnol 16:373–378. https://doi.org/10.1016/S0167-7799(98)01214-1

    Article  PubMed  CAS  Google Scholar 

  267. Ivanišević J, Thomas OP, Lejeusne C et al (2011) Metabolic fingerprinting as an indicator of biodiversity: towards understanding inter-specific relationships among Homoscleromorpha sponges. Metabolomics 7:289–304. https://doi.org/10.1007/s11306-010-0239-2

    Article  CAS  Google Scholar 

  268. Viegelmann C, Margassery LM, Kennedy J et al (2014) Metabolomic profiling and genomic study of a marine sponge-associated Streptomyces sp. Mar Drugs 12:3323–3351. https://doi.org/10.3390/md12063323

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  269. Nicholson JK, Lindon JC (2008) Systems biology: metabonomics. Nature 455:1054–1056. https://doi.org/10.1038/4551054a

    Article  PubMed  CAS  Google Scholar 

  270. Holmes E, Loo RL, Stamler J et al (2008) Human metabolic phenotype diversity and its association with diet and blood pressure. Nature 453:396–400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Holmes E, Wilson ID, Nicholson JK (2008) Metabolic phenotyping in health and disease. Cell 134:714–717. https://doi.org/10.1016/j.cell.2008.08.026

    Article  PubMed  CAS  Google Scholar 

  272. Marchesi JR, Holmes E, Khan F et al (2007) Rapid and noninvasive metabonomic characterization of inflammatory bowel disease. J Proteome Res 6:546–551. https://doi.org/10.1021/pr060470d

    Article  PubMed  CAS  Google Scholar 

  273. Nicholson JK, Lindon JC, Holmes E (1999) “Metabonomics”: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 29:1181–1189. https://doi.org/10.1080/004982599238047

    Article  PubMed  CAS  Google Scholar 

  274. Midelfart A (2009) Metabonomics – a new approach in ophthalmology. Acta Ophthalmol 87:697–703. https://doi.org/10.1111/j.1755-3768.2009.01516.x

    Article  PubMed  CAS  Google Scholar 

  275. Zhao YY, Cheng XL, Wei F et al (2012) Application of faecal metabonomics on an experimental model of tubulointerstitial fibrosis by ultra performance liquid chromatography/high-sensitivity mass spectrometry with MSE data collection technique. Biomarkers 17:721–729. https://doi.org/10.3109/1354750x.2012.724450

    Article  PubMed  CAS  Google Scholar 

  276. Boroujerdi AFB, Vizcaino MI, Meyers A et al (2009) NMR-based microbial metabolomics and the temperature-dependent coral pathogen Vibrio coralliilyticus. Environ Sci Technol 43:7658–7664. https://doi.org/10.1021/es901675w

    Article  PubMed  CAS  Google Scholar 

  277. Ramirez-Llodra E, Brandt A, Danovaro R et al (2010) Deep, diverse and definitely different: unique attributes of the world’s largest ecosystem. Biogeosciences 7:2851–2899. https://doi.org/10.5194/bg-7-2851-2010

    Article  Google Scholar 

  278. Jorgensen BB, Boetius A (2007) Feast and famine – microbial life in the deep-sea bed. Nat Rev Microbiol 5:770–781

    Article  CAS  PubMed  Google Scholar 

  279. Zierenberg RA, Adams MWW, Arp AJ (2000) Life in extreme environments: hydrothermal vents. Proc Natl Acad Sci 97:12961–12962. https://doi.org/10.1073/pnas.210395997

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  280. Bell JJ (2008) The functional roles of marine sponges. Estuar Coast Shelf Sci 79:341–353. https://doi.org/10.1016/j.ecss.2008.05.002

    Article  Google Scholar 

  281. Jackson SA, Flemer B, McCann A et al (2014) Archaea appear to dominate the microbiome of Inflatella pellicula deep sea sponges. PLoS One 8:e84438. https://doi.org/10.1371/journal.pone.0084438

    Article  CAS  Google Scholar 

  282. Kennedy J, Flemer B, Jackson SA et al (2014) Evidence of a putative deep sea specific microbiome in marine sponges. PLoS One 9:e91092. https://doi.org/10.1371/journal.pone.0091092

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  283. Sipkema D (2016) Marine biotechnology: diving deeper for drugs. Microb Biotechnol. https://doi.org/10.1111/1751-7915.12410

  284. OSPAR Commission (2010) Background document for deep-sea sponge aggregations. OSPAR Biodivers Ecosyst Ser 47

    Google Scholar 

  285. Lundsten L, Reiswig HM, Austin WC (2014) Four new species of Cladorhizidae (Porifera, Demospongiae, Poecilosclerida) from the Northeast Pacific. Zootaxa 3786:101–123. https://doi.org/10.11646/zootaxa.3786.2.1

    Article  PubMed  Google Scholar 

  286. Vacelet J, Boury-Esnault N, Fiala-Medioni A, Fisher CR (1995) A methanotrophic carnivorous sponge. Nature 377:296–296

    Article  CAS  Google Scholar 

  287. Ritzau M, Keller M, Wessels P et al (1993) New cyclic polysulfides from hyperthermophilic archaea of the genus Thermococcus. Liebigs Ann Chem 8:871–876

    Article  CAS  Google Scholar 

  288. Huber H, Stetter KO (1998) Hyperthermophiles and their possible potential in biotechnology. J Biotechnol 64:39–52. https://doi.org/10.1016/S0168-1656(98)00102-3

    Article  CAS  Google Scholar 

  289. Dridi B, Fardeau ML, Ollivier B et al (2011) The antimicrobial resistance pattern of cultured human methanogens reflects the unique phylogenetic position of archaea. J Antimicrob Chemother 66:2038–2044. https://doi.org/10.1093/jac/dkr251

    Article  PubMed  CAS  Google Scholar 

  290. Margot H, Acebal C, Toril E et al (2002) Consistent association of crenarchaeal Archaea with sponges of the genus Axinella. Mar Biol 140:739–745. https://doi.org/10.1007/s00227-001-0740-2

    Article  CAS  Google Scholar 

  291. Erwin PM, Pineda MC, Webster N et al (2014) Down under the tunic: bacterial biodiversity hotspots and widespread ammonia-oxidizing archaea in coral reef ascidians. ISME J 8:575–588. https://doi.org/10.1038/ismej.2013.188

    Article  PubMed  CAS  Google Scholar 

  292. Siboni N, Ben-Dov E, Sivan A, Kushmaro A (2008) Global distribution and diversity of coral-associated Archaea and their possible role in the coral holobiont nitrogen cycle. Environ Microbiol 10:2979–2990. https://doi.org/10.1111/j.1462-2920.2008.01718.x

    Article  PubMed  CAS  Google Scholar 

  293. Steinert G, Taylor MW, Schupp PJ (2015) Diversity of Actinobacteria associated with the marine ascidian Eudistoma toealensis. Mar Biotechnol 17:377–385. https://doi.org/10.1007/s10126-015-9622-3

    Article  CAS  Google Scholar 

  294. Simon HM, Jahn CE, Bergerud LT et al (2005) Cultivation of mesophilic soil crenarchaeotes in enrichment cultures from plant roots. Appl Environ Microbiol 71:4751–4760. https://doi.org/10.1128/AEM.71.8.4751

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  295. Dobson ADW, Jackson SA, Kennedy J et al (2015) Marine sponges – molecular biology and biotechnology. In: Kim S-K (ed) Springer handbook of marine biotechnology. Springer, Berlin, pp 219–254

    Chapter  Google Scholar 

  296. Höller U, Wright AD, Matthee GF et al (2000) Fungi from marine sponges: diversity, biological activity and secondary metabolites. Mycol Res 104:1354–1365. https://doi.org/10.1017/S0953756200003117

    Article  Google Scholar 

  297. Pivkin MV, Aleshko SA, Krasokhin VB, Khudyakova YV (2006) Fungal assemblages associated with sponges of the southern coast of Sakhalin Island. Russ J Mar Biol 32:207–213. https://doi.org/10.1134/S1063074006040018

    Article  Google Scholar 

  298. Suttle CA (2005) Viruses in the sea. Nature 437:356–361

    Article  CAS  PubMed  Google Scholar 

  299. Mojica KDA, Brussaard CPD (2014) Factors affecting virus dynamics and microbial host–virus interactions in marine environments. FEMS Microbiol Ecol 89:495–515. https://doi.org/10.1111/1574-6941.12343

    Article  PubMed  CAS  Google Scholar 

  300. Suttle CA (2007) Marine viruses – major players in the global ecosystem. Nat Rev Microbiol 5:801–812. https://doi.org/10.1038/nrmicro1750

    Article  PubMed  CAS  Google Scholar 

  301. Claverie J-M, Grzela R, Lartigue A et al (2009) Mimivirus and Mimiviridae: giant viruses with an increasing number of potential hosts, including corals and sponges. J Invertebr Pathol 101:172–180. https://doi.org/10.1016/j.jip.2009.03.011

    Article  PubMed  CAS  Google Scholar 

  302. Laffy PW, Wood-Charlson EM, Turaev D et al (2016) HoloVir: a workflow for investigating the diversity and function of viruses in invertebrate holobionts. Front Microbiol 7:822. https://doi.org/10.3389/fmicb.2016.00822

    Article  PubMed  PubMed Central  Google Scholar 

  303. Roux S, Tournayre J, Mahul A et al (2014) Metavir 2: new tools for viral metagenome comparison and assembled virome analysis. BMC Bioinformatics 15:76. https://doi.org/10.1186/1471-2105-15-76

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  304. Wommack KE, Bhavsar J, Polson SW et al (2012) VIROME: a standard operating procedure for analysis of viral metagenome sequences. Stand Genomic Sci 6:427–439. https://doi.org/10.4056/sigs.2945050

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  305. Lorenzi HA, Hoover J, Inman J et al (2011) TheViral MetaGenome Annotation Pipeline (VMGAP): an automated tool for the functional annotation of viral metagenomic shotgun sequencing data. Stand Genomic Sci 4:418–429. https://doi.org/10.4056/sigs.1694706

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  306. Maciejewska B, Roszniowski B, Espaillat A et al (2017) Klebsiella phages representing a novel clade of viruses with an unknown DNA modification and biotechnologically interesting enzymes. Appl Microbiol Biotechnol 101:673–684. https://doi.org/10.1007/s00253-016-7928-3

    Article  PubMed  CAS  Google Scholar 

  307. Freeman MF, Helf MJ, Bhushan A et al (2016) Seven enzymes create extraordinary molecular complexity in an uncultivated bacterium. Nat Chem. https://doi.org/10.1038/nchem.2666

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Detmer Sipkema .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Steinert, G. et al. (2018). BluePharmTrain: Biology and Biotechnology of Marine Sponges. In: Rampelotto, P., Trincone, A. (eds) Grand Challenges in Marine Biotechnology. Grand Challenges in Biology and Biotechnology. Springer, Cham. https://doi.org/10.1007/978-3-319-69075-9_13

Download citation

Publish with us

Policies and ethics