Skip to main content

Growth Improvement and Management of Vegetable Diseases by Plant Growth-Promoting Rhizobacteria

  • Chapter
  • First Online:
Microbial Strategies for Vegetable Production

Abstract

Vegetables are an important part of human dietary systems. They contain several important nutrients including vitamins, antioxidants, etc. and affect immensely the human health. Vegetables are cultivated and consumed globally on a large scale and serve as the food of choice for millions of people across the globe. During cultivation, most of the vegetable crops are, however, often attacked by various insect pests and pathogenic microorganisms, thereby causing severe diseases, leading to huge yield losses. The agricultural practitioners depend heavily on chemical fertilizers to supply nutrients to vegetables while they apply pesticides to manage insect pests and to concurrently enhance vegetable production. The injudicious application of agrochemicals including pesticides into vegetable production practices adversely affects the soil fertility and consequently the plant health, thus making it unfit for human consumption. In order to protect the crops and to minimize yield losses due to phytopathogens, an alternate and inexpensive approach involving the use of plant growth-promoting rhizobacteria (PGPR) has been introduced into the vegetable production system. The application of PGPR formulations into the vegetable production strategies has been found to protect them from various diseases leading to improved yield and quality of the vegetables. The present chapter focuses on the disease incidence among some of the popularly grown vegetables and the role of PGPR in suppression of common vegetable diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Monaim MF, Abdel-Gaid MA, Zayan SA et al (2014) Enhancement of growth parameters and yield components in eggplant using antagonism of Trichoderma spp. against fusarium wilt disease. Int J Phytopathol 3(1):33–40

    Google Scholar 

  • Adesemoye AO, Obini M, Ugoji EO (2008) Comparison of plant growth-promotion with Pseudomonas aeruginosa and Bacillus subtilis in three vegetables. Braz J Microbiol 39:423–426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adhikari A, Dutta S, Nandi S et al (2013) Antagonistic potentiality of native rhizobacterial isolates against root rot disease of okra incited by Rhizoctonia solani. Afr J Agric Res 8(4):405–412

    Article  Google Scholar 

  • Ajilogba CF, Babalola OO, Ahmad F (2013) Antagonistic effects of Bacillus species in biocontrol of tomato Fusarium wilt. Ethno Med 7(3):205–216

    Google Scholar 

  • Akgül SD, Mirik M (2008) Biocontrol of Phytophthora capsici on pepper plants by Bacillus megaterium strains. J Plant Pathol 90:29–34

    Google Scholar 

  • Alegbejo MD, Lawal AB, Chindo PS (2006) Outbreak of basal stem rot and wilt disease of pepper in Katsina, Nigeria. Arch Phytopathol PFL 39:93–98

    Article  Google Scholar 

  • Altinok HH (2005) First report of Fusarium wilt of eggplant caused by Fusarium oxysporum f. sp. melongenae in Turkey. Plant Pathol 54:577

    Article  Google Scholar 

  • Altinok HH, Dikilitas M, Yildiz HN (2013) Potential of Pseudomonas and Bacillus isolates as biocontrol agents against fusarium wilt of eggplant. Biotechnol Biotechnol Eq 27(4):3952–3958

    Article  CAS  Google Scholar 

  • Andrews SC, Robinson AK, Rodríguez-Quiñones F (2003) Bacterial iron homeostasis. FEMS Microbiol Rev 27:215–237

    Article  CAS  PubMed  Google Scholar 

  • Anonymous (1997) The International Potato Centre annual report. International Potato Centre, Lima, p 59

    Google Scholar 

  • Anonymous (2012) Small farmer’s agriculture consortium and Indian Agriculture Systems Pvt. Ltd. http://sfacindia.com

  • Anuratha CS, Gnanamanickam SS (1990) Biological control of bacterial wilt caused by Pseudomonas solanacearum in India with antagonistic bacteria. Plant Soil 124:109–116

    Article  Google Scholar 

  • Ariyapitipun T, Mustapha A, Clarke AD (1999) Microbial shelf life determination of vacuum packaged fresh beef treated with polylacetic acid and nisin solutions. J Food Protect 62:913–920

    Article  CAS  Google Scholar 

  • Ashwini N, Srividya S (2014) Potentiality of Bacillus subtilis as biocontrol agent for management of anthracnose disease of chilli caused by Colletotrichum gloeosporioides OGC1. 3 Biotech 4:127–136

    Article  CAS  PubMed  Google Scholar 

  • Athukorala SNP, Fernando WGD, Rashid KY (2009) Identification of antifungal antibiotics of Bacillus species isolated from different microhabitats using polymerase chain reaction and MALDI-TOF mass spectrometry. Can J Microbiol 55:1021–1032

    Article  CAS  PubMed  Google Scholar 

  • Axel C, Zannini E, Coffey A et al (2012) Ecofriendly control of potato late blight causative agent and the potential role of lactic acid bacteria: a review. Appl Microbiol Biotechnol 96:37–48. doi:10.1007/s00253-012-4282-y

    Article  CAS  PubMed  Google Scholar 

  • Bakker PAHM, Pieterse CMJ, Van Loon LC (2007) Induced systemic resistance by fluorescent Pseudomonas sp. Phytopathology 97:239–243

    Article  PubMed  Google Scholar 

  • Beneduzi A, Ambrosini A, Luciane MP et al (2012) Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. Gen Mol Biol 35(4, Suppl):1044–1051

    Article  CAS  Google Scholar 

  • Bernal G, Illanes A, Ciampi L (2002) Isolation and partial purification of a metabolite from a mutant strain of Bacillus sp. with antibiotic activity against plant pathogenic agents. Electron J Biotechnol 5:12–20

    Article  Google Scholar 

  • Bharucha UD, Patel KC, Trivedi UB (2013) Antifungal activity of catecholate type siderophore produced by Bacillus sp. Int J Res Pharm Sci 4(4):528–531

    Google Scholar 

  • Burgess LW, Knight TE, Tesoriero L et al (2008) Diagnostic manual for plant diseases in Vietnam. ACIAR, Canberra

    Google Scholar 

  • Burr TJ, Schroth MN, Suslow T (1978) Increased potato yields by treatment of seed pieces with specific strains of Pseudomonas fluorescens and Pseudomonas putida. Phytopathology 68:1377–1383

    Article  Google Scholar 

  • Cabanás CGL, Schilirò E, Valverde-Corredor A et al (2014) The biocontrol endophytic bacterium Pseudomonas fluorescens PICF7 induces systemic defence responses in aerial tissues upon colonization of olive roots. Front Microbiol. doi:10.3389/fmicb.2014.00427

    Google Scholar 

  • Chakravarty G, Kalita MC (2011) Management of bacterial wilt of brinjal by P. fluorescens based bioformulation. J Agric Biol Sci 6(3):1–11

    Google Scholar 

  • Chakravarty G, Kalita MC (2012) Biocontrol potential of Pseudomonas fluorescens against bacterial wilt of brinjal and its possible plant growth promoting effects. Ann Biol Res 3(11):5083–5094

    Google Scholar 

  • Champoiseau PG, Jones JB, Allen C (2009) Ralstonia solanacearum Race 3 Biovar 2 causes tropical losses and temperate anxieties. Plant Health Progress. doi: 10.1094/PHP-2009-0313-01-RV

    Google Scholar 

  • Chang IS, Kim BH, Shin PK (1997) Use of sulphite and hydrogen peroxide to control bacterial contamination in ethanol production. Appl Environ Microbiol 63:1–6

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X, Scholz R, Borriss M et al (2009) Difficidin and bacilysin produced by plant-associated Bacillus amyloliquefaciens dare efficient in controlling fire blight disease. J Biotechnol 140:38–44

    Article  CAS  PubMed  Google Scholar 

  • Chet I, Harman GE, Baker R (1981) Trichoderma hamatum: it’s hyphal interactions with Rhizoctoniasolani & Pythium sp. Microb Ecol 7:29–38

    Article  CAS  PubMed  Google Scholar 

  • Chin-A-Woeng TF, Bloemberg GV, Lugtenberg BJ (2003) Phenazines and their role in biocontrol by Pseudomonas bacteria. New Phytol 157:503–523

    Article  CAS  Google Scholar 

  • Christ BJ (1990) Influence of potato cultivars on the effectiveness of fungicide control of early blight. Am Potato J 67:3–11

    Article  Google Scholar 

  • Chycoski CI, Punja ZK (1996) Characteristics of populations of Phytophthora infestans from potato in British Columbia and other regions of Canada during 1993 to 1995. Plant Dis 80:579–589

    Article  Google Scholar 

  • Cooke LR, Schepers HTAM, Hermanse A et al (2011) Epidemiology and integrated control of potato late blight in Europe. Potato Res 54:183–222. doi:10.1007/s11540-011-9187-0

    Article  Google Scholar 

  • Cui X, Harling R (2006) Evaluation of bacterial antagonists for biological control of broccoli head rot caused by Pseudomonas fluorescens. Phytopathology 96:408–416

    Article  CAS  PubMed  Google Scholar 

  • D’aes J, De Maeyer K, Pauwelyn E et al (2010) Biosurfactants in plant–Pseudomonas interactions and their importance to biocontrol. Environ Microbiol Rep 2:359–372

    Article  PubMed  CAS  Google Scholar 

  • Da Rocha AB, Hammerschmidt R (2005) History and perspectives on the use of disease resistance inducers in horticultural crops. Hortic Technol 15:518–529

    Google Scholar 

  • De Souza JT, Arnould C, Deulvot C et al (2003) Effect of 2,4-diacetylphloroglucinol on Pythium: cellular responses and variation in sensitivity among propagules and species. Phytopathology 93:966–975

    Article  PubMed  Google Scholar 

  • De Vleesschauwer D, Höfte M (2009) Rhizobacteria-induced systemic resistance. Adv Bot Res 51:223–281

    Article  CAS  Google Scholar 

  • DESA, Department of Economic and Social Affairs (2000) World population prospects: the 2000 revision. United nation population division, department of economic and social affairs in Badaurakis. Int J Agribus 18(4):543–558

    Google Scholar 

  • Dias A, Santos SG, Vasconcelos VGS et al (2013) Screening of plant growth promoting rhizobacteria for the development of vegetable crops inoculants. Afr J Microbiol Res 7(19):2087–2092

    Article  CAS  Google Scholar 

  • Dihazi A, Jaiti FW, Wafataktak et al (2012) Use of two bacteria for biological control of bayoud disease caused by Fusarium oxysporum in date palm (Phoenix dactylifera L) seedlings. Plant Physiol Biochem 55:7–15

    Article  CAS  PubMed  Google Scholar 

  • Dilantha WG, Nakkeeran S, Zhang Y (2005) Biosynthesis of antibiotics by PGPR and its relation in biocontrol of plant diseases. Biocont Biofertil:67–109

    Google Scholar 

  • Dupler M, Baker R (1984) Survival of Pseudomonas putida, a biological control agent in soil. Phytopathology 74:195–200

    Article  Google Scholar 

  • Dwivedi D, Johri BN (2003) Antifungals from fluorescent pseudomonads: biosynthesis and regulation. Curr Sci 12:1693–1703

    Google Scholar 

  • Elansky SN, Smirnov AN, Dyakov Y et al (2001) Genotypic analysis of Russian isolates of Phytophthora infestans from the Moscow region, Siberia, and Far East. J Phytopathol 149:605–611

    Article  Google Scholar 

  • El-Gamal NG, Shehata AN, Hamed ER et al (2016) Improvement of lytic enzymes producing Pseudomonas fluorescens and Bacillus subtilis isolates for enhancing their biocontrol potential against root rot disease in tomato plants. Res J Pharm Biol Chem Sci 7(1):1394–1400

    Google Scholar 

  • Elsharkawy MM, Shimizu M, Takahashi H et al (2012) Induction of systemic resistance against Cucumber mosaic virus by Penicillium simplicissimum GP17-2 in Arabidopsis and tobacco. Plant Pathol. doi:10.1111/j.1365-3059.2011.02573.x

    Google Scholar 

  • Figueroa-Lopez AM, Cordero-Ramirez JD, Martinez-Alvarez JC et al (2016) Rhizospheric bacteria of maize with potential for biocontrol of Fusarium verticillioides. SpringerPlus 5:330

    Article  PubMed  PubMed Central  Google Scholar 

  • Flier WG, Turkensteen LJ, Van Den Bosch GBM et al (2001) Differential interaction of Phytophthora infestans on tubers of potato cultivars with different levels of blight resistance. Plant Pathol 50(3):292–301

    Article  Google Scholar 

  • Fouzia A, Allaoua S, Hafsa CS et al (2015) Plant growth promoting and antagonistic traits of indigenous fluorescent pseudomonas spp. isolated from wheat rhizosphere and A. halimus endosphere. Eur Sci J 11(24):130–148

    Google Scholar 

  • Fravel D, Olivain C, Alabouvette C (2003) Fusarium oxysporum and its biocontrol. New Phytol 157:493–502

    Article  Google Scholar 

  • Fry WE, Goodwin SB (1997) Re emergence of potato and tomato late blight in the United States. Plant Dis 81:1349–1357

    Article  Google Scholar 

  • Gafar MO, Elhag AZ, Abdelgader MA (2013) Impact of pesticides malathion and sevin on growth of snake cucumber (Cucumis melo L. var. Flexuosus) and soil. Univ J Agric Res 1(3):81–84

    CAS  Google Scholar 

  • Georgakopoulos DG, Fiddaman P, Leifert C et al (2002) Biological control of cucumber and sugar beet damping-off caused by Pythium ultimum with bacterial and fungal antagonists. J Appl Microbiol 92:1078–1086

    Article  CAS  PubMed  Google Scholar 

  • George E, Kumar SN, Jacob J et al (2015) Characterization of the bioactive metabolites from a plant growth-promoting rhizobacteria and their exploitation as antimicrobial and plant growth-promoting agents. Appl Biochem Biotechnol 176(2):529–546

    Article  CAS  PubMed  Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117

    Article  CAS  Google Scholar 

  • Glick BR, Cheng Z, Czarny J et al (2007) Promotion of plant growth by ACC deaminase-producing soil bacteria. Eur J Plant Pathol 119:329–339

    Article  CAS  Google Scholar 

  • Gravel V, Ménard C, Dorais M (2009) Pythium root rot and growth responses of organically grown geranium plants to beneficial microorganism. Hortic Sci 44:1622–1627

    Google Scholar 

  • Gupta G, Parihar SS, Ahirwar NK et al (2015) Plant growth promoting rhizobacteria (PGPR): current and future prospects for development of sustainable agriculture. J Microb Biochem Technol 7:2

    Google Scholar 

  • Guyer A, DeVrieze M, Bönisch D et al (2015) The Anti Phytophthora effect of selected potato associated Pseudomonas strains: from the laboratory to the field. Front Microbiol 6:1309

    Article  PubMed  PubMed Central  Google Scholar 

  • Haas D, Défago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307–319

    Article  CAS  PubMed  Google Scholar 

  • Haas D, Keel C (2003) Regulation of antibiotic production in root colonizing Pseudomonas sp. and relevance for biological control of plant disease. Annu Rev Phytopathol 41:117–153

    Article  CAS  PubMed  Google Scholar 

  • Hamer C, Thompson T (1957) Vegetable crops. McGraw Hill Co., Inc., N. X. Toronto, London

    Google Scholar 

  • Hausbeck MK, Lamour KH (2004) Phytophthora capsici on vegetable crops: research progress and management challenges. Plant Dis 88:1292–1303

    Article  Google Scholar 

  • Haverkort AJ, Struik PC, Visser RGF et al (2009) Applied biotechnology to control late blight in potato caused by Phytophthora infestans. Potato Res 52:249–264

    Article  Google Scholar 

  • Hayward AC (1991) Biology and epidemiology of bacterial wilt caused by Pseudomonas solanacearum. Annu Rev Phytopathol 29:65–87

    Article  CAS  PubMed  Google Scholar 

  • Howard RJ, Garland JA, Seaman WL (1994) Diseases and pests of vegetable crops in Canada: an illustrated compendium. Canadian Phytopathological Society and Entomological Society of Canada, Ottawa, ON

    Google Scholar 

  • Hunziker L, Bonisch D, Groenhagen U et al (2015) Pseudomonas strains naturally associated with potato plants produce volatiles with high potential for inhibition of Phytophthora infestans. Appl Environ Microbiol 81:821–830

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ikeda K, Banno S, Furusawa A et al (2015) Crop rotation with broccoli suppresses Verticillium wilt of eggplant. J Gen Plant Pathol 81(1):77–82

    Article  CAS  Google Scholar 

  • Illakiam D, Anuj NL, Ponraj P et al (2013) Proteolytic enzyme mediated antagonistic potential of Pseudomonas aeruginosa against Macrophomina phaseolina. Indian J Exp Biol 51:1024–1031

    Google Scholar 

  • Jacobsen BJ, Backman PA (1993) Biological and cultural plant disease controls: alternatives and supplements of chemicals in IPM systems. Plant Dis 77:311–315

    Google Scholar 

  • Jacobsen BJ, Zidack NK, Larson BJ (2004) The role of Bacillus-based biological control agents in integrated pest management systems: plant diseases. In: Symposium—the nature and application of biocontrol microbes: Bacillus sp. Phytopathology 94:1272–1275

    Google Scholar 

  • Jones DR (2000) History of banana breeding. In: Jones D (ed) Diseases of banana, abaca and enset. CAB International, Wallingford, UK, pp 425–449

    Google Scholar 

  • Jourdan E, Henry G, Duby F et al (2009) Insights into the defence related events occurring in plant cells following perception of surfactin-type lipopeptide from Bacillus subtilis. Mol Plant-Microbe Interact 22:456–468

    Article  CAS  PubMed  Google Scholar 

  • Keel C, Schnider U, Maurhofer M et al (1992) Suppression of root diseases by Pseudomonas fluorescens CHA0: importance of the bacterial secondary metabolite 2,4-diacetylphloroglucinol. Mol Plant-Microbe Interact 5:4–13

    Article  CAS  Google Scholar 

  • Keel C, Wirthner P, Oberhänsli T et al (1990) Pseudomonads as antagonists of plant pathogens in the rhizosphere: role of the antibiotic 2,4-diacetylphloroglucinol in the suppression of black root-rot of tobacco. Symbiosis 9:327–341

    CAS  Google Scholar 

  • Kelman A (1998) One hundred and one years of research on bacterial wilt. In: Prior P, Allen C, Elphinstone J (eds) Bacterial wilt: molecular and ecological aspects. INRA Editions, Paris, France, pp 1–5

    Chapter  Google Scholar 

  • Khabbaz SE, Abbasi PA (2014) Isolation, characterization, and formulation of antagonistic bacteria for the management of seedlings damping-off and root rot disease of cucumber. Can J Microbiol 60:25–33

    Article  CAS  PubMed  Google Scholar 

  • Khan MR, Khan SM (2002) Effects of root-dip treatment with certain phosphate solubilizing microorganisms on the fusariam wilt of tomato. Bioresour Technol 85:213–215

    Article  CAS  PubMed  Google Scholar 

  • Kikumoto T (2000) Ecology and biocontrol of soft rot of Chinese cabbage. J Gen Plant Pathol 66:275–277

    Article  Google Scholar 

  • Kim SG, Jang Y, Kim HY et al (2010) Comparison of microbial fungicides in antagonistic activities related to the biological control of phytophthora blight in chilli pepper caused by Phytophthora capsici. Plant Pathol J 26:340–345

    Article  Google Scholar 

  • Klaenhammer TR (1982) Bacteriocins of lactic acid bacteria. Biochimie 70:337–349

    Article  Google Scholar 

  • Kloepper JW, Schroth MN (1978) Plant growth-promoting rhizobacteria on radishes. In: Proceedings of the 4th international conference on plant pathogenic bacteria, vol II. Gilbert-Clay, Tours, France, pp 879–882

    Google Scholar 

  • Kloepper JW, Ryu CM, Zhang S (2004) Induced systemic resistance and promotion of plant growth by Bacillus sp. Phytopathology 94:1259–1266

    Article  CAS  PubMed  Google Scholar 

  • Koike N, Hyakumachi M, Kageyama K et al (2001) Induction of systemic resistance in cucumber against several diseases by plant growth-promoting fungi: lignifications and superoxide generation. Eur J Plant Pathol 108:187–196

    Google Scholar 

  • Kremer RJ, Souissi T (2001) Cyanide production by rhizobacteria and potential for suppression of weed seedling growth. Curr Microbiol 43(3):182–186

    Article  CAS  PubMed  Google Scholar 

  • Kumar RN, Mukerji KG (1996) Integrated disease management future perspectives. In: Mukerji KG, Mathur B, Chamala BP, Chitralekha C (eds) Advances in botany. APH Publishing Corporation, New Delhi, India, pp 335–347

    Google Scholar 

  • Kumar H, Bajpai VK, Dubey RC (2010) Wilt disease management and enhancement of growth and yield of Cajanus cajan (L) var. Manak by bacterial combinations amended with chemical fertilizer. Crop Protect 29:591–598

    Article  Google Scholar 

  • Kumari S, Khanna V (2014) Effect of antagonistic rhizobacteria inoculated with Mesorhizobium ciceri on control of fusarium wilt in chickpea (Cicer arietinum L.) Afr J Microbiol Res 8(12):1255–1265

    Article  Google Scholar 

  • Kyeremeh GAT, Kikumoto D, Chuang Y et al (2000) Biological control of soft rot of Chinese cabbage using single and mixed treatments of bacteriocin producing avirulent mutants of Erwinia carotovora subsp. carotovora. J Gen Plant Pathol 66:264–268

    Article  Google Scholar 

  • Laitila AH, Alakomi L, Raaska L et al (2002) Antifungal activities of two Lactobacillus plantarum strains against Fusarium moulds in vitro and inmalting of barley. J Appl Microbiol 93:556–576

    Article  Google Scholar 

  • Lakshmi V, Kumari S, Singh A et al (2015) Isolation and characterization of deleterious Pseudomonas aeruginosa KCl from rhizospheric soils and its interaction with weed seedlings. J King Saud Univ Sci 27:113–119

    Article  Google Scholar 

  • Leisso RS, Miller PR, Burrows ME (2009) The influence of biological and fungicidal seed treatments on chickpea (Cicer arietinum) damping off. Can J Plant Pathol 31:38–46

    Article  CAS  Google Scholar 

  • Li H, Ding X, Wang C et al (2016) Control of tomato yellow leaf curl virus disease by Enterobacter asburiae BQ9 as a result of priming plant resistance in tomatoes. Turk J Biol 40:150–159

    Article  CAS  Google Scholar 

  • Liu K, Garrett C, Fadamiro H et al (2016) Antagonism of black rot in cabbage by mixtures of plant growth-promoting rhizobacteria (PGPR). BioControl 61:1–9

    Article  CAS  Google Scholar 

  • Loganathan M, Garg R, Venkataravanappa V et al (2014) Plant growth promoting rhizobacteria (PGPR) induces resistance against Fusarium wilt and improves lycopene content and texture in tomato. Afr J Microbiol Res 8(11):1105–1111

    Article  CAS  Google Scholar 

  • Loper JE, Buyer JW (1991) Siderophores in microbial interactions on plant surfaces. Mol Plant Microbe Int 4:5–13

    Article  CAS  Google Scholar 

  • Loper JE, Haack C, Schroth MN (1985) Population dynamics of soil pseudomonads in the rhizosphere of potato (Solanum tuberosum L.) Appl Environ Microbiol 49:416–422

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lucy M, Reed E, Glick BR (2004) Applications of free living plant growth-promoting rhizobacteria. Antonie Van Leeuwenhoek 86:1–25

    Article  CAS  PubMed  Google Scholar 

  • Luján AM, Gómez P, Buckling A (2015) Siderophore cooperation of the bacterium Pseudomonas fluorescens in soil. Biol Lett 11:20140934

    Article  PubMed  PubMed Central  Google Scholar 

  • Lukkani NJ, Reddy ECS (2014) Evaluation of plant growth promoting attributes and biocontrol potential of native fluorescent pseudomonas spp. against Aspergillus niger causing collar rot of ground nut. Int J Plant Animal Environ Sci 4(4):256–262

    CAS  Google Scholar 

  • Luna CL, Mariano RLR, Souto-Maior AM (2002) Production of a biocontrol agent for Crucifers black rot disease. Braz J Chem Eng 19(2):133–140

    Article  CAS  Google Scholar 

  • Lwin M, Ranamukhaarachchi SL (2006) Development of biological control of Ralstonia solanacearum through antagonistic microbial populations. Int J Agric Biol 8(5):657–660

    Google Scholar 

  • Ma Y, Chang Z, Zhao J et al (2008) Antifungal activity of Penicillium striatisporum Pst10 and its biocontrol effect on Phytophthora root rot of chilli pepper. Biol Control 44:24–31

    Article  CAS  Google Scholar 

  • Maksimov IV, Abizgil’dina RR, Pusenkova LI (2011) Plant growth promoting rhizobacteria as alternative to chemical crop protectors from pathogens (Review). Appl Biochem Microbiol 47:333–345

    Article  CAS  Google Scholar 

  • Mane MM, Lal A, Zghair QN et al (2014) Efficacy of certain bio agents and fungicides against early blight of potato (Solanum tuberosum L.) Int J Plant Protect 7(2):433–436

    Article  Google Scholar 

  • Maurhofer M, Keel C, Haas D et al (1994) Pyoluteorin production by Pseudomonas fluorescens strain CHA0 is involved in the suppression of Pythium damping-off of cress but not of cucumber. Eur J Plant Pathol 100:221–232

    Article  CAS  Google Scholar 

  • Maurhofer M, Keel C, Schnider U et al (1992) Influence of enhanced antibiotic production in Pseudomonas fluorescens strain CHA0 on its disease suppressive capacity. Phytopathology 82:190–195

    Article  CAS  Google Scholar 

  • Mercado-Flores Y, Cárdenas-Álvarez IO, Rojas-Olvera AV et al (2014) Application of Bacillus subtilis in the biological control of the phytopathogenic fungus Sporisorium reilianum. Biol Control 76:36–40

    Article  Google Scholar 

  • Meyer SLF, Everts KL, McSpadden Gardener B et al (2016) Assessment of DAPG-producing Pseudomonas fluorescens for management of Meloidogyne incognita and Fusarium oxysporum on watermelon. J Nematol 48(1):43–53

    PubMed  PubMed Central  Google Scholar 

  • Mishra A, Mishra SK, Karmakar SK et al (1995) Assessment of yield loss due to wilting and some popular tomato cultivars. Environ Ecol 28:287–290

    Google Scholar 

  • Moorman GW, Kang S, Geiser DM et al (2002) Identification and characterization of Pythium species associated with greenhouse floral crops in Pennsylvania. Plant Dis 86:1227–1231. doi:10.1094/PDIS.2002.86.11.1227

    Article  Google Scholar 

  • Nagarajkumar M, Bhaskaran R, Velazhahan R (2004) Involvement of secondary metabolites and extracellular lytic enzymes produced by Pseudomonas fluorescens in inhibition of Rhizoctonia solani, the rice sheath blight pathogen. Microbiol Res 159:73–81

    Article  CAS  PubMed  Google Scholar 

  • Ng LC, Ngadin A, Azhari M et al (2015) Potential of Trichoderma spp. as biological control agents against bakanae pathogen (Fusarium fujikuroi) in Rice. Asian J Plant Pathol 9(2):46–58

    Article  Google Scholar 

  • Nguyen MT, Ranamukhaarachchi SL (2010) Soil-borne antagonists for biological control of bacterial wilt disease caused by Ralstonia solanacearum in tomato and pepper. J Plant Pathol 92:395–406

    CAS  Google Scholar 

  • Nnodu EC, Harrison MD, Parke RV (1982) The effect of temperature and relative humidity on wound healing and infection of potato tubers by Alternaria solani. Am Pot J 59:297–311

    Article  Google Scholar 

  • Norman DJ, Chen J, Yuen JMF et al (2006) Control of bacterial wilt of Geranium with phosphorous acid. Plant Dis 90:798–802

    Article  CAS  Google Scholar 

  • O’Sullivan DJ, O’Gara F (1992) Traits of fluorescent Pseudomonas sp. involved in suppression of plant root pathogens. Microbiol Rev 56:662–672

    PubMed  PubMed Central  Google Scholar 

  • Olanya GM, Moneycutt CW, Larkin RP et al (2009) The effect of cropping systems and irrigation management on development of potato early blight. J Gen Plant Pathol 75:267–275

    Article  Google Scholar 

  • Özyilmaz U, Benlioglu K (2013) Enhanced biological control of Phytophthora blight of pepper by biosurfactant-producing Pseudomonas. Plant Pathol J 29(4):418–426

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Paulitz TC (2006) Low input no-till cereal production in the Pacific Northwest of the U.S.: the challenges of root diseases. Eur J Plant Pathol 115:271–281. doi:10.1007/s10658-006-9023-6

    Article  Google Scholar 

  • Paulitz TC, Bélanger RR (2001) Biological control in greenhouse systems. Annu Rev Phytopathol 39:103–133. doi:10.1146/annurev.phyto.39.1.103. PMID: 11701861

    Article  CAS  PubMed  Google Scholar 

  • Paulitz TC, Anas O, Fernando DG (1992) Biological control of Pythium damping-off by seed-treatment with Pseudomonas putida: relationship with ethanol production by pea and soybean seeds. Biocontrol Sci Tech 2:193–201. doi:10.1080/09583159209355233

    Article  Google Scholar 

  • Peek ME, Bhatnagar A, McCarty NA et al (2012) Pyoverdine, the major siderophore in Pseudomonas aeruginosa, evades NGAL recognition. Interdiscip Perspect Infect Dis. doi:10.1155/2012/843509Article ID: 843509

    PubMed  PubMed Central  Google Scholar 

  • Pérombelon MCM, Kelman A (1980) Ecology of the soft rot Erwinias. Annu Rev Phytopathol 18:361–387

    Article  Google Scholar 

  • Pieterse CMJ, Zamioudis C, Berendsen RL et al (2014) Induced systemic resistance by beneficial microbes. Annu Rev Phytopathol 52:347–375. doi:10.1146/annurev-phyto-082712-102340. PMID: 24906124

    Article  CAS  PubMed  Google Scholar 

  • Powell JF, Vargas JM Jr, Nair MG et al (2000) Management of dollar spot on creeping bentgrass with metabolites of Pseudomonas aureofaciens (TX-1). Plant Dis 84:19–28. doi:10.1094/PDIS.2000.84.1.19

    Article  CAS  Google Scholar 

  • Pozo MJ, Verhage A, García-Andrade J et al (2009) Priming plant defences against pathogens by arbuscular mycorrhizal fungi. In: Aguilar CA, Barea JM, Gianinazzi S, Gianinazzi-Pearson V (eds) Mycorrhizas: functional processes and ecological impact. Springer-Verlag, Heidelberg, pp 137–149

    Google Scholar 

  • Press CM, Wilson M, Tuzun S et al (1997) Salicylic acid produced by Serratia marcescens 90−166 is not the primary determinant of induced systemic resistance in cucumber or tobacco. Mol Plant-Microbe Interact 10:761–768

    Article  CAS  Google Scholar 

  • Raaijmakers JM, Vlami M, De Souza JT (2002) Antibiotic production by bacterial biocontrol agents. Antonie Van Leeuwenhoek 81:537–547

    Article  CAS  PubMed  Google Scholar 

  • Raziq F, Ishtiaq S (2010) Integrated control of Alternaria solani with Trichoderma sp. and fungicides under in vitro conditions. Sarhad J Agric 26(4):613–619

    Google Scholar 

  • Reetha AK, Pavani SL, Mohan S (2014) Hydrogen cyanide production ability by bacterial antagonist and their antibiotics inhibition potential on Macrophomina phaseolina (Tassi.) Goid. Int J Curr Microbiol Appl Sci 3(5):172–1783

    Google Scholar 

  • Reglinski T, Walters D (2009) Induced resistance for plant disease control. In: Walters D (ed) Disease control in crops. Wiley-Blackwell, Oxford, UK, pp 62–92

    Chapter  Google Scholar 

  • Robles-Yerena L, Rodríguez-Villarreal RA, Ortega-Amaro MA et al (2010) Characterization of a new fungal antagonist of Phytophthora capsici. Sci Hortic Amsterdam 125:248–255

    Article  CAS  Google Scholar 

  • Rotem J (2004) The genus Alternaria: biology, epidemiology and pathogenicity. American Phytopathological Society Press, Saint Paul, MN

    Google Scholar 

  • Ruiz JA, Bernar EM, Jung K (2015) Production of siderophores increases resistance to fusaric acid in Pseudomonas protegens Pf-5. PLoS One 10(1):0117040. doi:10.1371/journal.pone.0117040

    Article  CAS  Google Scholar 

  • Schroth MN, Loper JE, Hildebrand DC (1984) Bacteria as biocontrol agents of plant disease. In: Klug MJ, Reddy CA (eds) Current perspectives in microbial ecology. American Society for Microbiology, Washington, DC, pp 362–369

    Google Scholar 

  • Schuhegger R, Ihring A, Gantner S et al (2006) Induction of systemic resistance in tomato by N-acyl-L-homoserine lactone producing rhizosphere bacteria. Plant Cell Environ 29:909–918

    Article  CAS  PubMed  Google Scholar 

  • Segarra G, Van der Ent S, Trillas I et al (2009) MYB72, a node of convergence in induced systemic resistance triggered by a fungal and a bacterial beneficial microbe. Plant Biol 11:90–96

    Article  CAS  PubMed  Google Scholar 

  • Sen K, Sengupta C, Saha J (2014) PGPR consortium in alleviating downy mildew of cucumber. Int J Plant Animal Environ Sci 4(4):150–159

    CAS  Google Scholar 

  • Shailbala, Pathak C (2008) Harnessing the potential of potato to meet increasing food demand. Kurukshetra 56(3):45–48

    Google Scholar 

  • Shanthiyaa V, Saravanakumar D, Rajendran L et al (2013) Use of Chaetomium globosum for biocontrol of potato late blight disease. Crop Protect 52:33–38

    Article  Google Scholar 

  • Shoresh M, Harman GE, Mastouri F (2010) Induced systemic resistance and plant responses to fungal biocontrol agents. Annu Rev Phytopathol 48:21–43

    Article  CAS  PubMed  Google Scholar 

  • Shrestha A, Kim EC, Lim CK, Cho S, Hur JH, Park DH (2009) Biological control of soft rot on chinese cabbage using beneficial bacterial agents in greenhouse and field. Korean J Pestic Sci 13(4):325–331

    Google Scholar 

  • Shrestha A, Kim BS, Park DH (2014) Biological control of bacterial spot disease and plant growth-promoting effects of lactic acid bacteria on pepper. Biocontrol Sci Tech 24(7):763–779

    Article  Google Scholar 

  • Shrivastava P, Kumar R, Yandigeri MS (2016) In vitro biocontrol activity of halotolerant Streptomyces aureofaciens K20: a potent antagonist against Macrophomina phaseolina (Tassi) Goid. Saudi J Biol Sci. doi:10.1016/j.sjbs.2015.12.004

    Google Scholar 

  • Silvar C, Merino F, Díaz J (2006) Diversity of Phytophthora capsici in northwest Spain: analysis of virulence, metalaxyl response, and molecular characterization. Plant Dis 90:1135–1142

    Article  CAS  Google Scholar 

  • Singh D, Yadav DK, Chaudhary G et al (2016) Potential of Bacillus amyloliquefaciens for biocontrol of bacterial wilt of tomato incited by Ralstonia solanacearum. J Plant Pathol Microbiol 7:327

    Article  Google Scholar 

  • Singh D, Yadav DK, Shweta S et al (2013) Genetic diversity of iturin producing strains of Bacillus species antagonistic to Ralstonia solanacerarum causing bacterial wilt disease in tomato. Afr J Microbiol Res 7:5459–5470

    Article  CAS  Google Scholar 

  • Singh D, Yadav DK, Sinha S et al (2012) Utilization of plant growth promoting Bacillus subtilis isolates for the management of bacterial wilt incidence in tomato caused by Ralstonia solanacearum race 1 biovar 3. Indian Phytopathol 65:18–24

    Google Scholar 

  • Sivasakthi S, Usharani G, Saranraj P (2014) Biocontrol potentiality of plant growth promoting bacteria (PGPR)—Pseudomonas fluorescens and Bacillus subtilis: a review. Afr J Agric Res 9(16):1265–1277

    Google Scholar 

  • Song J, Bradeen JM, Naess SK et al (2003) Gene AB cloned from Solanum tuberosum L. confers broad spectrum resistance to potato late blight. Proc Natl Acad Sci U S A 100:9128–9133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sopheareth M, Chan S, Naing KW et al (2013) Biocontrol of late blight (Phytophthora capsici) disease and growth promotion of pepper by Burkholderia cepacia MPC-7. Plant Pathol J 29(1):67–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srinon W, Chuncheen K, Jirattiwarutkul K et al (2006) Efficacies of antagonistic fungi against Fusarium wilt disease of cucumber and tomato and the assay of its enzyme activity. J Agric Technol 2(2):191–201

    Google Scholar 

  • Srivastava MP, Sharma S (2014) Potential of PGPR bacteria in plant disease management. In: Sharma N (ed) Biological controls for preventing food deterioration: strategies for pre- and post-harvest management. John Wiley & Sons Ltd, Chichester, UK. doi:10.1002/9781118533024.ch5

    Google Scholar 

  • Subba Rao NS (1993) Biofertilizers in agriculture and forestry. Oxford and IBH Publishing Co. Pvt. Ltd, New Delhi, p 242

    Google Scholar 

  • Sultana S, Hossian MM, Kubota M et al (2009) Induction of systemic resistance in Arabidopsis thaliana in response to a culture filtrate from a plant growth-promoting fungus, Phoma sp. GS8-3. Plant Biol 11:97–104

    Article  CAS  PubMed  Google Scholar 

  • Sureshbabu K, Amaresan N, Kumar K (2016) Amazing multiple function properties of plant growth promoting rhizobacteria in the rhizosphere Soil. Int J Curr Microbiol Appl Sci 5(2):661–683

    Article  Google Scholar 

  • Swanson JK, Yao J, Tans-Kersten J et al (2005) Behavior of Ralstonia solanacearum race 3 biovar 2 during latent and active infection of geranium. Phytopathology 95:136–143

    Article  PubMed  Google Scholar 

  • Tahat MM, Kamaruzaman S (2010) Ralstonia solanacearum: the bacterial wilt causal agent. Asian J Plant Sci 9:385–393

    Article  Google Scholar 

  • Takahara Y (1994) Development of the microbial pesticide for the soft rot disease. PSJ Biocont Rept 4:1–7

    Google Scholar 

  • Takahara Y, Iwabuchi T, Shiota T et al (1993) Suppression of soft-rot lesion development by avirulent strains of Erwinia carotovora subsp. carotovora. Ann Phytopathol Soc Jpn 59:581–586

    Article  CAS  Google Scholar 

  • Tan S, Jiyang Y, Song S et al (2013) Two Bacillus amyloliquefaciens strains isolated using the competitive tomato root enrichment method and their effects on suppressing Ralstonia solanacearum and promoting tomato plant growth. Crop Protect 43:134–140

    Article  Google Scholar 

  • Tiru M, Muleta D, Berecha G et al (2013) Antagonistic effects of rhizobacteria against coffee wilt disease caused by Gibberella xylarioides. Asian J Plant Pathol 7:109–122

    Article  Google Scholar 

  • Togashi J, Uehara D, Namai T (2000) Biological control of the soft rot of Chinese cabbages by fluorescent antagonistic bacterium. Bull Yamagata Univ Agric Sci 13(3):225–232

    Google Scholar 

  • Toua D, Benchabane M, Bensaid F et al (2013) Evaluation of Pseudomonas fluorescens for the biocontrol of fusarium wilt in tomato and flax. Afr J Microbiol Res 7(48):5449–5458

    Article  Google Scholar 

  • Ulloa-Ogaz AL, Muñoz-Castellanos LN, Nevárez-Moorillón GV (2015) Biocontrol of phytopathogens: antibiotic production as mechanism of control. In: Mendez-Vilas A (ed) The battle against microbial pathogens: basic science, technological advances and educational programs, Formatex Research Center, Spain, pp 305–309

    Google Scholar 

  • Van der Walls JE, Korsen L, Aveling TAS (2001) A review of early blight of potato. Afr Plant Protect 70:91–102

    Google Scholar 

  • Van Loon LC (2007) Plant responses to plant growth-promoting rhizobacteria. Eur J Plant Pathol 119:243–254. doi:10.1007/s10658-007-9165-1

    Article  CAS  Google Scholar 

  • Van Loon LC, Bakker PAHM, Pieterse CMJ (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36:453–483

    Article  PubMed  Google Scholar 

  • Vanitha S, Ramjegathesh R (2014) Bio control potential of Pseudomonas fluorescens against Coleus root rot disease. J Plant Pathol Microb 5:1

    Google Scholar 

  • Vanjildorj E, Song SY, Yang ZH et al (2009) Enhancement of tolerance to soft rot disease in the transgenic Chinese cabbage (Brassica rapa L. ssp. pekinensis) inbred line, Kenshin. Plant Cell Rep 28:1581–1591

    Article  CAS  PubMed  Google Scholar 

  • Vassilev N, Vassileva M, Nikolaeva I (2006) Simultaneous P-solubilizing and biocontrol activity of microorganisms: potentials and future trends. Appl Microbiol Biotechnol 71:137–144

    Article  CAS  PubMed  Google Scholar 

  • Velivelli SLS, DeVos P, Kromann P et al (2014) Biological control agents: from field to market, problems and challenges. Trends Biotechnol 32:493–496. doi:10.1016/j.tibtech.2014.07.002

    Article  CAS  PubMed  Google Scholar 

  • Visser R, Holzapfel WH, Bezuidenhout JJ et al (1986) Antagonism of lactic acid bacteria against phytopathogenic bacteria. Appl Environ 52:552–555

    CAS  Google Scholar 

  • Vloutoglou I, Kalogerakis SN (2000) Effects of inoculum concentration, wetness duration and plant age on development of early blight (Alternaria solani) and on shedding of leaves in tomato plants. Plant Pathol 49:339–345

    Article  Google Scholar 

  • Wang JF, Hanson P, Barnes JA (1998) Worldwide evaluation of an international set of resistance sources of bacterial wilt in tomato. In: Prior P, Allen C, Elphinstone J (eds) Bacterial wilt disease: molecular and ecological aspects. Springer Verlag, Berlin, Germany, pp 269–275

    Chapter  Google Scholar 

  • Wang X, Mavrodi DV, Ke L et al (2015) Biocontrol and plant growth-promoting activity of rhizobacteria from Chinese fields with contaminated soils. Microb Biotechnol 8(3):404–418

    Article  CAS  PubMed  Google Scholar 

  • Witek K, Jupe F, Witek AI et al (2016) Accelerated cloning of a potato late blight–resistance gene using RenSeq and SMRT sequencing. Nat Biotechnol. doi:10.1038/nbt.3540

    Google Scholar 

  • Zaidi A, Ahmad E, Khan MS et al (2015) Role of plant growth promoting rhizobacteria in sustainable production of vegetables: current perspective. Sci Hortic 193:231–239

    Article  Google Scholar 

  • Zhao LF, Xu YJ, Ma ZQ et al (2013) Colonization and plant growth promoting characterization of endophytic Pseudomonas chlororaphis strain Zong1 isolated from Sophora alopecuroides root nodules. Braz J Microbiol 44(2):623–631

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asfa Rizvi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Rizvi, A., Zaidi, A., Khan, M.S., Saif, S., Ahmed, B., Shahid, M. (2017). Growth Improvement and Management of Vegetable Diseases by Plant Growth-Promoting Rhizobacteria. In: Zaidi, A., Khan, M. (eds) Microbial Strategies for Vegetable Production. Springer, Cham. https://doi.org/10.1007/978-3-319-54401-4_5

Download citation

Publish with us

Policies and ethics