Skip to main content

Advertisement

Log in

Genomic Mining for Novel FADH2-Dependent Halogenases in Marine Sponge-Associated Microbial Consortia

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

Many marine sponges (Porifera) are known to contain large amounts of phylogenetically diverse microorganisms. Sponges are also known for their large arsenal of natural products, many of which are halogenated. In this study, 36 different FADH2-dependent halogenase gene fragments were amplified from various Caribbean and Mediterranean sponges using newly designed degenerate PCR primers. Four unique halogenase-positive fosmid clones, all containing the highly conserved amino acid motif “GxGxxG”, were identified in the microbial metagenome of Aplysina aerophoba. Sequence analysis of one halogenase-bearing fosmid revealed notably two open reading frames with high homologies to efflux and multidrug resistance proteins. Single cell genomic analysis allowed for a taxonomic assignment of the halogenase genes to specific symbiotic lineages. Specifically, the halogenase cluster S1 is predicted to be produced by a deltaproteobacterial symbiont and halogenase cluster S2 by a poribacterial sponge symbiont. An additional halogenase gene is possibly produced by an actinobacterial symbiont of marine sponges. The identification of three novel, phylogenetically, and possibly also functionally distinct halogenase gene clusters indicates that the microbial consortia of sponges are a valuable resource for novel enzymes involved in halogenation reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3404

    Article  PubMed  CAS  Google Scholar 

  • Apweiler R, Attwood TK, Bairoch A, Bateman A, Birney E, Biswas M, Bucher P, Cerutti L, Corpet F, Croning MD, Durbin R, Falquet L, Fleischmann W, Gouzy J, Hermjakob H, Hulo N, Jonassen I, Kahn D, Kanapin A, Karavidopoulou Y, Lopez R, Marx B, Mulder NJ, Oinn TM, Pagni M, Servant F, Sigrist CJ, Zdobnov EM (2001) The InterPro database, an integrated documentation resource for protein families, domains and functional sites. Nucleic Acids Res 29:37–40

    Article  PubMed  CAS  Google Scholar 

  • Ashelford KE, Chuzhanova NA, Fry JC, Jones AJ, Weightman AJ (2005) At least 1 in 20 16 S rRNA sequence records currently held in public repositories is estimated to contain substantial anomalies. Appl Environ Microbiol 71:7724–7736

    Article  PubMed  CAS  Google Scholar 

  • Blunt JW, Copp BR, Munro MH, Northcote PT, Prinsep MR (2010) Marine natural products. Nat Prod Rep 27:165–237

    Article  PubMed  CAS  Google Scholar 

  • Cadel-Six S, Dauga C, Castets AM, Rippka R, Tandeau de Marsac N, Welker M (2008) Halogenase genes in two non-ribosomal peptide synthetase gene clusters of Microcystis (Cyanobacteria): sporadic distribution and evolution. Mol Biol Evol 25:2031–2041

    Article  PubMed  CAS  Google Scholar 

  • Costa R, van Aarle IM, Mendes R, van Elsas JD (2009) Genomics of pyrrolnitrin biosynthetic loci: evidence for conservation and whole-operon mobility within gram-negative bacteria. Environ Microbiol 11:159–175

    Article  PubMed  CAS  Google Scholar 

  • DeLong EF (1992) Archaea in coastal marine environments. Proc Natl Acad Sci USA 89:5685–5689

    Article  PubMed  CAS  Google Scholar 

  • Fieseler L, Horn M, Wagner M, Hentschel U (2004) Discovery of the novel candidate phylum “Poribacteria” in marine sponges. Appl Environ Microbiol 70:3724–3732

    Article  PubMed  CAS  Google Scholar 

  • Fieseler L, Quaiser A, Schleper C, Hentschel U (2006) Analysis of the first genome fragment from the marine sponge associated, novel candidate phylum “Poribacteria” by environmental genomics. Environ Microbiol 8:612–624

    Article  PubMed  CAS  Google Scholar 

  • Fieseler L, Hentschel U, Grozdanov L, Schirmer A, Wen G, Platzer M, Hrvatin S, Butzke D, Zimmermann K, Piel P (2007) Widespread occurrence and genomic context of unusually small polyketide synthase genes in microbial consortia associated with marine sponges. Appl Environ Microbiol 73:2144–2155

    Article  PubMed  CAS  Google Scholar 

  • Fisch KM, Gurgui C, Heycke N, van der Sar SA, Anderson SA, Webb VL, Taudien S, Platzer M, Rubio BK, Robinson SJ, Crews P, Piel J (2009) Polyketide assembly lines of uncultivated sponge symbionts from structure-based gene targeting. J Nat Chem Biol 5:494–501

    Article  CAS  Google Scholar 

  • Gao P, Huang Y (2009) Detection, distribution, and organohalogen compound discovery implications of the reduced flavin adenine dinucleotide-dependent halogenase gene in major filamentous actinomycete taxonomic groups. Appl Environ Microbiol 75:4813–4820

    Article  PubMed  CAS  Google Scholar 

  • Glöckner FO, Kube M, Bauer M, Teeling H, Lombardot T, Ludwig W, Gade D, Beck A, Borzym K, Heitmann K, Rabus R, Schlesner H, Amann R, Reinhardt R (2003) Complete genome sequence of the marine planctomycete Pirellula sp. strain 1. Proc Natl Acad Sci USA 100:8298–8303

    Article  PubMed  Google Scholar 

  • Gribble GW (2003) The natural production of organobromine compounds. Environ Sci Pollut Res Intern 7:37–49

    Article  Google Scholar 

  • Grindberg RV, Ishoey T, Brinza D, Esquenazi E, Coates RC, Liu WT, Gerwick L, Dorrestein PC, Pevzner P, Lasken R, Gerwick WH (2011) Single cell genome amplification accelerates identification of the apratoxin biosynthetic pathway from a complex microbial assemblage. PLoS One 6(4):e18565

    Article  PubMed  CAS  Google Scholar 

  • Grozdanov L, Hentschel U (2007) An environmental genomics perspective on the diversity and function of marine sponge-associated microbiota. Curr Opin Microbiol 10:215–220

    Article  PubMed  CAS  Google Scholar 

  • Handelsman J (2004) Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev 68:669–685

    Article  PubMed  CAS  Google Scholar 

  • Henikoff S, Henikoff JG, Alford WJ, Pietrokovski S (1995) Automated construction and graphical presentation of protein blocks from unaligned sequences. Gene 163:17–26

    Article  Google Scholar 

  • Hentschel U, Fieseler L, Wehrl M, Gernert C, Steinert M, Hacker J, Horn M (2003) Microbial diversity of marine sponges. In: Müller WEG (Ed) Molecular Marine Biology of Sponges, p 60–88, Springer Heidelberg

  • Hentschel U, Usher KM, Taylor MW (2006) Marine sponges as microbial fermenters. FEMS Microb Ecol 55:167–177

    Article  CAS  Google Scholar 

  • Hepperle D (2002) Align: a multicolor sequence alignment editor. http://sciencedomixde/softwarephd

  • Hochmuth T, Niederkrüger H, Gernert C, Siegl A, Taudien S, Platzer M, Crews P, Hentschel U, Piel J (2010) Linking chemical and microbial diversity in marine sponges: possible role for Poribacteria as producers of methyl-branched fatty acids. ChemBioChem 11(18):2572–2578

    Article  PubMed  CAS  Google Scholar 

  • Hornung A, Bertazzo M, Dziarnowski A, Schneider K, Welzel K, Wohlert SE et al (2007) A genomic screening approach to the structure-guided identification of drug candidates from natural sources. Chembiochem 8:757–766

    Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogeny. Bioinformatics 17:754–755

    Article  PubMed  CAS  Google Scholar 

  • Hutchison CA, Venter JC (2006) Single-cell genomics. Nat Biotechnol 24:657–658

    Article  PubMed  CAS  Google Scholar 

  • Kennedy J, Marchesi JR, Dobson AD (2007) Metagenomic approaches to exploit the biotechnological potential of the microbial consortia of marine sponges. Appl Microbiol Biotechnol 75:11–20

    Article  PubMed  CAS  Google Scholar 

  • Kennedy J, O'Leary ND, Kiran GS, Morrissey JP, O'Gara F, Selvin J, Dobson AD (2011) Functional metagenomic strategies for the discovery of novel enzymes and biosurfactants with biotechnological applications from marine ecosystems. J Appl Microbiol 111(4):7877–7899

    Article  Google Scholar 

  • Lane DJ (1991) 16 S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematic. Wiley, London, pp 115–175

    Google Scholar 

  • Medlin L, Elwood HJ, Stickel S, Sogin ML (1988) The characterization of enzymatically amplified eukaryotic 16 S-like rRNA-coding regions. Gene 71:491–499

    Article  PubMed  CAS  Google Scholar 

  • Murphy CD (2006) Recent developments in enzymatic chlorination. Nat Prod Rep 23:147–152

    Article  PubMed  CAS  Google Scholar 

  • Otsuka M, Ichinosem K, Fujii I, Ebizuka Y (2004) Cloning, sequencing, and functional analysis of an iterative type I polyketide synthase gene cluster for biosynthesis of the antitumor chlorinated polyenone neocarzilin in Streptomyces carzinostaticus. Antimicrob Agents Chemother 48:3468–3476

    Article  PubMed  CAS  Google Scholar 

  • Pelzer S, Süßmuth R, Heckmann D, Recktenwald J, Huber P, Jung G, Wohlleben W (1999) Identification and analysis of the balhimycin biosynthetic gene cluster and its use for manipulating glycopeptide biosynthesis in Amycolatopsis mediterranei DSM5908. Antimicrob Agents Chemother 43:1565–1573

    PubMed  CAS  Google Scholar 

  • Piel J, Hui D, Wen G, Butzke D, Platzer M, Fusetani N, Matsunaga S (2004) Antitumor polyketide biosynthesis by an uncultivated bacterial symbiont of the marine sponge Theonella swinhoei. Proc Natl Acad Sci USA 101:16222–16227

    Article  PubMed  CAS  Google Scholar 

  • Piel J (2009) Metabolites from symbiotic bacteria. Nat Prod Rep 26:338–62

    Article  PubMed  CAS  Google Scholar 

  • Piraee M, Vining LC (2002) Use of degenerate primers and touchdown PCR to amplify a halogenase gene fragment from Streptomyces venezuelae ISP5230. J Ind Microbiol Biotechnol 29:1–5

    Article  PubMed  CAS  Google Scholar 

  • Piraee M, White RL, Vining LC (2004) Biosynthesis of the dichloroacetyl component of chloramphenicol in Streptomyces venezuelae ISP5230: genes required for halogenations. Microbiol 150:85–94

    Article  CAS  Google Scholar 

  • Rose TM, Schultz ER, Henikoff JG, Pietrokovski S, McCallum CM, Henikoff S (1998) Consensus-degenerate hybrid oligonucleotide primers for amplification of distantly related sequences. Nucleic Acids Res 26:1628–1635

    Article  PubMed  CAS  Google Scholar 

  • Rouhiainen L, Paulin L, Suomalainen S, Hyytiäinen H, Buikema W, Haselkorn R, Sivonen K (2000) Genes encoding synthetases of cyclic depsipeptides, anabaenopeptilides, in Anabaena strain 90. Mol Microbiol 37:156–167

    Article  PubMed  CAS  Google Scholar 

  • Salomon CE, Magarvey NA, Sherman DH (2004) Merging the potential of microbial genetics with biological and chemical diversity: an even brighter future for marine natural product drug discovery. Nat Prod Rep 21:105–121

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Russel DW (2001) In: Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Scheuermayer M, Pimentel-Elardo S, Fieseler L, Grozdanov L, Hentschel U (2006) Microorganisms of sponges: phylogenetic diversity and biotechnological potential. In: Proksch P, Mueller WEG (eds) Frontiers in marine biotechnology. Horizon Scientific Press, London, pp 289–312

    Google Scholar 

  • Schirmer A, Gadkari R, Reeves CD, Ibrahim F, DeLong EF, Hutchinson CR (2005) Metagenomic analysis reveals diverse polyketide synthase gene clusters in microorganisms associated with the marine sponge Discodermia dissoluta. Appl Environ Microbiol 71:4840–4849

    Article  PubMed  CAS  Google Scholar 

  • Schleper C, DeLong EF, Preston CM, Feldman RA, Wu KY, Swanson RV (1998) Genomic analysis reveals chromosomal variation in natural populations of the uncultured psychrophilic archaeon Cenarchaeum symbiosum. J Bacteriol 180:5003–5009

    PubMed  CAS  Google Scholar 

  • Schleper C, Swanson RV, Mathur EJ, DeLong EF (1997) Characterization of a DNA polymerase from the uncultivated psychrophilic archaeon Cenarchaeum symbiosum. J Bacteriol 179:7803–7811

    PubMed  CAS  Google Scholar 

  • Scrutton NS, Berry A, Perham RN (1990) Redesign of the coenzyme specificity of a dehydrogenase by protein engineering. Nature 343:43–48

    Article  Google Scholar 

  • Siegl A, Kamke J, Hochmuth T, Piel J, Richter M, Liang C, Dandekar T, Hentschel U (2010) Single cell genomics reveals the lifestyle of Poribacteria, a candidate phylum symbiotically associated with marine sponges. ISME J 5:61–70

    Article  PubMed  Google Scholar 

  • Siegl A, Hentschel U (2010) PKS and NRPS gene clusters from microbial symbiont cells of marine sponges by whole genome amplification. Environ Microbiol Rep 2:507–513

    Article  CAS  Google Scholar 

  • Stepanauskas R, Sieracki ME (2007) Matching phylogeny and metabolism in the uncultured marine bacteria, one cell at a time. Proc Natl Acad Sci USA 104:9052–9057

    Article  PubMed  CAS  Google Scholar 

  • Taylor MW, Radax R, Steger D, Wagner M (2007) Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiol Mol Biol Rev 71:295–347

    Article  PubMed  CAS  Google Scholar 

  • Thomas TRA, Kavlekar DP, LokaBharathi PA (2010) Marine drugs from sponge-microbe association—a review. Mar Drugs 8:1417–1468

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X window interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  • Van Pée K-H, Patallo EP (2006) Flavin-dependent halogenases involved in secondary metabolism in bacteria. Appl Microbiol Biotechnol 70:631–641

    Article  PubMed  Google Scholar 

  • Walker A, Parkhill J (2008) Single-cell genomics. Nat Rev Microbiol 6:176–177

    Article  PubMed  CAS  Google Scholar 

  • Webster NS, Taylor MW (2012) Marine sponges and their microbial symbionts: love and other relationships. Environ Microbiol 14(2):517–524

    Google Scholar 

  • Wynands I, van Pée K-H (2004) A novel halogenase gene from the pentachloropseudilin producer Actinoplanes sp. ATCC 33002 and detection of in vitro halogenase activity. FEMS Microbiol Lett 237:363–367

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the marine operations personnel at the Laboratoire Arago (Banyuls-sur-Mer, France) and at the Ruder Boskovic Institute (Rovinj/ Croatia) for the help during sponge collection and Prof. K.-H. van Pée (Dresden, Germany) for helpful advice. Prof. W. Wohlleben, S. Pelzer, and Claudia Kittel (Tübingen, Germany) are acknowledged for interesting discussions and activity testing of selected clones in an S. albus background. We thank Christine Gernert (Wuerzburg, Germany) for excellent technical assistance. Financial support was provided by the SFB630 (grant TPA5) to U.H.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ute Hentschel.

Additional information

Kristina Bayer and Matthias Scheuermayer contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 98 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bayer, K., Scheuermayer, M., Fieseler, L. et al. Genomic Mining for Novel FADH2-Dependent Halogenases in Marine Sponge-Associated Microbial Consortia. Mar Biotechnol 15, 63–72 (2013). https://doi.org/10.1007/s10126-012-9455-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-012-9455-2

Keywords

Navigation