Skip to main content

On the Terminal Full Order Sliding Mode Control of Uncertain Chaotic Systems

  • Chapter
  • First Online:
Fractional Order Control and Synchronization of Chaotic Systems

Part of the book series: Studies in Computational Intelligence ((SCI,volume 688))

Abstract

Over the years, several forms of sliding mode control (SMC), such as conventional SMC, terminal SMC (TSMC) and fuzzy SMC (FSMC) have been developed to cater to the control needs of complex, non-linear and uncertain systems. However, the chattering phenomenon in conventional SMC and the singularity errors in TSMC make the application of these schemes relatively impractical. In this chapter, terminal full order SMC (TFOSMC), the recent development in this line, has been explored for efficient control of the uncertain chaotic systems. Two important chaotic systems, Genesio and Arneodo-Coullet have been considered in fractional order as well as integer order dynamics. The investigated fractional and integer order chaotic systems are controlled using fractional order TFOSMC and integer order TFOSMC, respectively and the control performance has been assessed for settling time, amount of chattering, integral absolute error (IAE) and integral time absolute error (ITAE). To gauge the relative performance of TFOSMC, a comparative study with FSMC, tuned by Cuckoo Search Algorithm for the minimum IAE and amount of chattering has also been performed using settling time, amount of chattering, IAE and ITAE performances. The intensive simulation studies presented in this chapter clearly demonstrate that the settling time, amount of chattering and steady-state tracking errors offered by TFOSMC are significantly lower than that of FSMC; therefore, making TFOSMC a superior scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ablay, G. (2009). Sliding mode control of uncertain unified chaotic systems. Nonlinear Analysis: Hybrid Systems, 3(4), 531–535.

    MathSciNet  MATH  Google Scholar 

  2. Aghababa, M. P. (2012). Finite-time chaos control and synchronization of fractional-order nonautonomous chaotic (hyperchaotic) systems using fractional nonsingular terminal sliding mode technique. Nonlinear Dynamics, 69(1–2), 247–261.

    Article  MathSciNet  MATH  Google Scholar 

  3. Aghababa, M. P. (2013). Design of a chatter-free terminal sliding mode controller for nonlinear fractional-order dynamical systems. International Journal of Control, 86(10), 1744–1756.

    Article  MathSciNet  MATH  Google Scholar 

  4. Axtell, M., & Bise, M. E. (1990). Fractional calculus application in control systems. In Proceedings of the IEEE 1990 National Aerospace and Electronics Conference, 1990. NAECON 1990 (pp. 563–566) IEEE.

    Google Scholar 

  5. Azar, A. T., Serrano, F. E. (2014). Robust IMC-PID tuning for cascade control systems with gain and phase margin specifications. Neural Computing and Applications, 25(5), 983–995. Springer. doi:10.1007/s00521-014-1560-x.

  6. Azar, A. T., Serrano, F. E. (2015). Design and modeling of anti wind up PID controllers. In Q. Zhu & A. T. Azar (Eds.), Complex system modelling and control through intelligent soft computations. Studies in Fuzziness and Soft Computing (Vol. 319, pp 1–44). Germany: Springer. doi:10.1007/978-3-319-12883-2_1.

  7. Azar, A. T., & Serrano, F. E. (2015). Stabilization and control of mechanical systems with backlash. In: A. T. Azar & S. Vaidyanathan (Eds.), Advanced intelligent control engineering and automation. Advances in Computational Intelligence and Robotics (ACIR) Book Series. USA: IGI-Global.

    Google Scholar 

  8. Azar, A. T., & Serrano, F. E. (2016). Stabilization of mechanical systems with backlash by PI loop shaping. International Journal of System Dynamics Applications (IJSDA), 5(3), 20–47.

    Google Scholar 

  9. Azar, A. T., & Vaidyanathan, S. (2016). Advances in Chaos theory and intelligent control. Studies in Fuzziness and Soft Computing (Vol. 337). Germany: Springer. ISBN 978–3-319-30338-3.

    Google Scholar 

  10. Azar, A. T., & Vaidyanathan, S. (2014c). Handbook of research on advanced intelligent control engineering and automation (1st ed.). Advances in Computational Intelligence and Robotics (ACIR) Book Series Hershey, PA: IGI Global.

    Google Scholar 

  11. Azar, A. T., & Vaidyanathan, S. (2015). Chaos modeling and control systems design. Studies in Computational Intelligence (vol. 581). Germany: Springer.

    Google Scholar 

  12. Azar, A. T., & Vaidyanathan, S. (Eds). (2015b). Computational intelligence applications in modeling and control. Studies in Computational Intelligence (Vol. 575). Germany: Springer.

    Google Scholar 

  13. Azar, A. T., & Zhu, Q. (2015). Advances and applications in sliding mode control systems. Studies in Computational Intelligence (Vol. 576). Germany: Springer.

    Google Scholar 

  14. Bai, J., & Yu, Y. (2010). Sliding mode control of fractional-order hyperchaotic systems. In 2010 International Workshop on Chaos-Fractal Theories and Applications.

    Google Scholar 

  15. Boulkroune, A., Bouzeriba, A., Bouden, T., Azar, A. T. (2016). Fuzzy adaptive synchronization of uncertain fractional-order chaotic systems. Advances in Chaos Theory and Intelligent Control. Studies in Fuzziness and Soft Computing (Vol. 337). Germany: Springer.

    Google Scholar 

  16. Boulkroune, A., Hamel, S., & Azar, A. T. (2016). Fuzzy control-based function synchronization of unknown chaotic systems with dead-zone input. Advances in Chaos theory and intelligent control. Studies in Fuzziness and Soft Computing (Vol. 337). Germany: Springer.

    Google Scholar 

  17. Carlson, G. E., & Halijak, C. A. (1961). Simulation of the fractional derivative operator and the fractional integral operator. Kansas State University Bulletin, 45(7), 1–22.

    Google Scholar 

  18. Chang, W., Park, J. B., Joo, Y. H., & Chen, G. (2002). Design of robust fuzzy-model-based controller with sliding mode control for SISO nonlinear systems. Fuzzy Sets and Systems, 125(1), 1–22.

    Article  MathSciNet  MATH  Google Scholar 

  19. Chen, C. S., & Chen, W. L. (1998). Robust adaptive sliding-mode control using fuzzy modeling for an inverted-pendulum system. IEEE Transactions on Industrial Electronics, 45(2), 297–306.

    Article  Google Scholar 

  20. Chen, D., Zhang, R., Sprott, J. C., & Ma, X. (2012). Synchronization between integer-order chaotic systems and a class of fractional-order chaotic system based on fuzzy sliding mode control. Nonlinear Dynamics, 70(2), 1549–1561.

    Article  MathSciNet  MATH  Google Scholar 

  21. Chen, D. Y., Liu, Y. X., Ma, X. Y., & Zhang, R. F. (2012). Control of a class of fractional-order chaotic systems via sliding mode. Nonlinear Dynamics, 67(1), 893–901.

    Article  MathSciNet  MATH  Google Scholar 

  22. Chen, Y., Petras, I., & Xue, D. (2009). Fractional order control-a tutorial. In 2009 American Control Conference (pp. 1397–1411). IEEE.

    Google Scholar 

  23. Cuautle, E. T. (2011). Chaotic systems. InTech.

    Google Scholar 

  24. Delavari, H., Ghaderi, R., Ranjbar, A., & Momani, S. (2010). Fuzzy fractional order sliding mode controller for nonlinear systems. Communications in Nonlinear Science and Numerical Simulation, 15(4), 963–978.

    Article  MathSciNet  MATH  Google Scholar 

  25. Dotoli, M., Lino, P., Maione, B., Naso, D., & Turchiano, B. (2002). A tutorial on genetic optimization of fuzzy sliding mode controllers: Swinging up an inverted pendulum with restricted travel. In Proceedings of EUNITE 2002.

    Google Scholar 

  26. Feng, Y., Han, F., & Yu, X. (2014). Chattering free full-order sliding-mode control. Automatica, 50(4), 1310–1314.

    Article  MathSciNet  MATH  Google Scholar 

  27. Gandomi, A. H., Yang, X. S., & Alavi, A. H. (2013). Cuckoo search algorithm: A metaheuristic approach to solve structural optimization problems. Engineering with Computers, 29(1), 17–35.

    Article  Google Scholar 

  28. Gang-Quan, S., Hui, C., & Yan-Bin, Z. (2011). A new four-dimensional hyperchaotic Lorenz system and its adaptive control. Chinese Physics B, 20(1), 010509.

    Article  Google Scholar 

  29. Grigorenko, I., & Grigorenko, E. (2003). Chaotic dynamics of the fractional Lorenz system. Physical Review Letters, 91(3), 034101.

    Article  Google Scholar 

  30. Hartley, T. T., Lorenzo, C. F., & Qammer, H. K. (1995). Chaos in a fractional order Chua’s system. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 42(8), 485–490.

    Article  Google Scholar 

  31. Hoppensteadt, F. C. (2013). Analysis and simulation of chaotic systems (Vol. 94). Springer Science & Business Media.

    Google Scholar 

  32. Ionescu, C., Machado, J. T., & De Keyser, R. (2011). Fractional-order impulse response of the respiratory system. Computers & Mathematics with Applications, 62(3), 845–854.

    Article  MATH  Google Scholar 

  33. Kamat, S., & Karegowda, A. G. (2014). A brief survey on cuckoo search applications. International Journal of Innovative Research in Computer and Communication Engineering, 2.

    Google Scholar 

  34. Khari, S., Rahmani, Z., & Rezaie, B. (2016). Designing fuzzy logic controller based on combination of terminal sliding mode and state feedback controllers for stabilizing chaotic behaviour in rod-type plasma torch system. Transactions of the Institute of Measurement and Control, 38(2), 150–164.

    Article  Google Scholar 

  35. Laskin, N. (2000). Fractional market dynamics. Physica A: Statistical Mechanics and its Applications, 287(3), 482–492.

    Article  MathSciNet  Google Scholar 

  36. Lin, T. C., Chen, M. C., & Roopaei, M. (2011). Synchronization of uncertain chaotic systems based on adaptive type-2 fuzzy sliding mode control. Engineering Applications of Artificial Intelligence, 24(1), 39–49.

    Article  Google Scholar 

  37. Liu, J., & Wang, X. (2012). Advanced sliding mode control for mechanical systems (pp. 41–80). Germany: Springer.

    Google Scholar 

  38. Lyapunov Exponent. http://en.wikipedia.org/wiki/Lyapunov_exponent. Accessed 20 February 2016.

  39. Mekki, H., Boukhetala, D., & Azar, A. T. (2015). Sliding modes for fault tolerant control. Advances and applications in Sliding Mode Control systems. Studies in Computational Intelligence Book Series (Vol. 576, pp. 407–433). Berlin/Heidelberg: Springer GmbH. doi:10.1007/978-3-319-11173-5_15.

  40. Mohadeszadeh, M., & Delavari, H. (2015). Synchronization of uncertain fractional-order hyper-chaotic systems via a novel adaptive interval type-2 fuzzy active sliding mode controller. International Journal of Dynamics and Control, 1–10.

    Google Scholar 

  41. Nazzal, J. M., & Natsheh, A. N. (2007). Chaos control using sliding-mode theory. Chaos, Solitons & Fractals, 33(2), 695–702.

    Article  Google Scholar 

  42. Ott, E., Grebogi, C., & Yorke, J. A. (1990). Controlling chaos. Physical Review Letters, 64(11), 1196.

    Article  MathSciNet  MATH  Google Scholar 

  43. Oustaloup, A. (Eds). (2006). Proceedings of The Second IFAC Symposium on Fractional Differentiation and its Applications (FDA06), Porto, Portugal, July 19–21 2006. IFAC. Oxford, UK: Elsevier Science Ltd.

    Google Scholar 

  44. Oustaloup, A., Mathieu, B., & Lanusse, P. (1995). The CRONE control of resonant plants: Application to a flexible transmission. European Journal of control, 1(2), 113–121.

    Article  Google Scholar 

  45. Perruquetti, W., & Barbot, J. P. (2002). Sliding mode control in engineering. CRC Press.

    Google Scholar 

  46. Petráš, I. (2009). Chaos in the fractional-order Volta’s system: Modeling and simulation. Nonlinear Dynamics, 57(1–2), 157–170.

    Article  MATH  Google Scholar 

  47. Petrov, V., Gaspar, V., Masere, J., & Showalter, K. (1993). Controlling chaos in the Belousov—Zhabotinsky reaction. Nature, 361(6409), 240–243.

    Article  Google Scholar 

  48. Pyragas, K. (1992). Continuous control of chaos by self-controlling feedback. Physics Letters A, 170(6), 421–428.

    Article  Google Scholar 

  49. Rivero, M., Trujillo, J. J., Vázquez, L., & Velasco, M. P. (2011). Fractional dynamics of populations. Applied Mathematics and Computation, 218(3), 1089–1095.

    Article  MathSciNet  MATH  Google Scholar 

  50. Ross, T. J. (2009). Fuzzy logic with engineering applications. New York: Wiley.

    Google Scholar 

  51. Roy, R., Murphy, T. W., Jr., Maier, T. D., Gills, Z., & Hunt, E. R. (1992). Dynamical control of a chaotic laser: Experimental stabilization of a globally coupled system. Physical Review Letters, 68(9), 1259.

    Article  Google Scholar 

  52. Ullah, N., Khattak, M. I., & Khan, W. (2015). Fractional order fuzzy terminal sliding mode control of aerodynamics load simulator. In Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering (pp. 0954410015580804).

    Google Scholar 

  53. Vaidyanathan, S. (2011). Output regulation of Arneodo-Coullet chaotic system. In International Conference on Computer Science and Information Technology (pp. 98–107). Germany: Springer.

    Google Scholar 

  54. Vaidyanathan, S., & Azar, A. T. (2015a). Analysis and control of a 4-D novel hyperchaotic system. In A. T. Azar & S. Vaidyanathan (Eds.), Chaos modeling and control systems design. Studies in Computational Intelligence (Vol. 581, pp. 19–38). Berlin/Heidelberg: Springer GmbH.

    Google Scholar 

  55. Vaidyanathan, S., & Azar, A. T. (2015b). Anti-synchronization of identical chaotic systems using sliding mode control and an application to Vaidyanathan-Madhavan chaotic systems. In A. T. Azar & Q. Zhu (Eds.), Advances and applications in sliding mode control systems. Studies in Computational Intelligence Book Series (Vol. 576, pp. 527–547). Berlin/Heidelberg: Springer GmbH.

    Google Scholar 

  56. Vaidyanathan, S., & Azar, A. T. (2015c). Hybrid synchronization of identical chaotic systems using sliding mode control and an application to Vaidyanathan chaotic systems. In A. T. Azar & Q. Zhu (Eds.), Advances and applications in sliding mode control systems. Studies in Computational Intelligence Book Series (Vol. 576, pp. 549–569). Berlin/Heidelberg: Springer GmbH.

    Google Scholar 

  57. Vaidyanathan, S., & Azar, A. T. (2016). A Novel 4-D four-wing chaotic system with four quadratic nonlinearities and its synchronization via adaptive control method. Advances in Chaos theory and intelligent control. Studies in Fuzziness and Soft Computing (Vol. 337). Germany: Springer.

    Google Scholar 

  58. Vaidyanathan, S., & Azar, A. T. (2016). Adaptive backstepping control and synchronization of a novel 3-D jerk system with an exponential nonlinearity. Advances in Chaos theory and intelligent control. Studies in Fuzziness and Soft Computing (Vol. 337). Germany: Springer-Verlag.

    Google Scholar 

  59. Vaidyanathan, S., & Azar, A. T. (2016). Adaptive control and synchronization of Halvorsen circulant chaotic systems. Advances in Chaos theory and intelligent control. Studies in Fuzziness and Soft Computing (Vol. 337). Germany: Springer.

    Google Scholar 

  60. Vaidyanathan, S., & Azar, A. T. (2016). Dynamic analysis, adaptive feedback control and synchronization of an eight-term 3-D novel chaotic system with three quadratic nonlinearities. Advances in Chaos theory and intelligent control. Studies in Fuzziness and Soft Computing, Vol. 337, Springer-Verlag, Germany.

    Google Scholar 

  61. Vaidyanathan, S., & Azar, A. T. (2016). Generalized Projective Synchronization of a Novel Hyperchaotic Four-Wing System via Adaptive Control Method. Advances in Chaos theory and intelligent control. Studies in Fuzziness and Soft Computing (Vol. 337). Germany: Springer-Verlag.

    Google Scholar 

  62. Vaidyanathan, S., & Azar, A. T. (2016). Qualitative study and adaptive control of a novel 4-D hyperchaotic system with three quadratic nonlinearities. Advances in Chaos theory and intelligent control. Studies in Fuzziness and Soft Computing (Vol. 337). Germany: Springer-Verlag.

    Google Scholar 

  63. Vaidyanathan, S., Sampath, S., & Azar, A. T. (2015). Global chaos synchronisation of identical chaotic systems via novel sliding mode control method and its application to Zhu system. International Journal of Modelling, Identification and Control (IJMIC), 23(1), 92–100.

    Article  Google Scholar 

  64. Valrio, D. (2012). Introducing fractional sliding mode control. In Proceedings of The Encontro de Jovens Investigadores do LAETA FEUP.

    Google Scholar 

  65. Vinagre, B. M., Chen, Y. Q., & Petráš, I. (2003). Two direct Tustin discretization methods for fractional-order differentiator/integrator. Journal of the Franklin Institute, 340(5), 349–362.

    Article  MathSciNet  MATH  Google Scholar 

  66. Westerlund, S., & Ekstam, L. (1994). Capacitor theory. IEEE Transactions on Dielectrics and Electrical Insulation, 1(5), 826–839.

    Article  Google Scholar 

  67. Wilkie, K. P., Drapaca, C. S., & Sivaloganathan, S. (2011). A nonlinear viscoelastic fractional derivative model of infant hydrocephalus. Applied Mathematics and Computation, 217(21), 8693–8704.

    Article  MathSciNet  MATH  Google Scholar 

  68. Wong, L. K., Leungn, F. H. F., & Tam, P. K. S. (2001). A fuzzy sliding controller for nonlinear systems. IEEE Transactions on Industrial Electronics, 48(1), 32–37.

    Article  Google Scholar 

  69. Wu, J. C., & Liu, T. S. (1996). A sliding-mode approach to fuzzy control design. IEEE Transactions on Control Systems Technology, 4(2), 141–151.

    Article  Google Scholar 

  70. Wu, X., Lu, H., & Shen, S. (2009). Synchronization of a new fractional-order hyperchaotic system. Physics Letters A, 373(27), 2329–2337.

    Article  MathSciNet  MATH  Google Scholar 

  71. Yang, X. S., & Deb, S. (2009). Cuckoo search via Lévy flights. In Nature & Biologically Inspired Computing, 2009. NaBIC 2009. World Congress (pp. 210–214). IEEE.

    Google Scholar 

  72. Yau, H. T., & Chen, C. L. (2006). Chattering-free fuzzy sliding-mode control strategy for uncertain chaotic systems. Chaos, Solitons & Fractals, 30(3), 709–718.

    Article  Google Scholar 

  73. Yin, C., Zhong, S. M., & Chen, W. F. (2012). Design of sliding mode controller for a class of fractional-order chaotic systems. Communications in Nonlinear Science and Numerical Simulation, 17(1), 356–366.

    Article  MathSciNet  MATH  Google Scholar 

  74. Yuan, L., & Wu, H. S. (2010). Terminal sliding mode fuzzy control based on multiple sliding surfaces for nonlinear ship autopilot systems. Journal of Marine Science and Application, 9(4), 425–430.

    Article  Google Scholar 

  75. Zadeh, L. A. (1988). Fuzzy logic.

    Google Scholar 

  76. Zaslavsky, G. M. (2002). Chaos, fractional kinetics, and anomalous transport. Physics Reports, 371(6), 461–580.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. P. S. Rana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Saxena, A., Tandon, A., Saxena, A., Rana, K.P.S., Kumar, V. (2017). On the Terminal Full Order Sliding Mode Control of Uncertain Chaotic Systems. In: Azar, A., Vaidyanathan, S., Ouannas, A. (eds) Fractional Order Control and Synchronization of Chaotic Systems. Studies in Computational Intelligence, vol 688. Springer, Cham. https://doi.org/10.1007/978-3-319-50249-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50249-6_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50248-9

  • Online ISBN: 978-3-319-50249-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics