Skip to main content
Log in

Marine invertebrate cell culture: a decade of development

  • Review
  • Published:
Journal of Oceanography Aims and scope Submit manuscript

Abstract

Since the 1970s, much work has been devoted to the development of marine invertebrate cell culture. Despite this effort there are still no established cell lines. During the last decade, more than 40 papers on primary cell culture have been published. The phyla primarily studied are porifera, cnidaria, crustacea, mollusca, echinodermata, urochordata, and cephalochordata. A variety of methods have been investigated to improve culture conditions and prolong the lifespan of cells, including use of different pretreatments, culture media, temperature, pH, and additives; genetic modification has also been investigated. In this paper we review the vast majority of work published on marine invertebrate cell culture in the last decade (2002–2012) and emphasize new trends in biotechnological applications of cell culture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Blackburn EH (1994) Telomeres: no end in sight. Cell 77:621–623

    Article  Google Scholar 

  • Bodnar AG, Ouellette M, Frolkis M, Holt SE, Chiu CP, Morin GB, Harley CB, Shay JW, Lichtsteiner S, Wright WE (1998) Extension of life-span by introduction of telomerase into normal human cells. Science 279:349–352

    Article  Google Scholar 

  • Boulet G, Horvath C, Vanden Broeck D, Sahebali S, Bogers J (2007) Human papillomavirus: E6 and E7 oncogenes. Int J Biochem Cell Biol 39(11):2006–2011

    Article  Google Scholar 

  • Bulgakov VP, Odintsova NA, Plotnikov SV, Kiselev KV, Zacharov EV, Zhuravlev YN (2002) Gal4–gene–dependent alterations of embryo development and cell growth in primary culture of sea urchins. Mar Biotechnol 4:480–486

    Article  Google Scholar 

  • Cai XQ, Wang HM, Huang LX, Chen JT, Zhang QF, Zhang Y (2013) Establishing primary cell cultures from Branchiostoma belcheri Japanese. Vitro Cell Dev Biol Anim 49(2):97–102

    Article  Google Scholar 

  • Cao A, Mercado L, Martinez JIR, Barcia R (2003) Primary cultures of hemocytes from Mytilus galloprovincialis Lmk: expression of IL–2Ra subunit. Aquaculture 216:1–8

    Article  Google Scholar 

  • Caralt S, Uriz MJ, Wijffels RH (2007) Cell culture from sponges: pluripotency and immortality. Trends Biotechnol 25(10):467–471

    Article  Google Scholar 

  • Claydon K, Owens L (2008) Attempts at immortalization of crustacean primary cell cultures using human cancer genes. In Vitro Cell Dev Biol Anim 44:451–457

    Article  Google Scholar 

  • Coulon IJD, Sinclair CS, Hill RT, Tambutte S, Puverel S, Ostrander GK (2004) A basidiomycete isolated from the skeleton of Pocillopora damicornis (Scleractinia) selectively stimulates short-term survival of coral skeletogenic cells. Mar Biol 144:583–592

    Article  Google Scholar 

  • Estephane D, Anctil M (2010) Retinoic acid and nitric oxide promote cell proliferation and differentially induce neuronal differentiation in vitro in the cnidarian Renilla koellikeri. Develop Neurobiol 70(12):842–852

    Article  Google Scholar 

  • Farcy E, Serpentini A, Fiévet B, Lebel JM (2007) Identification of cDNAs encoding HSP70 and HSP90 in the abalone Haliotis tuberculata: transcriptional induction in response to thermal stress in hemocyte primary culture. Comp Biochem Physiol Part B 146:540–550

    Article  Google Scholar 

  • Faucet J, Maurice M, Gagnaire B, Renault T, Burgeot T (2003) Isolation and primary culture of gill and digestive gland cells from the common mussel Mytilus edulis. Methods Cell Sci 25:177–184

    Article  Google Scholar 

  • Faulk DM, Johnson SA, Zhang L, Badylak SF (2013) Role of the extracellular matrix in whole organ engineering. J Cell Physiol. doi:10.1002/jcp.24532

    Google Scholar 

  • Funayama N (2010) The stem cell system in demosponges: insights into the origin of somatic stem cells. Develop Growth Differ 52:1–14

    Article  Google Scholar 

  • Gagnaire B, Frouin H, Moreau K, Guyon HT, Renault T (2006) Effects of temperature and salinity on haemocyte activities of the Pacific oyster, Crassostrea gigas (Thunberg). Fish Shellfish Immunol 20:536–547

    Article  Google Scholar 

  • George SK, Dhar AK (2010) An improved method of cell culture system from eye stalk, hepatopancreas, muscle, ovary, and hemocytes of Penaeus vannamei. In Vitro Cell Dev Biol Anim 46:801–810

    Article  Google Scholar 

  • Grasela JJ, Pomponi SA, Rinkevich B, Grima J (2012) Efforts to develop a cultured sponge cell line: revisiting an intractable problem. In Vitro Cell Dev Biol Anim 48:12–20

    Article  Google Scholar 

  • Harley CB, Futcher AB, Greider CW (1990) Telomeres shorten during ageing of human fibroblasts. Nature 345:458–460

    Article  Google Scholar 

  • Holmes B, Blanch H (2008) Possible taxonomic trends in the success of primary aggregate formation in marine sponge cell cultures. Mar Biotechnol 10:99–109

    Article  Google Scholar 

  • Hu GB, Wang D, Wang CH, Yang KF (2008) A novel immortalization vector for the establishment of penaeid shrimp cell lines. In Vitro Cell Dev Biol Anim 44:51–56

    Article  Google Scholar 

  • Hurton LV, Berkson JM, Smith SA (2005) Selection of a standard culture medium for primary culture of limulus polyphemus amebocytes. In Vitro Cell Dev Biol Anim 41:325–329

    Article  Google Scholar 

  • Jayesh P, Seena J, Singh ISB (2012) Establishment of shrimp cell lines: perception and orientation. Indian J Virol 3(2):244–251

    Article  Google Scholar 

  • Jayesh P, Seena J, Philip R, Singh ISB (2013) A novel medium for the development of in vitro cell culture system from Penaeus monodon. Cytotechnology 65:307–322

    Article  Google Scholar 

  • Jiang GJ, Xu XH, Jing Y, Wang RX, Fan TJ (2011) Comparative studies on sorting cells from Artemia sinica at different developmental stages for in vitro cell culture. In Vitro Cell Dev Biol Anim 47:341–345

    Article  Google Scholar 

  • Jose S, Mohandas A, Philip R, Singh ISB (2010) Primary hemocyte culture of Penaeus monodonas an in vitro model for white spot syndrome virus titration, viral and immune related gene expression and cytotoxicity assays. J Invertebr Pathol 105:312–321

    Article  Google Scholar 

  • Jose S, Jayesh P, Mohandas A, Philip R, Singh ISB (2011) Application of primary haemocyte culture of Penaeus monodonin the assessment of cytotoxicity and genotoxicity of heavy metals and pesticides. Mar Environ Res 71:169–177

    Article  Google Scholar 

  • Jose S, Jayesh P, Sudheer NS, Poulose G, Mohandas A, Philip R, Singh ISB (2012) Lymphoid organ cell culture system from Penaeus monodon (Fabricius) as a platform for white spot syndrome virus and shrimp immune–related gene expression. J Fish Dis 35:321–334

    Article  Google Scholar 

  • Joshi B, Chatterji A, Bhonde A (2002) Long-term in vitro generation of amoebocyte from the indian horseshoe crab Tachypleus Gigas (Muller). In Vitro Cell Dev Biol Anim 38:255–257

    Article  Google Scholar 

  • Kawamura K, Takeoka S, Takahashi S, Sunanaga T (2006) In vitro culture of mesenchymal lineage cells established from the colonial tunicate botryllus primigenus. Zoolog Sci 23:245–254

    Article  Google Scholar 

  • Khalesi MK (2008) Cell cultures from the symbiotic soft coral Sinularia flexibilis. In Vitro Cell Dev Biol Anim 44:330–338

    Article  Google Scholar 

  • Krasko A, Schroder HC, Batel R, Grebenjuk VA, Steffen R, Muller IM, Muller W (2002) Iron induces proliferation and morphogenesis in primmorphs from the marine sponge Suberites domuncula. DNA Cell Biol 21(1):67–80

    Article  Google Scholar 

  • Lang GH, Nomura N, Wang BZ, Matsumura M (2002a) Growth by cell division in shrimp (Penaeus japonicus) cell culture. Aquaculture 213:73–83

    Article  Google Scholar 

  • Lang GH, Nomura N, Wang BZ, Matsumura M (2002b) Penaeid (Penaeus japonicus) lymphoid cells replicate by cell division in vitro. In Vitro Cell Dev Biol Anim 38:142–145

    Article  Google Scholar 

  • Lang GH, Wang Y, Nomura N, Matsumura M (2004) Detection of telomerase activity in tissues and primary cultured lymphoid cells of Penaeus japonicas. Mar Biotechnol 6:347–354

    Article  Google Scholar 

  • Li C, Shields JD (2007) Primary culture of hemocytes from the Caribbean spiny lobster, Panulirus argus, and their susceptibility to Panulirus argus Virus 1 (PaV1). J Invertebr Pathol 94:48–55

    Article  Google Scholar 

  • Maeda M, Mizuki E, Itami T, Ohba A (2003) Ovarian primary tissue culture of the kuruma shrimp Marsupenaeus japonicus. In Vitro Cell Dev Biol Anim 39:208–212

    Article  Google Scholar 

  • Maurer ER, Gomez R, Braekman JC, Vyver GV, Soest R, Devijver C (2003) Primary cultures from the marine sponge Xestospongia muta (Petrosiidae, Haplosclerida). J Biotechnol 100:169–176

    Article  Google Scholar 

  • McEachern MJ, Krauskopf A, Blackburn EH (2000) Telomeres and their control. Annu Rev Genet 34:331–358

    Article  Google Scholar 

  • Merkley MA, Hildebrandt E, Podolsky RH, Arnouk H, Ferris DG, Dynan WS, Stöppler H (2009) Large-scale analysis of protein expression changes in human keratinocytes immortalized by human papilloma virus type 16 E6 and E7 oncogenes. Proteome Sci 7:29. doi:10.1186/1477-5956-7-29

    Article  Google Scholar 

  • Merwe M, Bordenave SA, Niesler C, Wilding RR (2010) Investigating the establishment of primary cell culture from different abalone (Haliotis midae) tissues. Cytotechnology 62:265–277

    Article  Google Scholar 

  • Mussino F, Pozzolini M, Valisano L, Cerrano C, Benatti U, Giovine M (2012) Primmorphs cryopreservation: a new method for long–time storage of sponge cells. Mar Biotechnol. doi:10.1007/s10126-012-9490-z

    Google Scholar 

  • Naganuma T, Degan BM, Horikoshi K, Morse DE (1994) Myogenesis in primary cell cultures from larvae of the abalone, Haliotis rufescens. Mol Mar Biol Biotech 3:131–140

    Google Scholar 

  • Odintsova NA, Kiselev KV, Bulgakov VP, Koltsova EA, Yakovlev KV (2003) Influence of the activator of transcription gal4 on growth and development of embryos and embryonic cells in primary cultures of sand dollar. Ontogenez 34(4):267–272

    Google Scholar 

  • Odintsova NS, Dolmatov IY, Mashanov VS (2005) Regenerating holothurian tissues as a source of cells for long-term cell cultures. Mar Biol 146:915–921

    Article  Google Scholar 

  • Pomponi SA (2006) Biology of the Porifera: cell culture. Can J Zool 84:167–174

    Article  Google Scholar 

  • Pozzolini M, Valisano L, Cerrano C, Menta M, Schiaparelli S, Bavestrello G, Benatti U, Giovine M (2010) Influence of rocky substrata on three–dimension al sponge cells model development. In Vitro Cell Dev Biol Anim 46:140–147

    Article  Google Scholar 

  • Rabinowitz C, Rinkevich B (2003) Epithelial cell cultures from Botryllus schlosseri palleal buds: accomplishments and challenges. Methods Cell Sci 25:137–148

    Article  Google Scholar 

  • Rabinowitz C, Rinkevich B (2011) De novo emerged stemness signatures in epithelial monolayers developed from extirpated palleal buds. In Vitro Cell Dev Biol Anim 47:26–31

    Article  Google Scholar 

  • Rinkevich B (2005) Marine invertebrate cell cultures: new millennium tends. Mar Biotechnol 7:429–439

    Article  Google Scholar 

  • Rinkevich B (2011) Cell cultures from marine inverteb rates: new insights for capturing endless stemness. Mar Biotechnol 13:345–354

    Article  Google Scholar 

  • Rocha J, Peixe L, Gomes NCM, Calado R (2011) Cnidarians as a source of new marine bioactive compounds—an overview of the last decade and future steps for bioprospecting. Mar Drugs 9:1860–1886

    Article  Google Scholar 

  • Rosa SD, Caro SD, Iodice C, Tommonaro G, Stefano K, Popov S (2003) Development in primary cell culture of demosponges. J Biotechnol 100:119–125

    Article  Google Scholar 

  • Sipkema D, Wielink R, Lammeren AA, Tramper J, Osinga R, Wijffels RR (2003) Primmorphs from seven marine sponges: formation and structure. J Biotechnol 100:127–139

    Article  Google Scholar 

  • Sipkema D, Snijders A, Schroen C, Osinga R, Wijffels RH (2004) The life and death of sponge cells. Biotechnol Bioeng 85(3):239–247

    Article  Google Scholar 

  • Stepanyan R, Hollins B, Brock SE, McClintock TS (2004) Primary culture of lobster (Homarus americanus) olfactory sensory neurons. Chem Senses 29:179–187

    Article  Google Scholar 

  • Suja CP, Sukumaran N, Dharmaraj S (2007) Effect of culture media and tissue extracts in the mantle explants culture of abalone, Haliotis varia Linnaeus. Aquaculture 271:516–522

    Article  Google Scholar 

  • Sun LM, Song YF, Qu Y, Yu XJ, Zhang W (2007) Purification and in vitro cultivation of archaeocytes (stem cells) of the marine sponge Hymeniacidon perleve (Demospongiae). Cell Tissue Res 328:223–237

    Article  Google Scholar 

  • Travers MA, Silva PM, Goic NL, Marie D, Donval A, Huchette S, Koken M, Paillard C (2008) Morphologic, cytometric and functional characterisation of abalone (Haliotis tuberculata) haemocytes. Fish Shellfish Immunol 24:400–411

    Article  Google Scholar 

  • Vandermark ER, Deluca KA, Gardner CR, Marker DF, Schreiner CN, Strickland DA, Wilton KM, Mondal S, Woodworth CD (2012) Human papillomavirus type 16 E6 and E 7 proteins alter NF-kB in cultured cervical epithelial cells and inhibition of NF-kB promotes cell growth and immortalization. Virology 425(1):53–60

    Article  Google Scholar 

  • Wang CL, Zhang SC, Su F, Wang L, Li HY (2009) Initiation of primary cell culture from amphioxus Branchiostoma belcheri tsingtauense. Chin J Oceanol Limnol 27(1):69–73

    Article  Google Scholar 

  • Xu Y, Ye HH, Ma J, Huang HY, Wang GZ (2010) Primary culture and characteristic morphologies of neurons from the cerebral ganglion of the mud crab, Scylla paramamosain. In Vitro Cell Dev Biol Anim 46:708–717

    Article  Google Scholar 

  • You Y, Huan P, Wang X, Liu B (2012) The potential roles of a laminin receptor in adhesion and apoptosis of cells of the marine bivalve Meretrix meretrix. PLoS One 7(10):e47104

    Article  Google Scholar 

  • Zanetti L, Ristoratore F, Francone M, Piscopo S, Brown ER (2007) Primary cultures of nervous system cells from the larva of the ascidian Ciona intestinalis. J Neurosci Methods 165:191–197

    Article  Google Scholar 

  • Zeng H, Ye HH, Li SJ, Wang GZ, Huang JR (2010) Hepatopancreas cell cultures from mud crab, Scylla paramamosain. In Vitro Cell Dev Biol Anim 46:431–437

    Article  Google Scholar 

  • Zhang W, Zhang XY, Cao XP, Xu JY, Zhao QY, Yu XJ, Jin MF, Deng MC (2003a) Optimizing the formation of in vitro sponge primmorphs from the Chinese sponge Stylotella agminata (Ridley). J Biotechnol 100:161–168

    Article  Google Scholar 

  • Zhang XY, Cao XP, Zhang W, Yu XJ, Jin MF (2003b) Primmorphs from archaeocytes-dominant cell population of the sponge Hymeniacidon perleve: improved cell proliferation and spiculogenesis. Biotechnol Bioeng 84(5):583–590

    Article  Google Scholar 

  • Zhang XY, Pennec GL, Steffen R, Muller WE, Zhang W (2004) Application of a MTT assay for screening nutritional factors in growth media of primary sponge cell culture. Biotechnol Prog 20:151–155

    Article  Google Scholar 

  • Zhao QY, Jin MF, Muller WE, Zhang W, Yu XJ, Deng MC (2003) Attachment of marine sponge cells of Hymeniacidon perleve on microcarriers. Biotechnol Prog 19:1569–1573

    Article  Google Scholar 

  • Zhao QY, Zhang W, Jin MF, Yu XJ, Deng MC (2005) Formulation of a basal medium for primary cell culture of the marine sponge Hymeniacidon perleve. Biotechnol Prog 21:1008–1012

    Article  Google Scholar 

  • Zhao YL, Wang DO, Martin KC (2009). Preparation of aplysia sensory-motor neuronal cell cultures. J Vis Exp. doi:10.3791/1355

Download references

Acknowledgments

This study was supported by a grant from the program of the State High–Tech Development Project (no. 2008AA092604) to YZ.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, X., Zhang, Y. Marine invertebrate cell culture: a decade of development. J Oceanogr 70, 405–414 (2014). https://doi.org/10.1007/s10872-014-0242-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10872-014-0242-8

Keywords

Navigation