Skip to main content

Ecology and Habitat Distribution of Actinobacteria

  • Chapter
  • First Online:
Biology and Biotechnology of Actinobacteria

Abstract

Actinobacteria of the order Actinomycetales are ubiquitous in the world. They are found in many habitats ranging from terrigenous, marine, aquatic, aerial and extreme environments as well as in association with macro- and higher organisms. Since the discovery of first antibiotics from the members of this order in the 1940s, significant attention was directed towards their detection and isolation due to their metabolic diversity. However, most of the earlier studies were done using dilution plate techniques that limited a direct means of assessment of true actinobacterial diversity. Most studies then utilized random approaches, involving large-scale, indiscriminate sampling of the environment and the subsequent screening of the isolates for detection of bioactive compounds for pharmaceutical and industrial use. These early approaches remained inadequate in terms of generation of sound understanding related to existence and the functional diversity of the actinofloral layers of natural environments. However, current molecular advances such metagenomics are now aiding towards generation of in-depth understanding on actinobacteria in natural environments. This chapter will thus overview the impact of current molecular advances on the generation of in-depth understanding on the true or transitory occurrence, diversity and eco-functional roles of Actinomycetales in diverse habitats.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ackermann HW (2001) Frequency of morphological phase descriptions. Arch Virol 146:843–857

    Google Scholar 

  • Ackermann HW (2006) Classification of bacteriophages. In: Calender R (ed) The bacteriophages. Oxford University Press, Oxford, pp 8–16

    Google Scholar 

  • Ackermann HW, Berthiaume L, Jones LA (1985) New actinophage species. Dermatol Int 23(3):121–130

    CAS  Google Scholar 

  • Ahmed L, Jensen PR, Freel KC, Brown R, Jones AL, Kim BY, Goodfellow M (2013) Salinispora pacifica sp. nov., an actinomycete from marine sediments. A Van Leeuw 103(5):1069–1078

    Article  Google Scholar 

  • Ambrose NC (1996) The pathogenesis of dermatophilosis. Trop Anim Health Prod 28:29S–37S

    Article  CAS  PubMed  Google Scholar 

  • Ames RN, Mihara KL, Bayne HG (1989) Chitin-decomposing actinomycetes associated with a vesicular–arbuscular mycorrhizal fungus from a calcareous soil. New Phytol 111(1):67–71

    Article  Google Scholar 

  • Anné J, Van Mellaert L, Decock B, Van Damme J, Van Aerschot A, Herdewijn P, Eyssen H (1990) Further biological and molecular characterization of actinophage VWB. Microbiologica 136(7):1365–1372

    Google Scholar 

  • Asgarani E, Soudi MR, Borzooee F, Dabbagh R (2012) Radio-resistance in psychrotrophic Kocuria sp. ASB 107 isolated from Ab-e-Siah radioactive spring. J Environ Radioact 113:171–176

    Article  CAS  PubMed  Google Scholar 

  • Bachofen R (1986) Microorganisms in extreme environments. Experientia 42(11-12):1179–1182

    Article  Google Scholar 

  • Bachofer R, Oltmanns O, Lingens F (1973) Isolation and characterization of a Nocardia-like soil-bacterium, growing on carboxanilide fungicides. Arch Microbiol 90(2):141–149

    CAS  Google Scholar 

  • Barberán A, Henley J, Fierer N, Casamayor EO (2014) Structure, inter-annual recurrence, and global-scale connectivity of airborne microbial communities. Sci Total Environ 487:187–195

    Article  PubMed  CAS  Google Scholar 

  • Baross JA, Deming JW (1985) The role of bacteria in the ecology of black-smoker environments. Bull Biol Soc Washing 6:355–371

    Google Scholar 

  • Bérdy J (2012) Thoughts and facts about antibiotics: where we are now and where we are heading. J Antibiot 65:385–395

    Article  PubMed  CAS  Google Scholar 

  • Bomar L, Maltz M, Colston S, Graf J (2011) Directed culturing of microorganisms by use of metatranscriptomics. MBio 2(2):e00012-11. doi:10.1128/mBio.00012-11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bowers KJ, Mesbah NM, Wiegel J (2009) Biodiversity of poly-extremophilic Bacteria: Does combining the extremes of high salt, alkaline pH and elevated temperature approach a physico-chemical boundary for life? Saline Syst 5:9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bradley SG, Anderson DL (1958) Taxonomic implication of actinophage host-range. Science 128(3321):413–414

    Article  CAS  PubMed  Google Scholar 

  • Bradley SG, Anderson DL, Jones LA (1961) Phylogeny of actinomycetes as revealed by susceptibility to actinophage. Dev Ind Microbiol 2:223–237

    Google Scholar 

  • Bredholt H, Fjærvik E, Johnsen G, Zotchev SB (2008) Actinomycetes from sediments in the Trondheim fjord, Norway: diversity and biological activity. Mar Drugs 6(1):12–24

    Article  PubMed  PubMed Central  Google Scholar 

  • Brito EM, Piñón-Castillo HA, Guyoneaud R, Caretta CA, Gutiérrez-Corona JF, Duran R, Reyna-López GE, Nevárez-Moorillón GV, Fahy A, Goñi-Urriza M (2013) Bacterial biodiversity from anthropogenic extreme environments: a hyper-alkaline and hyper-saline industrial residue contaminated by chromium and iron. Appl Microbiol Biotechnol 97(1):369–378

    Article  CAS  PubMed  Google Scholar 

  • Bucarey SA, Penn K, Paul L, Fenical W, Jensen PR (2012) Genetic complementation of the obligate marine actinobacterium Salinispora tropica with the large mechanosensitive channel gene mscL rescues cells from osmotic downshock. Appl Environ Microbiol 78(12):4175–4182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bulgarelli D, Rott M, Schlaeppi K et al (2012) Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488(7409):91–95

    Article  CAS  PubMed  Google Scholar 

  • Bull AT (2011) Actinobacteria of the extremobiosphere. In: Horikoshi K (ed) Extremophiles Handbook. Springer, Japan, pp 1203–1240. doi:10.1007/978-4-431-53898-1_58

    Chapter  Google Scholar 

  • Bull AT, Asenjo JA (2013) Microbiology of hyper-arid environments: recent insights from the Atacama Desert, Chile. A Van Leeuw 103(6):1173–1179

    Article  CAS  Google Scholar 

  • Bull AT, Ward AC, Goodfellow M (2000) Search and discovery strategies for biotechnology: the paradigm shift. Microbiol Mol Biol Rev 64:573–606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bull AT, Stach JEM, Ward AC, Goodfellow M (2005) Marine actinobacteria: perspectives, challenges, future directions. A Van Leeuw 87:65–79

    Article  Google Scholar 

  • Bursy J, Anne U, Kuhlmann AU et al (2008) Synthesis and uptake of the compatible solutes ectoine and 5-Hydroxyectoine by Streptomyces coelicolor A3(2) in response to salt and heat stresses. Appl Environ Microbiol 74(23):7286–7296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casas V, Magbanua J, Sobrepeña G, Kelley ST, Maloy SR (2010) Reservoir of bacterial exotoxin genes in the environment. Int J Microbiol 2010:754368. doi:10.1155/2010/754368

    Article  PubMed  CAS  Google Scholar 

  • Cerdeño-Tárraga AM, Efstratiou A, Dover LG et al (2003) The complete genome sequence and analysis of Corynebacterium diphtheriae NCTC13129. Nucleic Acids Res 31(22):6516–6523

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chan Y, Van Nostrand JD, Zhou J, Pointing SB, Farrell RL (2013) Functional ecology of an Antarctic dry valley. Proc Natl Acad Sci 110(22):8990–8995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chanal A, Chapon V, Benzerara K et al (2006) The desert of Tataouine: an extreme environment that hosts a wide diversity of microorganisms and radiotolerant bacteria. Environ Microbiol 8(3):514–525

    Article  CAS  PubMed  Google Scholar 

  • Chater KF, Wilde LC (1976) Restriction of a bacteriophage of Streptomyces albus G involving endonuclease SalI. J Bacteriol 128(2):644–650

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chenu C, Stotzky G (2002) Interactions between microorganisms and soil particles: an overview. In: Huang PM, Bollag J-M, Senesi N (eds) Interactions between soil particles and microorganisms: Impact on the terrestrial ecosystem. IUPAC. John Wiley & Sons, Ltd, Manchester, UK, pp 1–40

    Google Scholar 

  • Christner BC, Kvitko BH II, Reeve JN (2003) Molecular identification of bacteria and eukarya inhabiting an Antarctic cryoconite hole. Extremophiles 7(3):177–183

    CAS  PubMed  Google Scholar 

  • Clark DA, Norris PR (1996) Acidimicrobium ferrooxidans gen. nov., sp. nov.: mixed-culture ferrous iron oxidation with Sulfobacillus species. Microbiologica 142:785–790

    CAS  Google Scholar 

  • Couch JN, Koch WJ (1962) Induction of motility in the spores of some Actinoplanaceae (Actinomycetales). Science 138:987

    Google Scholar 

  • Crawford DL (1988) Biodegradation of agricultural and urban wastes. In: Goodfellow M, Williams ST, Mordarski M (eds) Actinomycetes in biotechnology. Academic Press, London, pp 433–459

    Chapter  Google Scholar 

  • Cross T (1981) Aquatic actinomycetes: a critical survey of the occurrence, growth and role of actinomycetes in aquatic habitats. J Appl Bacteriol 50(3):397–423

    Article  CAS  PubMed  Google Scholar 

  • De Carvalho CCCR, Fernandes P (2010) Production of Metabolites as Bacterial Responses to the Marine Environment. Mar Drugs 8:705–727

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • de Menezes AB, Lockhart RJ, Cox MJ, Allison HE, McCarthy AJ (2008) Cellulose degradation by micromonosporas recovered from freshwater lakes and classification of these actinomycetes by DNA gyrase B gene sequencing. Appl Environ Microbiol 74(22):7080–7084

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dedrick RM, Mavrich TN, Ng WL, Cervantes Reyes JC, Olm MR, Rush RE, Jacobs-Sera D, Russell DA, Hatfull GF (2016) Function, expression, specificity, diversity and incompatibility of actinobacteriophage parABS systems. Mol Microbiol 101(4):625–644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diaz LA, Hardisson C, Rodicio MR (1989) Isolation and characterization of actinophages infecting Streptomyces species and their interaction with host restriction-modification systems. Microbiologica 135(7):1847–1856

    CAS  Google Scholar 

  • Díaz-Muñoz SL, Koskella B (2014) Bacteria-phase interactions in natural environments. Adv Appl Microbiol 89:135–183

    Google Scholar 

  • Dib J, Motok J, Zenoff VF, Ordoñez O, Farías ME (2008) Occurrence of resistance to antibiotics, UV-B, and arsenic in bacteria isolated from extreme environments in high-altitude (above 4400 m) Andean wetlands. Curr Microbiol 56(5):510–517

    Article  CAS  PubMed  Google Scholar 

  • Donadio S, Paladino R, Costanzi I, Sparapani P, Schreil W, Iaccarino M (1986) Characterization of bacteriophages infecting Streptomyces erythreus and properties of phase-resistant mutants. J Bacteriol 166(3):1055–1060

    Google Scholar 

  • Dong H, Yu B (2007) Geomicrobiological processes in extreme environments: A review. Episodes 30(3):202–216

    Google Scholar 

  • Dorval Courchesne NM, Parisien A, Lan CQ (2009) Production and application of bacteriophage and bacteriophage-encoded lysins. Recent Pat Biotechnol 3(1):37–45

    Article  Google Scholar 

  • Dowding JE, Hopwood DA (1973) Temperate bacteriophages for Streptomyces coelicolor A3(2) isolated from soil. Microbiologica 78(2):349–359

    Google Scholar 

  • Dyson ZA, Tucci J, Seviour RJ, Petrovski S (2015) Lysis to Kill: Evaluation of the lytic abilities, and genomics of nine bacteriophages infective for Gordonia spp. and their potential use in activated sludge foam biocontrol. PLoS One 10(8):e0134512. doi:10.1371/journal.pone.0134512

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Eccleston GP, Brooks PR, Kurtböke DI (2008) The occurrence of bioactive Micromonosporae in aquatic habitats of the sunshine coast in Australia. Marine Drugs 6(2):243–261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Effmert U, Kalderás J, Warnke R, Piechulla B (2012) Volatile mediated interactions between bacteria and fungi in the soil. J Chem Ecol 38(6):665–703

    Article  CAS  PubMed  Google Scholar 

  • El-Tarabily KA, Kurtböke DI, Hardy G (1995) Partial characterization of Streptomyces phages isolated from the soils of jarrah forest in Western Australia. Actinomycetes 6(1):7–15

    Google Scholar 

  • El-Tarabily KA, Sykes ML, Kurtböke DI, Hardy GESJ, Barbosa AM, Dekker RFH (1996) Synergistic effects of a cellulase-producing Micromonospora carbonacea and an antibiotic producing Streptomyces violascens on the suppression of Phytophthora cinnamomi root rot of Banksia grandis. Can J Bot 74:618–624

    Article  Google Scholar 

  • El-Tarabily KA, Hardy GESJ, Sivasithamparam K, Hussein AM, Kurtböke DI (1997) The potential for the biological control of cavity spot disease of carrots caused by Pythium coloratum by streptomycete and non-streptomycete actinomycetes. New Phytol 137(3):495–507

    Article  Google Scholar 

  • Erikson D (1947a) Differentiation of the vegetative and sporogenous phases of the actinomycetes: 1. The lipid nature of the outer wall of the aerial mycelium. Microbiology 1(1):39–44

    CAS  Google Scholar 

  • Erikson D (1947b) Differentiation of the vegetative and sporogenous phases of the actinomycetes: 2. Factors affecting the development of the aerial mycelium. Microbiology 1(1):45–52

    CAS  Google Scholar 

  • Ernebjerg M, Kishony R (2012) Distinct growth strategies of soil bacteria as revealed by large-scale colony tracking. Appl Environ Microbiol 78(5):1345–1352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Felske A, Rheims H, Wolterink A et al (1997) Ribosome analysis reveals prominent activity of an uncultured member of the class Actinobacteria in grassland soils. Microbiologica 143(9):2983–2989

    CAS  Google Scholar 

  • Fierer N, Bradford MA, Jackson RB (2007a) Toward an ecological classification of soil bacteria. Ecology 88(6):1354–1364

    Article  PubMed  Google Scholar 

  • Fierer N, Breitbart M, Nulton J et al (2007b) Metagenomic and small-subunit rRNA analyses reveal the genetic diversity of bacteria, archaea, fungi, and viruses in soil. Appl Environ Microbiol 73(21):7059–7066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flowers TH, Williams ST (1977) Measurement of growth rates of streptomycetes: comparison of turbidimetric and gravimetric techniques. Microbiology 98(1):285–289

    CAS  Google Scholar 

  • Freel KC, Edlund A, Jensen PR (2012) Microdiversity and evidence for high dispersal rates in the marine actinomycete ‘Salinispora pacifica’. Environ Microbiol 14(2):480–493

    Article  CAS  PubMed  Google Scholar 

  • Freeman VJ, Morse IU (1952) Further observations on the change to virulence of bacteriophage-infected avirulent strains of Corynebacterium diphtheriae. J Bacteriol 63(3):407–414

    CAS  PubMed  PubMed Central  Google Scholar 

  • García-Moyano A, González-Toril E, Aguilera A, Amils R (2007) Prokaryotic community composition and ecology of floating macroscopic filaments from an extreme acidic environment, Rio Tinto (SW, Spain). Syst Appl Microbiol 30(8):601–614

    Article  PubMed  CAS  Google Scholar 

  • Gerber NN, Lechevalier HA (1965) Geosmin, an earthy-smelling substance isolated from actinomycetes. Appl Microbiol 13(6):935–938

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goodfellow M, Williams ST (1983) Ecology of actinomycetes. Annu Rev Microbiol 37(1):189–216

    Article  CAS  PubMed  Google Scholar 

  • Goodfellow M, Williams ST, Alderson G (1986a) Transfer of Elytrosporangium brasiliense Falcáo de Morais et al., Elytrosporangium carpinense Falcáo de Morais et al., Elytrosporangium spirale Falcáo de Morais et al., Microellobosporia cinerea Cross et al., Microellobosporia flavea Cross et al., Microellobosporia grisea (Konev et al.) Pridham and Microellobosporia violacea (Tsyganov et al.) Pridham to the genus Streptomyces, with emended description of the species. Syst Appl Microbiol 8:48–54

    Article  Google Scholar 

  • Goodfellow M, Williams ST, Alderson G (1986b) Transfer of Chainia species to the genus Streptomyces with emended description of species. Syst Appl Microbiol 8:55–60

    Article  Google Scholar 

  • Goodfellow M, Williams ST, Alderson G (1986c) Transfer of Actinosporangium violaceum Krasil’nikov and Yuan, Actinosporangium vitaminophilum Shomura et al. and Actinopycnidium caeruleum Krasil’nikov to the genus Streptomyces, with emended description of the species. Syst Appl Microbiol 8:61–64

    Article  Google Scholar 

  • Goodfellow M, Stainsby FM, Davenport R, Chun J, Curtis T (1998) Activated sludge foaming: the true extent of actinomycete diversity. Water Sci Technol 37(4-5):511–519

    CAS  Google Scholar 

  • Griffin DW (2007) Atmospheric movement of microorganisms in clouds of desert dust and implications for human health. Clin Microbiol Rev 20(3):459–477

    Article  PubMed  PubMed Central  Google Scholar 

  • Griffin DW, Garrison VH, Herman JR, Shinn EA (2001) African desert dust in the Caribbean atmosphere: microbiology and public health. Aerobiologia 17:203–213

    Article  Google Scholar 

  • Griffiths BS, Kuan HL, Ritz K et al (2004) The relationship between microbial community structure and functional stability, tested experimentally in an upland pasture soil. Microb Ecol 47(1):104–113

    Article  CAS  PubMed  Google Scholar 

  • Groman NB (1953) Evidence for the induced nature of the change from nontoxigenicity to toxigenicity in Corynebacterium diphtheriae as a result of exposure to specific bacteriophage. J Bacteriol 66(2):184–191

    CAS  PubMed  PubMed Central  Google Scholar 

  • Groman NB (1955) Evidence for the active role of bacteriophage in the conversion of nontoxigenic Corynebacterium diphtheriae to toxin production. J Bacteriol 69(1):9–15

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grossart HP, Schlingloff A, Bernhard M, Simon M, Brinkhoff T (2004) Antagonistic activity of bacteria isolated from organic aggregates of the German Wadden Sea. FEMS Microbiol Ecol 47(3):387–396

    Article  CAS  PubMed  Google Scholar 

  • Hambly E, Suttle CA (2005) The viriosphere, diversity, and genetic exchange within phase communities. Curr Opin Microbiol 8(4):444–450

    Google Scholar 

  • Hatfull GF (2014) Molecular genetics of mycobacteriophages. Microbiology Spectrum 2(2):1–36

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hatfull GF, Vehring R (2016) Respirable bacteriophage aerosols for the prevention and treatment of tuberculosis. In: Hickey AJ, Misra A, Fourie PB (eds) Delivery systems for tuberculosis prevention and treatment. John Wiley & Sons, Ltd, Chichester, UK, pp 277–291

    Google Scholar 

  • Hedrick HG, Reynolds RJ, Crum MG (1968) Identification and viability of microorganisms from jet-fuel samples. Dev Ind Microbiol 9:415–425

    Google Scholar 

  • Helmke E, Weyland H (1984) Rhodococcus marinonascens sp. nov., an actinomycete from the sea. Int J Syst Evol Microbiol 34(2):127–138

    Google Scholar 

  • Herrera A, Cockell CS, Self S, Blaxter M, Reitner J, Thorsteinsson T, Arp G, Dröse W, Tindle AG (2009) A cryptoendolithic community in volcanic glass. Astrobiology 9(4):369–381

    Article  CAS  PubMed  Google Scholar 

  • Herron PR, Wellington EMH (1990) New method for extraction of streptomycete spores from soil and application to the study of lysogeny in sterile amended and nonsterile soil. Appl Environ Microbiol 56(5):1406–1412

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hesseltine CW (1960) Relationships of the Actinomycetales. Mycologia 52(3):460–474

    Article  Google Scholar 

  • Heuer H, Krsek M, Baker P, Smalla K, Wellington EM (1997) Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Appl Environ Microbiol 63(8):3233–3241

    CAS  PubMed  PubMed Central  Google Scholar 

  • Higgins ML (1967) Release of sporangiospores by a strain of Actinoplanes. J Bacteriol 94:495–498

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hill GT, Mitkowski NA, Aldrich-Wolfe L, Emele LR, Jurkonie DD, Ficke A, Maldonado-Ramirez S, Lynch ST, Nelson EB (2000) Methods for assessing the composition and diversity of soil microbial communities. Appl Soil Ecol 15(1):25–36

    Article  Google Scholar 

  • Hirsch PR, Mauchline TH (2012) Who’s who in the plant root microbiome? Nat Biotechnol 30(10):961–962

    Article  CAS  PubMed  Google Scholar 

  • Hirsch PR, Mauchline TH, Clark IM (2010) Culture-independent molecular techniques for soil microbial ecology. Soil Biol Biochem 42(6):878–887

    Article  CAS  Google Scholar 

  • Jensen PR, Mafnas C (2006) Biogeography of the marine actinomycete Salinispora. Environ Microbiol 8(11):1881–1888

    Article  CAS  PubMed  Google Scholar 

  • Jensen PR, Moore BS, Fenical W (2015) The marine actinomycete genus Salinispora: a model organism for secondary metabolite discovery. Nat Prod Rep 32(5):738–751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jensen V (1975) Bacterial Flora of Soil after Application of Oily Waste. Oikos 26(2):152–158

    Article  Google Scholar 

  • Ji SC, Kim D, Yoon JH, Lee CH (2007) Metagenomic analysis of BTEX-contaminated forest soil microcosm. J Microbiol Biotechnol 17(4):668–672

    CAS  PubMed  Google Scholar 

  • Johnston DW, Cross T (1976) Actinomycetes in lake muds: dormant spores or metabolically active mycelium? Freshw Biol 6(5):465–470

    Article  Google Scholar 

  • Kalakoutskii LV, Agre NS (1976) Comparative aspects of development and differentiation in Actinomycetes. Bacteriol Rev 40(2):469–524

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kalakoutskii LV, Kusnetsov VD (1964) A new species of the genus Actinoplanes Couch-A. armeniacus and some peculiarities of its mode of spore formation. Mikrobiologija 33:613–621

    Google Scholar 

  • Kane WD (1966) A new genus of Actinoplanaceae, Pilimelia, with a description of two species Pilimelia terevasa and Pilimelia anulata. J Elisha Mitchell Sci Soc 82:220–230

    Google Scholar 

  • Keast D, Rowe P, Bowra B, Sanfelieu L, Stapley EO, Woodruff HB (1984) Studies on the ecology of West Australian actinomycetes: Factors which influence the diversity and types of actinomycetes in Australian soils. Microb Ecol 10(2):123–136

    Article  CAS  PubMed  Google Scholar 

  • Kempf A, Greiner-Mai E, Schneider J, Korn-Wendisch F, Kutzner HJ (1987) A group of actinophages of Faenia rectivirgula. Curr Microbiol 15(5):283–285

    Article  Google Scholar 

  • Khan MR, Williams ST (1975) Studies on the ecology of actinomycetes in soil-VIII: distribution and characteristics of acidophilic actinomycetes. Soil Biol Biochem 7(6):345–348

    Article  Google Scholar 

  • Kikuchi M, Perlman D (1977) Bacteriophages infecting Micromonospora purpurea. J Antibiot 30(5):423–424

    Article  CAS  PubMed  Google Scholar 

  • Klaus S, Triebel H, Hartmann M et al (1979) Molecular characterization of the genomes of actinophages SH3, SH10, SH11, and SH12 infecting Streptomyces hygroscopicus. Mol Gen Genet 172(3):319–327

    Article  CAS  PubMed  Google Scholar 

  • Klaus S, Krügel H, Süss F, Neigenfind M, Zimmermann I, Taubeneck U (1981) Properties of the temperate actinophage SH10. Microbiology 123(2):269–279

    Article  Google Scholar 

  • Klausen C, Nicolaisen MH, Strobel BW, Warnecke F, Nielsen JL, Jørgensen NO (2005) Abundance of actinobacteria and production of geosmin and 2-methylisoborneol in Danish streams and fish ponds. FEMS Microbiol Ecol 52(2):265–278

    Article  CAS  PubMed  Google Scholar 

  • Kopcakova A, Stramova Z, Kvasnova S, Godany A, Perhacova Z, Pristas P (2014) Need for database extension for reliable identification of bacteria from extreme environments using MALDI TOF mass spectrometry. Chem Pap 68(11):1435–1442

    Article  CAS  Google Scholar 

  • Korn-Wendisch F, Schneider J (1992) Phase typing-a useful tool in actinomycete systematics. Gene 115(1):243–247

    Google Scholar 

  • Koskella B (2013) Phase-mediated selection on microbiota of a long-lived host. Curr Biol 23(13):1256–1260

    Google Scholar 

  • Koskella B, Brockhurst MA (2014) Bacteria–phase coevolution as a driver of ecological and evolutionary processes in microbial communities. FEMS Microbiol Rev 38(5):916–931

    Google Scholar 

  • Koskella B, Meaden S (2013) Understanding bacteriophage specificity in natural microbial communities. Viruses 5(3):806–823

    Article  PubMed  PubMed Central  Google Scholar 

  • Kubiena W, Renn CE (1935) Micropedological studies of the influence of different organic compounds upon the microflora of the soil. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg Abt 2(91):267–292

    Google Scholar 

  • Kurtböke DI (1996) Present role of phase typing in reliable actinomycete identification schemes. In: Locci R, Lechevalier H, Williams ST (eds) Actinomycetes, vol VII. Publication of the International Centre for Theoretical and Applied Ecology, Gorizia, Italy, pp 28–33

    Google Scholar 

  • Kurtböke DI (2003) Use of bacteriophages for the selective isolation of rare actinomycetes. In: Kurtböke DI (ed) Selective isolation of rare actinomycetes. Queensland Complete Printing Services, Australia, Nambour, Queensland, pp 9–54. isbn:0-646-42910-8

    Google Scholar 

  • Kurtböke DI (2005) Actinophages as indicators of actinomycete taxa in marine environments. A Van Leeuw 87(1):19–28

    Article  Google Scholar 

  • Kurtböke DI (2008) ‘Chocolate mousse’ on Sunshine Coast beaches. Microbiology Australia 29(2):104–105

    Google Scholar 

  • Kurtböke DI (2009) Use of phase-battery to isolate industrially important rare actinomycetes. In: Adams HT (ed) Contemporary trends in bacteriophage research. NOVA Science Publishers, New York, pp 119–149

    Google Scholar 

  • Kurtböke DI (2011) Exploitation of phase battery in the search for bioactive actinomycetes. Appl Microbiol Biotechnol 89(4):931–937

    Google Scholar 

  • Kurtböke DI (2016) Actinomycetes in biodiscovery: genomic advances and new horizons. In: Gupta VK, Sharma GD, Tuohy MG, Gaur R (eds) The handbook of microbial resources. CAB International Publications, Oxfordshire, UK, pp 567–590

    Chapter  Google Scholar 

  • Kurtböke DI, French JRJ (2007) Use of phase battery to investigate the actinofloral layers of termite-gut microflora. J Appl Microbiol 103(3):722–734

    Google Scholar 

  • Kurtböke DI, Williams ST (1991) Use of actinophage for selective isolation purposes: current problems. Actinomycetes 2(2):31–36

    Google Scholar 

  • Kurtböke DI, Chen C-F, Williams ST (1992) Use of polyvalent phase for reduction of streptomycetes on soil dilution plates. J Appl Bacteriol 72:103–111

    Google Scholar 

  • Kurtböke DI, Murphy NE, Sivasithamparam K (1993a) Use of bacteriophage for the selective isolation of thermophilic actinomycetes from composted eucalyptus bark. Can J Microbiol 39:46–51

    Article  PubMed  Google Scholar 

  • Kurtböke DI, Wilson CR, Sivasithamparam K (1993b) Occurrence of Actinomadura phase in organic mulches used for avocado plantations in Western Australia. Can J Microbiol 39:389–394

    Google Scholar 

  • Kurtböke DI, French JRJ, Hayes RA, Quinn R (2015) Eco-taxonomic insights into actinomycete symbionts of termites for discovery of novel bioactive compounds. Adv Biochem Eng Biotechnol 147:111–135

    PubMed  Google Scholar 

  • Küster E (1970) Noter on the taxonomy and ecology of S. malachiticus and related species. In: Prauser H (ed) The actinomycetales. VEB Gustav Fisher Verlag, Jena, pp 169–172

    Google Scholar 

  • Küster E (1976) Ecology and predominance of soil streptomycetes. In: Arai T (ed) Actinomycetes; the boundary microorganisms. Toppan Co., Tokyo, pp 109–121

    Google Scholar 

  • Kutzner HJ (1961) Specificity of actinophages within a selected group of Streptomyces. Pathobiology 24(2):170–191

    Article  CAS  Google Scholar 

  • Lacey J (1988) Actinomycetes as biodeteriogens and pollutants of the environment. In: Goodfellow M, Williams ST, Mordarski M (eds) Actinomycetes in biotechnology. Academic Press, London, pp 359–432

    Chapter  Google Scholar 

  • Lamilla C, Pavez M, Santos A, Hermosilla A, Llanquinao V, Barrientos L (2016) Bioprospecting for extracellular enzymes from culturable Actinobacteria from the South Shetland Islands, Antarctica. Polar Biol 40:719–726. doi:10.1007/s00300-016-1977-z

    Article  Google Scholar 

  • LeBlanc JC, Goncalves ER, Mohn WW (2008) Global response to desiccation stress in the soil actinomycete Rhodococcus jostii RHA1. Appl Environ Microbiol 74(9):2627–2636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lechevailer H (1974) Distribution et rôle des actinomycètes dans les eaux. Bull Inst Pasteur 72:159–175

    Google Scholar 

  • Lechevalier MP (1981) Ecological associations involving actinomycetes. In: Schaal K, Pulverer G (eds) Actinomycetes, Zbl Bakt Suppl. 11. Gustav Fisher Verlag, Stuttgart, New York, pp 159–166

    Google Scholar 

  • Lechevalier MP (1988) Actinomycetes in agriculture and forestry. In: Goodfellow M, Williams ST, Mordarski M (eds) Actinomycetes in biotechnology. Academic Press, London, pp 327–358

    Chapter  Google Scholar 

  • Lee YK, Lee JH, Lee HK (2001) Microbial symbiosis in marine sponges. J Microbiol, Seoul, Korea 39(4):254–264

    Google Scholar 

  • Lewin A, Wentzel A, Valla S (2013) Metagenomics of microbial life in extreme temperature environments. Curr Opin Biotechnol 24(3):516–525

    Article  CAS  PubMed  Google Scholar 

  • Li WJ, Zhang YQ, Schumann P et al (2006) Kocuria aegyptia sp. nov., a novel actinobacterium isolated from a saline, alkaline desert soil in Egypt. Int J Syst Evol Microbial 56(4):733–737

    Article  CAS  Google Scholar 

  • Liu J, Hua ZS, Chen LX et al (2014) Correlating microbial diversity patterns with geochemistry in an extreme and heterogeneous environment of mine tailings. Appl Environ Microbiol 80(12):3677–3686

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lloyd AB (1969) Dispersal of streptomycetes in air. Microbiologica 57(1):35–40

    CAS  Google Scholar 

  • Lomovskaya ND, Mkrtumian NM, Gostimskaya NL, Danilenko VN (1972) Characterization of temperate actinophage φC31 isolated from Streptomyces coelicolor A3 (2). J Virol 9(2):258–262

    CAS  PubMed  PubMed Central  Google Scholar 

  • López-García P, Moreira D (2008) Tracking microbial biodiversity through molecular and genomic ecology. Res Microbiol 159(1):67–73

    Article  PubMed  CAS  Google Scholar 

  • Lundberg DS, Lebeis SL, Paredes SH et al (2012) Defining the core Arabidopsis thaliana root microbiome. Nature 488(7409):86–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luscombe BM, Gray TRG (1974) Characteristics of Arthrobacter grown in continuous culture. Microbiologica 82(2):213–222

    Google Scholar 

  • Maldonado LA, Fenical W, Jensen PR, Kauffman CA, Mincer TJ, Ward AC, Bull AT, Goodfellow M (2005) Salinispora arenicola gen. nov., sp. nov. and Salinispora tropica sp. nov., obligate marine actinomycetes belonging to the family Micromonosporaceae. Int J Syst Evol Microbiol 55(5):1759–1766

    Article  CAS  PubMed  Google Scholar 

  • Marsh P, Wellington EMH (1994) Phase-host interactions in soil. FEMS Microbiol Ecol 15(1-2):99–107

    Google Scholar 

  • Martin JP, Filip Z, Haider K (1976) Effect of montmorillonite and humate on growth and metabolic activity of some actinomycetes. Soil Biol Biochem 8(5):409–413

    Article  CAS  Google Scholar 

  • Mayfield CI, Williams ST, Ruddick SM, Hatfield HL (1972) Studies on the ecology of actinomycetes in soil IV. Observations on the form and growth of streptomycetes in soil. Soil Biol Biochem 4(1):79–86

    Article  Google Scholar 

  • McCarthy AJ, Williams ST (1992) Actinomycetes as agents of biodegradation in the environment-a review. Gene 115(1-2):189–192

    Article  CAS  PubMed  Google Scholar 

  • McKay AC, Ophel KM, Reardon TB, Gooden JM (1993) Livestock deaths associated with Clavibacter toxicus/Anguina sp. infection in seedheads of Agrostis avenacea and Polypogon monspeliensis. Plant Dis 77(6):635–641

    Article  Google Scholar 

  • Mckenna F, El-Tarabily KA, Hardy GESJ, Dell B (2001) Novel in vivo use of a polyvalent Streptomyces phase to disinfest Streptomyces scabies-infected seed potatoes. Plant Pathol 50:666–675

    Google Scholar 

  • McVeigh HP, Munro J, Embley TM (1996) Molecular evidence for the presence of novel actinomycete lineages in a temperate forest soil. J Ind Microbiol 17(3-4):197–204

    Article  CAS  Google Scholar 

  • Meaden S, Koskella B (2013) Exploring the risks of phase application in the environment. Front Microbiol 4:358

    Google Scholar 

  • Metcalfe AC, Krsek M, Gooday GW et al (2002) Molecular analysis of a bacterial chitinolytic community in an upland pasture. Appl Environ Microbiol 68(10):5042–5050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyertons JL, Tilley BC, Lechevalier MP, Lechevalier HA (1987) Actinophages and restriction enzymes from Micromonospora species (Actinomycetales). J Industrial Microbial 2(5):293–303

    Article  Google Scholar 

  • Mikami Y, Miyashita K, Arai T (1982) Diaminopimelic acid profiles of alkalophilic and alkaline-resistant strains of actinomycetes. Microbiologica 128(8):1709–1712

    CAS  Google Scholar 

  • Mincer TJ, Jensen PR, Kauffman CA, Fenical W (2002) Widespread and persistent populations of a major new marine actinomycete taxon in ocean sediments. Appl Environ Microbiol 68:5005–5011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitri S, Foster KR (2013) The genotypic view of social interactions in microbial communities. Annu Rev Genet 47:247–273

    Article  CAS  PubMed  Google Scholar 

  • Naganuma T, Miyoshi T, Kimura H (2007) Phylotype diversity of deep-sea hydrothermal vent prokaryotes trapped by 0.2-and 0.1-μm-pore-size filters. Extremophiles 11(4):637–646

    Article  PubMed  Google Scholar 

  • Nesterenko OA, Kasumova SA, Kvasnikov EI (1977) Microorganisms of the genus Nocardia and the “rhodochrous” group in the soils of the Ukrainian SSR. Mikrobiologiia 47(5):866–870

    Google Scholar 

  • Nolan RD, Cross T (1988) Isolation and screening of actinomycetes. In: Goodfellow M, Williams ST, Mordarski M (eds) Actinomycetes in biotechnology. Academic Press, London, pp 1–32

    Google Scholar 

  • Ogiso H, Seishi A (1999) Identification of two types of actinophages parasitic to potato common scab pathogens in Hokkaido, Japan. 土と微生物 53(1):37–43

    Google Scholar 

  • Okoro CK, Brown R, Jones AL, Andrews BA, Asenjo JA, Goodfellow M, Bull AT (2009) Diversity of culturable actinomycetes in hyper-arid soils of the Atacama Desert, Chile. A Van Leeuw 95(2):121–133

    Article  Google Scholar 

  • Ophel KM, Bird AF, Kerr A (1993) Association of bacteriophage particles with toxin production by Clavibacter toxicus, the causal agent of annual ryegrass toxicity. Phytopathology 83(6):676–681

    Article  CAS  Google Scholar 

  • Oravecz O, Nyirő G, Márialigeti K (2002) A molecular approach in the analysis of the faecal bacterial community in an African millipede belonging to the family Spirostreptidae (Diplopoda). Eur J Soil Biol 38(1):67–70

    Article  Google Scholar 

  • Orchard V (1981) The ecology of Nocardia and related taxa. Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene, Abteilung I, Supplement 6:429–434

    Google Scholar 

  • Ordoñez OF, Flores MR, Dib JR, Paz A, Farías ME (2009) Extremophile culture collection from Andean lakes: extreme pristine environments that host a wide diversity of microorganisms with tolerance to UV radiation. Microb Ecol 58(3):461–473

    Article  PubMed  Google Scholar 

  • Parekh S, Vinci VA, Strobel RJ (2000) Improvement of microbial strains and fermentation processes. Appl Microbiol Biotechnol 54(3):287–301

    Article  CAS  PubMed  Google Scholar 

  • Pathom-Aree W, Stach JEM, Ward AC, Horikoshi K, Bull AT, Goodfellow M (2006) Diversity of actinomycetes isolated from Challenger Deep sediment (10,898 m) from the Mariana Trench. Extremophiles 10(3):181–189

    Article  CAS  PubMed  Google Scholar 

  • Patten KM, Lindsay D, Kurtböke DI (1994) Isolation of Dermatophilus congolensis phase from the “Lumpy Wool” of sheep. Lett Appl Microbiol 20:199–203

    Google Scholar 

  • Pedulla ML, Ford ME, Houtz JM et al (2003) Origins of highly mosaic mycobacteriophage genomes. Cell 113(2):171–182

    Article  CAS  PubMed  Google Scholar 

  • Penn K, Jenkins C, Nett M et al (2009) Genomic islands link secondary metabolism to functional adaptation in marine Actinobacteria. The ISME Journal 3(10):1193–1203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petrovski S, Dyson ZA, Quill ES et al (2011) An examination of the mechanisms for stable foam formation in activated sludge systems. Water Res 45(5):2146–2154

    Article  CAS  PubMed  Google Scholar 

  • Petrovski S, Tillett D, Seviour RJ (2012) 0 Genome sequences and characterization of the related Gordonia phages GTE5 and GRU1 and their use as potential biocontrol agents. Appl Environ Microbiol 78(1):42–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phelan VV, Liu W-T, Pogliano K, Dorrestein PC (2011) Microbial metabolic exchange-the chemotype-to-phenotype link. Nat Chem Biol 8(1):26–35. doi:10.1038/nchembio.739

    Article  PubMed  CAS  Google Scholar 

  • Pontarp M, Sjöstedt J, Lundberg P (2013) Experimentally induced habitat filtering in marine bacterial communities. Mar Ecol Prog Ser 477:77–86

    Article  Google Scholar 

  • Poulsen M, Cafaro M, Boomsma JJ, Currie CR (2005) Specificity of the mutualistic association between actinomycete bacteria and two sympatric species of Acromyrmex leaf-cutting ants. Mol Ecol 14(11):3597–3604

    Article  CAS  PubMed  Google Scholar 

  • Prauser H (1970) Application of actinophages on taxonomy of Actinomycetales. Publ Fac Sci Univ J E Purkyne Brno K47:123–126

    Google Scholar 

  • Prauser H (1984) Phase host ranges in the classification and identification of gram-positive branched and related bacteria. In: Ortiz-Ortiz L, Bojalil LF, Yakoleff V (eds) Biological, biochemical, and biomedical aspects of actinomycetes. Academic Press, Orlando, pp 617–633

    Google Scholar 

  • Prauser H, Falta R (1968) Phase sensitivity, cell wall composition and taxonomy of actinomyctes. Zeitschrift für allgemeine Mikrobiologie 8(1):39–46

    Google Scholar 

  • Pringsulaka O, Chavanich S, Doi K, Ogata S (2002) Changes in the population of a wide host range actinophage isolated from Thai Soil and host streptomycetes in Thai and Japanese soil. Actinomycetologica 16(2):21–25

    Article  Google Scholar 

  • Ramette A (2007) Multivariate analyses in microbial ecology. FEMS Microbiol Ecol 62(2):142–160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramette A, Tiedje JM (2007) Biogeography: an emerging cornerstone for understanding prokaryotic diversity, ecology, and evolution. Microb Ecol 53(2):197–207

    Article  PubMed  Google Scholar 

  • Rautenstein J (1967) Use of actinophages for the classification of Actinomycetales. Int J Syst Evol Microbiol 17(2):157–163

    Google Scholar 

  • Reilly HC, Harris DA, Waksman SA (1947) An actinophage for Streptomyces griseus. J Bacteriol 54(4):451–466

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rheims H, Stackebrandt E (1999) Application of nested polymerase chain reaction for the detection of as yet uncultured organisms of the class Actinobacteria in environmental samples. Environ Microbiol 1(2):137–143

    Article  CAS  PubMed  Google Scholar 

  • Rheims H, Felske A, Seufert S, Stackebrandt E (1999) Molecular monitoring of an uncultured group of the class Actinobacteria in two terrestrial environments. J Microbiol Methods 36(1):65–75

    Article  CAS  PubMed  Google Scholar 

  • Riesenfeld CS, Schloss PD, Handelsman J (2004) Metagenomics: genomic analysis of microbial communities. Annu Rev Genet 38:525–552

    Article  CAS  PubMed  Google Scholar 

  • Riley IT, Gooden JM (1991) Bacteriophage specific for the Clavibacter sp. associated with annual ryegrass toxicity. Lett Appl Microbiol 12(5):158–160

    Article  Google Scholar 

  • Riverin M, Beaudoin J, Vezina C (1970) Characterization of a nocardiophage for Nocardia restrictus. J Gen Virol 6(3):395–407

    Article  CAS  PubMed  Google Scholar 

  • Robinson JB, Corke CT (1959) Preliminary studies on the distribution of actinophages in soil. Can J Microbiol 5(5):479–484

    Article  CAS  PubMed  Google Scholar 

  • Rowbotham TJ, Cross T (1977) Ecology of Rhodococcus coprophilus and associated actinomycetes in fresh water and agricultural habitats. J Gen Microbiol 100:231–240

    Article  Google Scholar 

  • Ruddick SM, Williams ST (1972) Studies on the ecology of actinomycetes in soil V. Some factors influencing the dispersal and adsorption of spores in soil. Soil Biol Biochem 4(1):93–103

    Article  Google Scholar 

  • Saiz-Jimenez C, Groth I (1999) Actinomycetes in hypogean environments. Geomicrobiol J 16(1):1–8

    Article  Google Scholar 

  • Salifu SP, Valero-Rello A, Campbell SA et al (2013) Genome and proteome analysis of phase E3 infecting the soil-borne actinomycete Rhodococcus equi. Environ Microbiol Rep 5(1):170–178

    Google Scholar 

  • Santoro M, Cappellari L, Giordano W, Banchio E (2015) Production of volatile organic compounds in PGPR. In: Cassán FD, Okon Y, Creus, CM (eds) Handbook for Azospirillum. Springer International Publishing, pp 307–317

    Google Scholar 

  • Schaal KP, Bickenbach H (1978) Soil occurrence of pathogenic nocardiae. Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene, Abteilung I, Supplement 6:429–434

    Google Scholar 

  • Schmitz JE, Schuch R, Fischetti VA (2010) Identifying active phase lysins through functional viral metagenomics. Appl Environ Microbiol 76(21):7181–7187

    Google Scholar 

  • Secilia J, Bagyaraj DJ (1987) Bacteria and actinomycetes associated with pot cultures of vesicular-arbuscular mycorrhizas. Can J Microbiol 33(12):1069–1073

    Article  Google Scholar 

  • Shirai M, Nara H, Sato A, Aida T, Takahashi H (1991) Site-specific integration of the actinophage R4 genome into the chromosome of Streptomyces parvulus upon lysogenization. J Bacteriol 173(13):4237–4239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith JJ, Tow LA, Stafford W, Cary C, Cowan DA (2006) Bacterial diversity in three different Antarctic cold desert mineral soils. Microb Ecol 51(4):413–421

    Article  PubMed  Google Scholar 

  • Soddell JA, Seviour RJ (1990) Microbiology of foaming in activated sludge plants. J Appl Bacteriol 69(2):145–176

    Article  CAS  Google Scholar 

  • Souza-Egipsy V, González-Toril E, Zettler E et al (2008) Prokaryotic community structure in algal photosynthetic biofilms from extreme acidic streams in Río Tinto (Huelva, Spain). Int Microbiol 11:251–260

    CAS  PubMed  Google Scholar 

  • Stach JE, Maldonado LA, Ward AC, Goodfellow M, Bull AT (2003) New primers for the class Actinobacteria: application to marine and terrestrial environments. Environ Microbiol 5(10):828–841

    Article  CAS  PubMed  Google Scholar 

  • Starkey RL (1938) Some influences of the development of higher plants upon the microorganisms in the soil. VI. Microscopic examination of the rhizosphere. Soil Sci 45:207–249

    Article  CAS  Google Scholar 

  • Stevens H, Brinkhoff T, Rink B, Vollmers J, Simon M (2007) Diversity and abundance of Gram positive bacteria in a tidal flat ecosystem. Environ Microbiol 9(7):1810–1822

    Article  CAS  PubMed  Google Scholar 

  • Stone MJ, Williams DH (1992) On the evolution of functional secondary metabolites (natural products). Mol Microbiol 6(1):29–34

    Article  CAS  PubMed  Google Scholar 

  • Suenaga H, Ohnuki T, Miyazaki K (2007) Functional screening of a metagenomic library for genes involved in microbial degradation of aromatic compounds. Environ Microbiol 9(9):2289–2297

    Article  CAS  PubMed  Google Scholar 

  • Svircev AM, Lehman SM, Sholberg P, Roach D, Castle AJ (2011) Phase biopesticides and soil bacteria: multilayered and complex interactions. In: Witzany G (ed) Biocommunication in soil microorganisms. Springer Berlin, Heidelberg, pp 215–235

    Google Scholar 

  • Taber WA (1960) Evidence for the existence of acid-sensitive actinomycetes in soil. Can J Microbiol 6(5):503–514

    Article  Google Scholar 

  • Tanida S, Hasegawa T, Higashide E, Yoneda M (1984) Motile cells of Actinosynnema pretiosum subsp. auranticum, a rare actinomycete. J Gen Appl Microbiol 30:461–467

    Article  Google Scholar 

  • Teske A, Hinrichs KU, Edgcomb V, de Vera Gomez A, Kysela D, Sylva SP, Sogin ML, Jannasch HW (2002) Microbial diversity of hydrothermal sediments in the Guaymas Basin: evidence for anaerobic methanotrophic communities. Appl Environ Microbiol 68(4):1994–2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas JA, Soddell JA, Kurtböke DI (2002) Fighting foam with phages? Water Sci Technol 46(1-2):511–518

    CAS  PubMed  Google Scholar 

  • Thornburg CC, Zabriskie TM, McPhail KL (2010) Deep-Sea Hydrothermal Vents: Potential Hot Spots for Natural Products Discovery? J Nat Prod 73(3):489–499

    Article  CAS  PubMed  Google Scholar 

  • Tiwari K, Gupta RK (2012) Rare actinomycetes: a potential storehouse for novel antibiotics. Cr Rev Biotechnol 32(2):108–132

    Article  CAS  Google Scholar 

  • Urbano SB, Albarracín VH, Ordoñez OF, Farías ME, Alvarez HM (2013) Lipid storage in high-altitude Andean Lakes extremophiles and its mobilization under stress conditions in Rhodococcus sp. A5, a UV-resistant actinobacterium. Extremophiles 17(2):217–227

    Article  CAS  Google Scholar 

  • Wagner PL, Waldor MK (2002) Bacteriophage control of bacterial virulence. Infect Immun 70(8):3985–3993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waksman SA, Woodruff HB (1940) Bacteriostatic and bacteriocidal substances produced by soil actinomycetes. Proc Soc Exp Biol Med 45:609–614

    Article  CAS  Google Scholar 

  • Waldrop MP, Balser TC, Firestone MK (2000) Linking microbial community composition to function in a tropical soil. Soil Biol Biochem 32(13):1837–1846

    Article  CAS  Google Scholar 

  • Wang C, Dong D, Wang H, Müller K, Qin Y, Wang H, Wu W (2016) Metagenomic analysis of microbial consortia enriched from compost: new insights into the role of Actinobacteria in lignocellulose decomposition. Biotechnol Biofuels 9:22. doi:10.1186/s13068-016-0440-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Weinbauer MG, Rassoulzadegan F (2004) Are viruses driving microbial diversification and diversity? Environ Microbiol 6(1):1–11

    Article  PubMed  Google Scholar 

  • Wietz M, Millán-Aguiñaga N, Jensen PR (2014) CRISPR-Cas systems in the marine actinomycete Salinispora: linkages with phase defense, microdiversity and biogeography. BMC Genomics 15(1):936

    Google Scholar 

  • Williams ST (1986) Actinomycete ecology-a critical evaluation. In: Szabo G, Biro S, Goodfellow M (eds) Biological, biochemical and biomedical aspects of actinomycetes. Kiado Press, Budapest, pp 693–700

    Google Scholar 

  • Williams ST, Mayfield CI (1971) Studies on the ecology of actinomycetes in soil III. The behaviour of neutrophilic streptomycetes in acid soil. Soil Biol Biochem 3(3):197–208

    Article  CAS  Google Scholar 

  • Williams ST, Robinson CS (1981) The role of streptomycetes in decomposition of chitin in acidic soils. Microbiologica 127(1):55–63

    CAS  Google Scholar 

  • Williams ST, Wellington EMH, Tipler LS (1980) The taxonomic implications of the reactions of representative Nocardia strains to actinophage. Microbiologica 119(1):173–178

    Google Scholar 

  • Williams ST, Locci R, Beswick A, Kurtböke DI, Kuznetsov VD, Le Monnier FJ, Long PF, Maycroft KA, Palmit RA, Petrolini B, Quaroni S, Todd JI, West M (1993) Detection and identification of novel actinomycetes. Res Microbiol 144:653–656

    Article  CAS  PubMed  Google Scholar 

  • Willoughby LG (1976) Actinomycetes and actinophage in fresh water. In: 44th Annual Report for the year ended 31st March 1976. Ambleside, UK, Freshwater Biological Association

    Google Scholar 

  • Willoughby LG, Smith SM, Bradshaw RM (1972) Actinomycete virus in fresh water. Freshw Biol 2(1):19–26

    Article  Google Scholar 

  • Wu L, Kellogg L, Devol AH, Tiedje JM, Zhou J (2008) Microarray-based characterization of microbial community functional structure and heterogeneity in marine sediments from the Gulf of Mexico. Appl Environ Microbiol 74(14):4516–4529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi N, Ichijo T, Sakotani A, Baba T, Nasu M (2012) Global dispersion of bacterial cells on Asian dust. Sci Report 2:525. doi:10.1038/srep00525

    Article  CAS  Google Scholar 

  • Żaczek M, Weber-Dabrowska B, Górski A (2015) Phages in the global fruit and vegetable industry. J Appl Microbiol 118:537–556

    Article  PubMed  Google Scholar 

  • Zahran HH (1997) Diversity, adaptation and activity of the bacterial flora in saline environments. Biol Fertil Soils 25(3):211–223

    Article  CAS  Google Scholar 

  • Zaitlin B, Watson SB (2006) Actinomycetes in relation to taste and odour in drinking water: myths, tenets and truths. Water Res, 9 40:1741–1753

    Google Scholar 

  • Zhang QC, Shamsi IH, DT X et al (2012) Chemical fertilizer and organic manure inputs in soil exhibit a vice versa pattern of microbial community structure. Appl Soil Ecol 57:1–8

    Article  Google Scholar 

  • Zhu H, Sandiford SK, van Wezel GP (2014) Triggers and cues that activate antibiotic production by actinomycetes. J Ind Microbiol Biotechnol 41:371–386

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. İ. Kurtbӧke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kurtbӧke, D.İ. (2017). Ecology and Habitat Distribution of Actinobacteria. In: Wink, J., Mohammadipanah, F., Hamedi, J. (eds) Biology and Biotechnology of Actinobacteria. Springer, Cham. https://doi.org/10.1007/978-3-319-60339-1_6

Download citation

Publish with us

Policies and ethics