Skip to main content

Probiotics: Role in the Prevention of Chronic Viral Diseases

  • Chapter
  • First Online:
New Insights on Antiviral Probiotics
  • 670 Accesses

Abstract

Viral infections are the most critical among infectious diseases, especially those that can lead to chronic diseases. The control and the prevention of chronic diseases represent a challenge for public health organizations. These chronic diseases are the major cause of death worldwide. To achieve the greatest impact, public health campaigns should focus on creating novel treatment and prevention strategies against chronic viral diseases. Probiotics are defined as live microorganisms with beneficial effects for humans. Probiotic strains have shown antiviral activity against a variety of infectious viruses such as respiratory and enteric viruses. In this chapter, we discuss the possible role of probiotic strains in chronic viral infections and their benefits in therapy strategies against such diseases. Data from numerous studies has shown that the use of probiotic as therapeutic agents is safe and inexpensive and can avoid the need for invasive treatment for several chronic viral infections caused by HIV, HCV, HTLV, HPV, CVB4, etc. The principal mechanisms of the antiviral activity of the probiotic strains studied until now were the production of antiviral compounds, the immunomodulatory effect, and virus trapping by the probiotic cell wall.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AFB1:

Aflatoxin B1

AIDS:

Acquired immune deficiency syndrome

ALT:

Alanine aminotransferase

AST:

Aspartate aminotransferase

ATCC:

American Type Culture Collection

ATL:

Adult T-cell leukemia

CLD:

Chronic liver disease

CPE:

Cytopathic effect

CSF:

Cerebrospinal fluid

CVB3:

Coxsackievirus B3

EBV:

Epstein–Barr virus

GGT:

Gamma glutamyl transferase

H2O2 :

Hydrogen peroxide

HAM/TSP:

Myelopathy/tropical spastic paraparesis

HBV:

Hepatitis B virus

HCC:

Hepatocellular carcinoma

HCs:

HTLV-1 carriers

HCV:

Hepatitis C virus

HHV4:

Human herpesvirus 4

HHV8:

Human herpesvirus 8

HIV:

Human immunodeficiency virus

HPV:

Human papillomavirus

HR:

High risk

HSV-1:

Herpes simplex viruses 1

HSV-2:

Herpes simplex viruses 2

HTLV-1:

Human T-cell lymphotropic virus type 1

IARC:

International Agency for Research on Cancer

KHSV:

Kaposi’s sarcoma-related herpesvirus

LDH:

Lactate dehydrogenase

LR:

Low risk

MHC:

Major histocompatibility complex

NK cells:

Natural killer cells

PBMCs:

Peripheral blood mononuclear cells

PRA:

Plaque reduction assay

pRb:

Retinoblastoma protein

T1D:

Type 1 diabetes

TGF-α:

Transforming growth factor alpha

TNF alpha:

Tumor necrosis factor alpha

References

  1. O’Connor SM, Taylor CE, Hughes JM. Emerging infectious determinants of chronic diseases. Emerg Infect Dis. 2006;12:1051–7. doi:10.3201/eid1207.060037.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Culligan EP, Hill C, Sleator RD. Probiotics and gastrointestinal disease: successes, problems and future prospects. Gut Pathogens. 2009;1:19. doi:10.1186/1757-4749-1-19.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Imani Fooladi AA, Mahmoodzadeh Hosseini H, Nourani MR, Khani S, Alavian SM. Probiotic as a novel treatment strategy against liver disease. Hepat Mon. 2013;13:e7521. doi:10.5812/hepatmon.7521.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Lin W-H, Hwang C-F, Chen L-W, Tsen H-Y. Viable counts, characteristic evaluation for commercial lactic acid bacteria products. Food Microbiol. 2006;23:74–81. doi:10.1016/j.fm.2005.01.013.

    Article  CAS  PubMed  Google Scholar 

  5. Parvez S, Malik KA, Ah Kang S, Kim H-Y. Probiotics and their fermented food products are beneficial for health. J Appl Microbiol. 2006;100:1171–85. doi:10.1111/j.1365-2672.2006.02963.x.

    Article  CAS  PubMed  Google Scholar 

  6. Khani S, Hosseini HM, Taheri M, Nourani MR, Imani Fooladi AA. Probiotics as an alternative strategy for prevention and treatment of human diseases: a review. Inflamm Allergy Drug Targets. 2012;11:79–89.

    Article  CAS  PubMed  Google Scholar 

  7. Pang IK, Iwasaki A. Control of antiviral immunity by pattern recognition and the microbiome. Immunol Rev. 2012;245:209–26. doi:10.1111/j.1600-065X.2011.01073.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cha M-K, Lee D-K, An H-M, Lee S-W, Shin S-H, Kwon J-H, et al. Antiviral activity of Bifidobacterium adolescentis SPM1005-A on human papillomavirus type 16. BMC Med. 2012;10:72. doi:10.1186/1741-7015-10-72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Verhoeven V, Renard N, Makar A, Van Royen P, Bogers J-P, Lardon F, et al. Probiotics enhance the clearance of human papillomavirus-related cervical lesions: a prospective controlled pilot study. Eur J Cancer Prev Off J Eur Cancer Prev Organ ECP. 2013;22:46–51. doi:10.1097/CEJ.0b013e328355ed23.

    Article  Google Scholar 

  10. Motevaseli E, Shirzad M, Akrami SM, Mousavi A-S, Mirsalehian A, Modarressi MH. Normal and tumour cervical cells respond differently to vaginal lactobacilli, independent of pH and lactate. J Med Microbiol. 2013;62:1065–72. doi:10.1099/jmm.0.057521-0.

    Article  PubMed  Google Scholar 

  11. Rizk S, Maalouf K, Baydoun E. The antiproliferative effect of kefir cell-free fraction on HuT-102 malignant T lymphocytes. Clin Lymphoma Myeloma. 2009;9(Suppl 3):S198–203. doi:10.3816/CLM.2009.s.012.

    Article  CAS  PubMed  Google Scholar 

  12. Matsuzaki T, Saito M, Usuku K, Nose H, Izumo S, Arimura K, et al. A prospective uncontrolled trial of fermented milk drink containing viable Lactobacillus casei strain Shirota in the treatment of HTLV-1 associated myelopathy/tropical spastic paraparesis. J Neurol Sci. 2005;237:75–81. doi:10.1016/j.jns.2005.05.011.

    Article  PubMed  Google Scholar 

  13. Kim MJ, Lee DK, Park JE, Park IH, Seo JG, Ha NJ. Antiviral activity of Bifidobacterium adolescentis SPM1605 against Coxsackievirus B3. Biotechnol Biotechnol Equip. 2014;28:681–8. doi:10.1080/13102818.2014.945237.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Loguercio C, Federico A, Tuccillo C, Terracciano F, D’Auria MV, De Simone C, et al. Beneficial effects of a probiotic VSL#3 on parameters of liver dysfunction in chronic liver diseases. J Clin Gastroenterol. 2005;39:540–3.

    Article  PubMed  Google Scholar 

  15. El-Nezami HS, Polychronaki NN, Ma J, Zhu H, Ling W, Salminen EK, et al. Probiotic supplementation reduces a biomarker for increased risk of liver cancer in young men from Southern China. Am J Clin Nutr. 2006;83:1199–203.

    CAS  PubMed  Google Scholar 

  16. Kumar M, Verma V, Nagpal R, Kumar A, Gautam SK, Behare PV, et al. Effect of probiotic fermented milk and chlorophyllin on gene expressions and genotoxicity during AFB1-induced hepatocellular carcinoma. Gene. 2011;490:54–9. doi:10.1016/j.gene.2011.09.003.

    Article  CAS  PubMed  Google Scholar 

  17. Lee DK, Kang JY, Shin HS, Park IH, Ha NJ. Antiviral activity of Bifidobacterium adolescentis SPM0212 against Hepatitis B virus. Arch Pharm Res. 2013;36:1525–32. doi:10.1007/s12272-013-0141-3.

    Article  CAS  PubMed  Google Scholar 

  18. Kassaa IA, Hober D, Hamze M, Caloone D, Dewilde A, Chihib N-E, et al. Vaginal Lactobacillus gasseri CMUL57 can inhibit herpes simplex type 2 but not Coxsackievirus B4E2. Arch Microbiol. 2015;197:657–64. doi:10.1007/s00203-015-1101-8.

    Article  CAS  PubMed  Google Scholar 

  19. An HM, Lee DK, Kim JR, Lee SW, Cha MK, Lee KO, et al. Antiviral activity of Bifidobacterium adolescentis SPM 0214 against herpes simplex virus type 1. Arch Pharm Res. 2012;35:1665–71. doi:10.1007/s12272-012-0918-9.

    Article  CAS  PubMed  Google Scholar 

  20. Zabihollahi R, Motevaseli E, Sadat SM, Azizi-Saraji AR, Asaadi-Dalaie S, Modarressi MH. Inhibition of HIV and HSV infection by vaginal lactobacilli in vitro and in vivo. Daru J Fac Pharm Tehran Univ Med Sci. 2012;20:53. doi:10.1186/2008-2231-20-53.

    Article  Google Scholar 

  21. Conti C, Malacrino C, Mastromarino P. Inhibition of herpes simplex virus type 2 by vaginal lactobacilli. J Physiol Pharmacol Off J Pol Physiol Soc. 2009;60(Suppl 6):19–26.

    Google Scholar 

  22. Trois L, Cardoso EM, Miura E. Use of probiotics in HIV-infected children: a randomized double-blind controlled study. J Trop Pediatr. 2008;54:19–24. doi:10.1093/tropej/fmm066.

    Article  PubMed  Google Scholar 

  23. Anukam KC, Osazuwa EO, Osadolor HB, Bruce AW, Reid G. Yogurt containing probiotic Lactobacillus rhamnosus GR-1 and L. reuteri RC-14 helps resolve moderate diarrhea and increases CD4 count in HIV/AIDS patients. J Clin Gastroenterol. 2008;42:239–43. doi:10.1097/MCG.0b013e31802c7465.

    PubMed  Google Scholar 

  24. Su Y, Zhang B, Su L. CD4 detected from Lactobacillus helps understand the interaction between Lactobacillus and HIV. Microbiol Res. 2013;168:273–7. doi:10.1016/j.micres.2012.12.004.

    Article  CAS  PubMed  Google Scholar 

  25. Doll R, Peto R. The causes of cancer: quantitative estimates of avoidable risks of cancer in the United States today. J Natl Cancer Inst. 1981;66:1191–308.

    CAS  PubMed  Google Scholar 

  26. Wang JB, Jiang Y, Liang H, Li P, Xiao HJ, Ji J, et al. Attributable causes of cancer in China. Ann Oncol Off J Eur Soc Med Oncol ESMO. 2012;23:2983–9. doi:10.1093/annonc/mds139.

    Article  CAS  Google Scholar 

  27. de Martel C, Ferlay J, Franceschi S, Vignat J, Bray F, Forman D, et al. Global burden of cancers attributable to infections in 2008: a review and synthetic analysis. Lancet Oncol. 2012;13:607–15. doi:10.1016/S1470-2045(12)70137-7.

    Article  PubMed  Google Scholar 

  28. Parkin DM. The global health burden of infection-associated cancers in the year 2002. Int J Cancer. 2006;118:3030–44. doi:10.1002/ijc.21731.

    Article  CAS  PubMed  Google Scholar 

  29. De Flora S, La Maestra S. Epidemiology of cancers of infectious origin and prevention strategies. J Prev Med Hyg. 2015;56:E15–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Arbyn M, Castellsagué X, de Sanjosé S, Bruni L, Saraiya M, Bray F, et al. Worldwide burden of cervical cancer in 2008. Ann Oncol Off J Eur Soc Med Oncol ESMO. 2011;22:2675–86. doi:10.1093/annonc/mdr015.

    Article  CAS  Google Scholar 

  31. Campisi G, Panzarella V, Giuliani M, Lajolo C, Di Fede O, Falaschini S, et al. Human papillomavirus: its identity and controversial role in oral oncogenesis, premalignant and malignant lesions (review). Int J Oncol. 2007;30:813–23.

    CAS  PubMed  Google Scholar 

  32. Münger K, Baldwin A, Edwards KM, Hayakawa H, Nguyen CL, Owens M, et al. Mechanisms of human papillomavirus-induced oncogenesis. J Virol. 2004;78:11451–60. doi:10.1128/JVI.78.21.11451-11460.2004.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Um S-J, Lee S-Y, Kim E-J, Myoung J, Namkoong S-E, Park J-S. Down-regulation of human papillomavirus E6/E7 oncogene by arsenic trioxide in cervical carcinoma cells. Cancer Lett. 2002;181:11–22.

    Article  CAS  PubMed  Google Scholar 

  34. Thomas M, Pim D, Banks L. The role of the E6-p53 interaction in the molecular pathogenesis of HPV. Oncogene. 1999;18:7690–700. doi:10.1038/sj.onc.1202953.

    Article  CAS  PubMed  Google Scholar 

  35. Huh K-W, DeMasi J, Ogawa H, Nakatani Y, Howley PM, Münger K. Association of the human papillomavirus type 16 E7 oncoprotein with the 600-kDa retinoblastoma protein-associated factor, p600. Proc Natl Acad Sci U S A. 2005;102:11492–7. doi:10.1073/pnas.0505337102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lan A, Lagadic-Gossmann D, Lemaire C, Brenner C, Jan G. Acidic extracellular pH shifts colorectal cancer cell death from apoptosis to necrosis upon exposure to propionate and acetate, major end-products of the human probiotic propionibacteria. Apoptosis Int J Program Cell Death. 2007;12:573–91. doi:10.1007/s10495-006-0010-3.

    Article  CAS  Google Scholar 

  37. Poiesz BJ, Ruscetti FW, Gazdar AF, Bunn PA, Minna JD, Gallo RC. Detection and isolation of type C retrovirus particles from fresh and cultured lymphocytes of a patient with cutaneous T-cell lymphoma. Proc Natl Acad Sci U S A. 1980;77:7415–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Uchiyama T. Human T cell leukemia virus type I (HTLV-I) and human diseases. Annu Rev Immunol. 1997;15:15–37. doi:10.1146/annurev.immunol.15.1.15.

    Article  CAS  PubMed  Google Scholar 

  39. Nakagawa M, Izumo S, Ijichi S, Kubota H, Arimura K, Kawabata M, et al. HTLV-I-associated myelopathy: analysis of 213 patients based on clinical features and laboratory findings. J Neurovirol. 1995;1:50–61.

    Article  CAS  PubMed  Google Scholar 

  40. Atkinson MA. The pathogenesis and natural history of type 1 diabetes. Cold Spring Harb Perspect Med. 2012;2:pii: a007641. doi:10.1101/cshperspect.a007641.

    Article  Google Scholar 

  41. Ziegler AG, Rewers M, Simell O, Simell T, Lempainen J, Steck A, et al. Seroconversion to multiple islet autoantibodies and risk of progression to diabetes in children. JAMA. 2013;309:2473–9. doi:10.1001/jama.2013.6285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kondrashova A, Hyöty H. Role of viruses and other microbes in the pathogenesis of type 1 diabetes. Int Rev Immunol. 2014;33:284–95. doi:10.3109/08830185.2014.889130.

    Article  CAS  PubMed  Google Scholar 

  43. Craig ME, Nair S, Stein H, Rawlinson WD. Viruses and type 1 diabetes: a new look at an old story. Pediatr Diabetes. 2013;14:149–58. doi:10.1111/pedi.12033.

    CAS  PubMed  Google Scholar 

  44. Chehadeh W, Kerr-Conte J, Pattou F, Alm G, Lefebvre J, Wattré P, et al. Persistent infection of human pancreatic islets by coxsackievirus B is associated with alpha interferon synthesis in β cells. J Virol. 2000;74:10153–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Horwitz MS, Bradley LM, Harbertson J, Krahl T, Lee J, Sarvetnick N. Diabetes induced by Coxsackie virus: initiation by bystander damage and not molecular mimicry. Nat Med. 1998;4:781–5.

    Article  CAS  PubMed  Google Scholar 

  46. Honeyman MC, Stone NL, Falk BA, Nepom G, Harrison LC. Evidence for molecular mimicry between human T cell epitopes in rotavirus and pancreatic islet autoantigens. J Immunol Baltim Md. 2010;184:2204–10. doi:10.4049/jimmunol.0900709. 1950

    CAS  Google Scholar 

  47. Luan Y, Dai H-L, Yang D, Zhu L, Gao T-L, Shao H-J, et al. Small interfering RNA against the 2C genomic region of coxsackievirus B3 exerts potential antiviral effects in permissive HeLa cells. Virus Res. 2012;163:183–9. doi:10.1016/j.virusres.2011.09.016.

    Article  CAS  PubMed  Google Scholar 

  48. Zhang Y, Cao W, Xie Y-H, Yang Q, Li X-Q, Liu X-X, et al. The comparison of α-bromo-4-chlorocinnamaldehyde and cinnamaldehyde on coxsackie virus B3-induced myocarditis and their mechanisms. Int Immunopharmacol. 2012;14:107–13. doi:10.1016/j.intimp.2012.06.007.

    Article  CAS  PubMed  Google Scholar 

  49. Ambrose PG, Bhavnani SM, Rubino CM, Louie A, Gumbo T, Forrest A, et al. Pharmacokinetics-pharmacodynamics of antimicrobial therapy: it’s not just for mice anymore. Clin Infect Dis Off Publ Infect Dis Soc Am. 2007;44:79–86. doi:10.1086/510079.

    Article  CAS  Google Scholar 

  50. Schmidtke M, Schnittler U, Jahn B, Dahse H, Stelzner A. A rapid assay for evaluation of antiviral activity against coxsackie virus B3, influenza virus A, and herpes simplex virus type 1. J Virol Methods. 2001;95:133–43.

    Article  CAS  PubMed  Google Scholar 

  51. Alavian SM, Gholami B, Masarrat S. Hepatitis C risk factors in Iranian volunteer blood donors: a case-control study. J Gastroenterol Hepatol. 2002;17:1092–7.

    Article  PubMed  Google Scholar 

  52. Sozinov AS. Possible participation of endotoxin of gram-negative bacteria in pathogenesis of liver damage during viral hepatitis. Bull Exp Biol Med. 2002;133:281–4.

    Article  CAS  PubMed  Google Scholar 

  53. Chu CJ, Lee FY, Wang SS, Lu RH, Tsai YT, Lin HC, et al. Hyperdynamic circulation of cirrhotic rats with ascites: role of endotoxin, tumour necrosis factor-alpha and nitric oxide. Clin Sci Lond Engl. 1997;93:219–25. 1979

    Article  CAS  Google Scholar 

  54. Mandair DS, Rossi RE, Pericleous M, Whyand T, Caplin M. The impact of diet and nutrition in the prevention and progression of hepatocellular carcinoma. Expert Rev Gastroenterol Hepatol. 2014;8:369–82. doi:10.1586/17474124.2014.894879.

    Article  CAS  PubMed  Google Scholar 

  55. Tao X, Wang N, Qin W. Gut microbiota and hepatocellular carcinoma. Gastrointest Tumors. 2015;2:33–40. doi:10.1159/000380895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. da Silva JFM, Peluzio JM, Prado G, Madeira JEGC, Silva MO, de Morais PB, et al. Use of probiotics to control aflatoxin production in peanut grains. ScientificWorldJournal. 2015;2015:959138. doi:10.1155/2015/959138.

    PubMed  PubMed Central  Google Scholar 

  57. Whitley RJ, Roizman B. Herpes simplex virus infections. Lancet Lond Engl. 2001;357:1513–8. doi:10.1016/S0140-6736(00)04638-9.

    Article  CAS  Google Scholar 

  58. Caldeira TDM, Gonçalves CV, Oliveira GR, Fonseca TV, Gonçalves R, Amaral CT, et al. Prevalence of herpes simplex virus type 2 and risk factors associated with this infection in women in southern Brazil. Rev Inst Med Trop Sao Paulo. 2013;55:315–21. doi:10.1590/S0036-46652013000500004.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Berger JR, Houff S. Neurological complications of herpes simplex virus type 2 infection. Arch Neurol. 2008;65:596–600. doi:10.1001/archneur.65.5.596.

    Article  PubMed  Google Scholar 

  60. Field HJ, Vere Hodge RA. Recent developments in anti-herpesvirus drugs. Br Med Bull. 2013;106:213–49. doi:10.1093/bmb/ldt011.

    Article  CAS  PubMed  Google Scholar 

  61. Field HJ. Herpes simplex virus antiviral drug resistance--current trends and future prospects. J Clin Virol Off Publ Pan Am Soc Clin Virol. 2001;21:261–9.

    Article  CAS  Google Scholar 

  62. Shin YK, Cai GY, Weinberg A, Leary JJ, Levin MJ. Frequency of acyclovir-resistant herpes simplex virus in clinical specimens and laboratory isolates. J Clin Microbiol. 2001;39:913–7. doi:10.1128/JCM.39.3.913-917.2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Chilukuri S, Rosen T. Management of acyclovir-resistant herpes simplex virus. Dermatol Clin. 2003;21:311–20.

    Article  CAS  PubMed  Google Scholar 

  64. Cloyd MW. Human retroviruses. In: Baron S, editor. Med. Microbiol. 4th ed. Galveston: University of Texas Medical Branch at Galveston; 1996.

    Google Scholar 

  65. WHO | Progress report 2011: Global HIV/AIDS response. WHO n.d. http://www.who.int/hiv/pub/progress_report2011/en/. Accessed 14 May 2016.

  66. Nigatu T. Integration of HIV and noncommunicable diseases in health care delivery in low- and middle-income countries. Prev Chronic Dis. 2012;9:E93. doi:10.5888/pcd9.110331.

    PubMed  PubMed Central  Google Scholar 

  67. Salminen MK, Tynkkynen S, Rautelin H, Poussa T, Saxelin M, Ristola M, et al. The efficacy and safety of probiotic Lactobacillus rhamnosus GG on prolonged, noninfectious diarrhea in HIV Patients on antiretroviral therapy: a randomized, placebo-controlled, crossover study. HIV Clin Trials. 2004;5:183–91. doi:10.1310/6F83-N39Q-9PPP-LMVV.

    Article  PubMed  Google Scholar 

  68. Reid G. Safety of lactobacillus strains as probiotic agents. Clin Infect Dis Off Publ Infect Dis Soc Am. 2002;35:349–50. doi:10.1086/342477.

    Article  Google Scholar 

  69. Wolf BW, Wheeler KB, Ataya DG, Garleb KA. Safety and tolerance of Lactobacillus reuteri supplementation to a population infected with the human immunodeficiency virus. Food Chem Toxicol Int J Publ Br Ind Biol Res Assoc. 1998;36:1085–94.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

AL KASSAA, I., ZAYLAA, M. (2017). Probiotics: Role in the Prevention of Chronic Viral Diseases. In: New Insights on Antiviral Probiotics. Springer, Cham. https://doi.org/10.1007/978-3-319-49688-7_3

Download citation

Publish with us

Policies and ethics